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Abstract 

Given an orientable or nonorientable closed surface S and an integer n not less than 3 and not 

greater than the chromatic number of S, we construct a graph admitting a triangular embedding in 

S and having chromatic number n. 

1. Introduction 

The following two problems are basic in the theory of graph colorings: (1) Given 

a graph, determine its chromatic number, (2) The same for a given surface. 

Computer scientists are interested mainly in Problem 1. With the proof of the 

Four-Color Theorem in 1976, Problem 2 was completely solved. The number of 

algorithms regarding Problem 1 continues to increase. Here we solve constructively 

the problem inverse to Problem 1, with the additional restriction that the graph must 

triangulate a given surface. The construction is interesting in itself, and readily allows 

modifications to obtain a graph with given chromatic number and admitting a poly- 

gonal embedding in a given surface, with additional restrictions on the numbers of 

m-gons in the embedding. 

In general we follow the terminology and notation of [3]. 
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Fig. 1. Triangulations of a sphere, a torus, and a projective plane having chromatic number three. 

An embedding h: G+S of a graph G in a 2-dimensional surface S is called a 2-cell 

embedding provided that each component of S-h(G) is homeomorphic to an open 

2-disk. These components are called the regions of h. In particular, a 2-cell embedding 

T: G+S of a 3-connected graph G in S is called a triangulation qf S with the graph 

G when each region of T is triangular. 

A coloring of G is an assignment of colors to its vertices so that adjacent 

vertices have different colors. The chromatic number x(G) qf u graph G is the 

smallest number of colors needed for a coloring. By the chromatic number x(T) qf 
a triangulation T we mean the chromatic number of its graph G. The chromatic number 

x(S) of u suvfuce S is the maximum chromatic number of a graph that can be 

embedded in S. 

We depict the torus as a square, opposite sides of which are identified in pairs, and 

the projective plane as a regular hexagon with each pair of its antipodal boundary 

points identified. Then Fig. 1 presents examples of a planar triangulation S*, 

a toroidal triangulation T*, and a projective-planar triangulation P* having chro- 

matic number three with their vertices colored red r, green g, and blue h. 

Our construction is expounded in Section 5, for the orientable case S=S, of the 

sphere with pa0 handles, and in Section 6, for the nonorientable case S= N, of the 

sphere with k > 0 crosscaps. 

The next three sections develop technical lemmas. 

2. Boundary walks 

Let h : G--S be a 2-cell embedding of a graph G in a surface S. By a boundary walk of 

h we mean a closed walk which is a cyclic sequence of vertices and edges of G traced 
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when walking inside a region of h around its boundary and keeping one hand on that 

boundary. 

A closed walk is called a cycle when it has no repeated vertices. We note that 

a boundary walk may have repeated vertices and even repeated edges since the region 

closures are not required to be homeomorphic to compact disks. For example, draw 

two disjoint cycles ~ c and c’ ~ on the sphere and then join, by an edge e, a vertex of 

c to one of c’; we thus obtain a 2-cell embedding with one of its boundary walks 

traversing e twice. Thus a boundary walk need not be a cycle. 

The length of a boundary walk is the number of its edges, each edge being counted 

once or twice, according to the number of times it occurs in the walk, once or twice. 

Note that a boundary walk cannot pass along the same edge more than twice, and 

that the number of different vertices of a boundary walk cannot exceed the length of 

the boundary walk. 

Lemma 1. Let G be a 2-connected graph with Vi_ 1, vi, vi+, denoting three vertices qf 
G in the order they occur in a boundary walk qf a 2-cell embedding of’G as in Fig. 2(a). 

Then these three vertices are distinct. 

Proof. It is enough to prove that Vi_ 1 #vi+ I as it is clear that \I( # vi- 1, Vi + 1. Suppose 

to the contrary that \‘i_ 1 = vi+ 1. Then one of the following two alternatives must arise. 

(1) The edges vivi_ 1 and viri+ 1 are multiedges. 

(2) YiVi~1=ViVi+1. 

The first is impossible because there are no multiedges in a graph. The second would 

entail that the boundary walk passes along the edge vivi_ 1 = vi vi + 1 twice, in opposite 

Fig. 2. Boundary walk of a 2-cell embedding; for a 2.connected graph, (b) is impossible. 
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directions; see Fig. 2(b); so that the vertex Vi is adjacent to only one vertex: Vi_ 1 = l’i+ 1. 

This however contradicts the hypothesis that G is 2-connected. 0 

3. Special embeddings of complete graphs 

The genus y(G) of a graph G is the minimum number p 3 0 of handles needed on the 

sphere to achieve embeddability G+S,. 

Consider an embedding of the complete graph K,+S,,,,,. It is necessarily a 2-cell 

embedding, see [7]. Denote by r,,, the number of its regions bounded by boundary 

walks of length m. The following formula [6, Theorem 9-l] is a consequence of the 

well-known Euler-Poincare formula. 

;I(K )Jn-3M-4) 1 
n 12 

+; C (m-3h-, n33. 
m83 

Much more sophisticated [S] is the classical formula of Ringel and Youngs: 

(1) 

Lemma 2. For each n 2 4, there exists a 2-cell embedding K,+S,,,“l such that no region 

has all n vertices on its boundary. 

Proof. For n = 4, such an embedding is presented by the tetrahedron. For nE { 5,6,7}, 

take the embeddings of K,, K,, and K, in the torus SI shown in Fig. 3. For either 

n= 8 or n39 take any embedding K.+S,,,,,,. Then from (1) and (2) we derive 

Cm2 3 (m - 3)r, = 2 or < 5, respectively. In either case, we have r, =O, for m > n. 0 

Fig. 3. Embeddings of three complete graphs in a torus. 
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4. The construction 

Lemma 3. For each na3, there exists a triangulation of SBcK,, having chromatic 

number n. 

Proof. For n = 3, it is easy to verify that S* of Fig. 1 is such a triangulation. 

For n>4, we fix a coloring of K,, whose n colors will be called an initial coloring, 
and choose an embedding of K, satisfying Lemma 2. In case the chosen embedding 

has a nontriangular region, denote it by R. Denote by W the boundary walk of R, 
and by m its length. Denote by Ci (i = 1,2,3, . . , m) the vertices of Win the order they 

occur in W, and preserve the same notation for the initial colors of these vertices. The 

latter will cause no confusion as different vertices of a complete graph are colored 

differently. 

The idea of the proof is to expose explicitly a procedure to triangulate R judiciously 

and to extend then the initial coloring to R, using only the initial colors (therefore 

without increasing the number of colors). Before giving the procedure, we make two 

motivating observations. 

Observation I. If the walk W is not a cycle then we hazle Ci = Cj,,for some i and j, but 

anyway, by Lemma 1, the three colors (Y-1 (modmJ, Ci, and Ci+l (modmI are difSerent,.fbr 
each i = 1,2,3, . . . , m. 

Observation II. By Lemma 2, at least one of the initial colors is omitted from W. 

The procedure is expounded below and is illustrated by Fig. 4. 

Step I. Inside R, adjoin a triangle to the edge Ci- i Ci of W, for i = 2,3,. . . , m, and 

color its new vertex with Ci+ 1 tmod mj. Join then the m- 1 new vertices by a cycle in the 
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Fig. 4. Triangulation of a nontriangular region R. 
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cyclic order naturally inherited from W. Now R is subdivided into 2m-3 triangles, 

one quadrilateral, and one (m- I)-gon. 

Step II. Add a new vertex inside the quadrilateral and one in the (m- l)-gon, and 

then join each of the two vertices to each boundary vertex of the respective polygon. 

Finally, apply any initial color omitted from W to the two new vertices. 

By so triangulating all nontriangular regions, we obtain a required triangulation. 

Note that n colors are necessary because the resulting graph has K, as a 

subgraph. 0 

Now let T and T’ be triangulations of two disjoint closed surfaces S and S’. Let us 

remove an arbitrary triangular region from T and one from T’, and then paste their 

boundaries together, vertices being identified with vertices. We thus obtain a new 

closed surface which is known in topology as a connected sum of S and S’ denoted by 

S # S’. We also denote by T# T’ the resulting triangulation of S # S’. 

Even though the combinatorial structure of T# T’ is not defined uniquely, the 

topological type, i.e., the Euler characteristic and the orientability class, of S#S’ 

depends neither on which regions are removed nor on how their boundaries are 

pasted together. Moreover, it is no problem to determine the topological type of S # S’ 

if those of S and S’ are known. In particular, it is a well-known fact that when S=S, 

and S’=S,* then we have S#S’=Sp+p’r and thus 

i’(T# T’)=y(T)+y(T’). 

Another simple property of connected sums is that 

x(T# T’)=max(x(T),x(T’)). 

(3) 

(4) 

5. The main result 

Theorem 1. For each integer pair (p, n), where p>O and 3 <n <x(S,), there exists 

a triangulation qf the surface S, having chromatic number n. 

Proof. Due to the 4-Color Theorem [ 1,2], the case p =0 of the sphere is finished: take 

S* of Fig. 1 and the tetrahedron. Now consider pa 1. Let T* be the torus triangula- 

tion shown in Fig. 1. Let T, be a triangulation as in Lemma 3 and let T, = T,_ 1 # T* 

(s = 1,2, . . .). Then from (3) we derive 

r(r,)=v(To)+sy(T*)=~GJ+s. (5) 

Furthermore, by (4), we have 

X(T,)=max{X(T,),X(T*))=max{n,3}=n. (6) 

Therefore T,_ yCK,j is a triangulation of S, having chromatic number n. It remains to 

prove that p- y(K,)>O. Actually, x(S,) is attained by the largest complete graph 
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embeddable in S,, see [S]. Hence KXCs,, is embeddable in S,, and so K, is too, so that 

IW)GP. 0 

6. The nonorientable case 

Now we turn to the nonorientable case S= N, of the sphere with k>O crosscaps. 

The nonorientable genus, Y(G), of a graph G is the minimum number k 3 0 of crosscaps 

needed on So to achieve embeddability G+N,. Although the sphere S,, itself is 

orientable, it is convenient to declare by convention that Se = No. The formula for the 

nonorientable genus of K, (n 3 3) is known [4]: 

In the orientable case, the above construction is based on the fact that each 

embedding of K, in the orientable surface of minimum genus is a 2-cell embedding. 

The nonorientable analog does not survive without modification. For example, 

having fitted a region of the triangulation K, +S1 shown in Fig. 3 with a crosscap, we 

obtain an embedding K7 + N3 = NTCK7, which is not a 2-cell embedding. Fortunately, it 

is the only example! 

Lemma 4. For n # 7, each embedding K,-+ NyCK,, is a 2-cell embedding. 

Proof. For n # 7, we deduce from (2) and (7) that 

2-7(K,)>2---2y(K,). 

Thus the surface N:,(K.I has the maximum Euler characteristic among the surfaces, 

orientable or nonorientable, in which K, can be embedded. On the other hand, due to 

a result of Youngs [7], each embedding of a connected graph in a surface of highest 

possible Euler characteristic is necessarily a 2-cell embedding. 0 

Using Lemma 4, the direct nonorientable analogs of Lemmas 2 and 3 (replacing the 

symbols S and y by N and 7) for n # 7 are established similarly. For n = 7, to construct 

a triangulation of NFCK,)= N3 having chromatic number 7, it is enough to take 

(K7-+S1) #P*; see Figs. 3 and 1. Therefore, the direct nonorientable analog of 

Lemma 3 certainly holds. 

Theorem 2. For each integer pair (k, n), where k>O and 3 <n <x(Nk), there exists 

a triangulation of the surface Nk having chromatic number n. 
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Proof. This is completely analogous to the above proof of Theorem 1 with the only 

difference that we use, instead of Lemma 3, its direct nonorientable analog and add P * 

instead of T”. 0 

Remark. The construction also applies if we allow multigraphs to triangulate surfa- 

ces. The class of multigraphs is easier to handle because the proof of Lemma 3 is 

simplified. Actually, we simply add one vertex in each nontriangular region and join it 

to each vertex in the boundary, with repeated vertices in the boundary walk causing 

no complications. Therefore, Theorems 1 and 2 are also true when by a triangulation 

we mean a triangular embedding of a multigraph. 
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