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For linear constant-coefficient differential-algebraic equations, we study the waveform
relaxation methods without demanding the boundedness of the solutions based on
infinite time interval. In particular, we derive explicit expression and obtain asymptotic
convergence rate of this class of iteration schemes under weaker assumptions, which may
have wider and more useful application extent. Numerical simulations demonstrate the
validity of the theory.
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1. Introduction

Differential-algebraic equations (DAEs) can be generally formulated as implicit differential equations of the form

F(ẋ(t), x(t), t) = 0, (1.1)

where F and x are vector-valued functions, and ẋ(t) denotes the derivative of x(t) with respect to t . If the Jacobian of F
with respect to ẋ := ẋ(t), denoted as ∂F

∂ ẋ , is nonsingular, then the system (1.1) defines implicit ordinary differential equations
(ODEs), and by the implicit function theoremwe can solve ẋ from the system (1.1) to obtain the explicit ordinary differential
equations

ẋ(t) = G(x(t), t), (1.2)

where G is a properly defined functional such that

F(G(x(t), t), x(t), t) = 0.
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Through this approach, we can solve implicit ODEs via solving explicit ODEs. If the Jacobian ∂F
∂ ẋ is singular, then the system

(1.1) defines differential-algebraic equations, as now the function ẋ(t) cannot be expressed in the explicit form (1.2).
The waveform relaxation methods can be regarded as natural extensions of the classical relaxation methods for solving

systems of algebraic equations with iterating space changing from Rn to the time-dependent functional or the waveform
space. They are powerful solvers for numerically computing the solution of the DAEs (2.1) on both sequential and parallel
computers; see, e.g., [1–4]. The basic idea of this class of iterationmethods is to apply the relaxation technique directly to the
DAEs. As a result, the system of DAEs is first decomposed into decoupled sub-systems, and each sub-system is then analyzed
for the entire simulation time interval by means of standard simulation techniques; see, for example, [5,6]. Appropriately
designed waveform relaxation method can be efficiently implemented on a parallel computer by distributing the sub-
systems to different processors. Each processor is then responsible for computing the update of a sub-system. A task of
large enough scale often leads to very satisfactory parallel performance.

The waveform relaxation method was first introduced by Lelarasmee in [5] for simulating the behavior of very large-
scale electrical networks. Lelarasmee proved that the waveform relaxation method is convergent as long as the splitting
function of the nonlinear system is Lipschitz continuous. Later, there are lots of expansions and applications of this theory;
see [4]. This theory can sufficiently guarantee the convergence of the waveform relaxation method. There is, however, no
sufficient and necessary convergence condition, neither precise description about the convergence rate. Miekkala is the
first who studied the waveform relaxation method for solving linear DAEs in a more precise point of view, and obtained
convergence rate of the waveform relaxation method; see [7,8]. As is known, the convergence of the waveform relaxation
methods demands a strict restriction that the solution of the DAEs (2.1) is uniformly bounded; see [7–12] for details.

The main purpose of this paper is to establish the convergence theory for the waveform relaxation methods without the
boundedness assumption on the solution of the DAEs (2.1). The organization of the paper is as follows. We briefly review
the solvability and the Kronecker canonical form of the DAEs (2.1) in Section 2. In Section 3, we present the basic theory of
the Laplace transform, establish a few useful lemmas and discuss the choice of the function space. The waveform relaxation
method is precisely described and the explicit expression of the iteration is carefully derived in Section 4. In Section 5 we
demonstrate the convergence and the asymptotic convergence rate of the waveform relaxation method. Numerical results
are shown in Section 6 to verify our theory. Finally, we give a few conclusions and remarks in Section 7.

2. Solvability of DAEs

In what follows, we assume that the solution of the DAEs (1.1) exists and is uniquely defined on an interval of interest.
We first introduce the concept of solvability proposed by Petzold in [13].

Definition 2.1. Let I be an open sub-interval of R1,Ω be a connected open subset of R2m+1, and F a differentiable function
fromΩ to Rm. Then the DAEs (1.1) is solvable on I inΩ if there is an r-dimensional family of solutions φ(t, c) defined on a
connected open set I × Ω̃ , with Ω̃ ⊂ Rr , such that

(a) φ(t, c) is defined on all of I for each c ∈ Ω̃;
(b) (φ̇(t, c), φ(t, c), t) ∈ Ω for (t, c) ∈ I × Ω̃;
(c) if ψ(t) is any other solution with (φ̇(t, c), φ(t, c), t) ∈ Ω , then ψ(t) = φ(t, c) for some c ∈ Ω̃;
(d) the graph of φ(t, c) as a function of (t, c) is an (r + 1)-dimensional manifold.

Here, φ̇(t, c) represents the derivative of φ(t, c)with respect to t .

Consider the initial-value problem of linear constant-coefficient DAEs

Bẋ(t)+ Ax(t) = f (t), x(0) = x0, (2.1)

where B and A are square matrices of suitable dimensions. In looking for solutions of the form x(t) = eλtx0 (for f (t) = 0),
we are led to consider the matrix pencil λB+ A. If the determinant of λB+ A, denoted as det(λB+ A), is not identically zero
as a function of λ, then the pencil is said to be regular. Solvability as defined in Definition 2.1 can be difficult to determine
for a general DAEs, but for the special case (2.1) there is a nice characterization.

Theorem 2.1 ([13,14]). The linear constant-coefficient DAEs (2.1) is solvable if and only if the matrix pencil λB + A is regular.

If the determinant of a matrix pencil λB + A is identically zero as a function of λ, the DAEs (2.1) has either no solution
or infinitely many solutions for a given initial value x0. We shall therefore deal with regular matrix pencils. Recall that a
matrix N is said to have nilpotency k if Nk

= 0 and Nk−1
≠ 0. An essential approach for computing the solution of (2.1) is to

simultaneously transform the matrices B and A into Kronecker canonical forms. This property is precisely described in the
following theorem.

Theorem 2.2 ([13,15]). Let B and A be given square matrices of the same dimension. Suppose that λB + A is a regular matrix
pencil. Then there exist nonsingular matrices P and Q such that

PBQ =


I 0
0 N


and PAQ =


C 0
0 I


, (2.2)
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where N is a matrix of nilpotency k and I is the identity matrix. Here, for N = 0 we define k = 1. For B being particularly
nonsingular, we take PBQ = I , PAQ = C and k = 0. Moreover, when det(λB + A) is identically constant, (2.2) can be simplified
to PBQ = N and PAQ = I . Here and in what follows, I is used to denote the identity matrix of suitable dimension.

Remark 2.1. According to the proof of Theorem2.2 in [15], when both A and B are realmatrices, we can choose realmatrices
P and Q to transform the matrix pencil λB + A into the Kronecker canonical form (2.2).

3. Laplace transform and function space

Laplace transform is one of the most useful and important tools in mathematical analysis. In order to make this
paper more self-contained, we first review the basic definitions related to the Laplace transform [16]. Furthermore, some
fundamental theorems of the Laplace transform can be found in the Appendix.

Definition 3.1 (Causal Function). A continuous time-dependent function f : R1
→ C1 is called causal if f (t) = 0, for t < 0.

Note that if f (t) is a causal function, then f (0) = 0 holds true.

Definition 3.2 (Laplace Transform). Let f : R1
→ C1 be a causal function. Then the Laplace transform F(s) of f (t) is a

complex function defined, for all s ∈ C1, by

F(s) =

∫
∞

0
f (t)e−st dt , (Lf )(s),

provided the integral exists.

Definition 3.3 (Abscissa of Absolute Convergence). For a given causal function f : R1
→ C1, there exists a number σa ∈ R1

with −∞ ≤ σa ≤ ∞ such that the integral


∞

0 f (t)e−st dt is absolutely convergent for all s ∈ C1 with Re(s) > σa, and not
absolutely convergent for all s ∈ C1 with Re(s) < σa. Here, by σa = −∞wemean that the integral is absolutely convergent
for all s ∈ C1, and by σa = ∞ wemean that the integral is absolutely convergent for no s ∈ C1. The number σa is called the
abscissa of absolute convergence.

Definition 3.4 (Exponential Order). The causal function f : R1
→ C1 is of exponential order if there are constants α ∈ R1

and æ > 0 such that |f (t)| ≤ æeαt for all t ≥ 0.

Remark 3.1. The set of all functions of exponential orders is denoted as

E = {f (t) : f (t) is a causal function of exponential order} .

Note that E is a vector space.

Definition 3.5 (Abscissa of Function Space). Let E be the vector space of all functions of exponential orders and X ⊂ E . Then
there exists a number σX ∈ R1 such that for any x := x(t) ∈ X the functional Lx is absolutely convergent for all s ∈ C1

satisfying Re(s) > σX + ϵ, with ϵ > 0 being arbitrary, and not all Lx is absolutely convergent for all s ∈ C1 satisfying
Re(s) < σ , with σ < σX . That is to say,

σX = inf{σ ∈ R1
: Lx is absolutely convergent,∀ x ∈ X, ∀ Re(s) > σ }.

Such a real number σX is called the abscissa of the function space X .

We have already known the convolution product of two functions. When, moreover, f and g are both causal functions,
we have, for t > 0, that

(f ∗ g)(t) =

∫
∞

−∞

f (τ )g(t − τ) dτ =

∫ t

0
f (τ )g(t − τ) dτ ,

since the integrand is zero for both τ < 0 and t − τ < 0. Moreover, we can easily prove the existence of the convolution
product.

Lemma 3.1. Let f , g : R1
→ C1 be two causal functions of exponential orders. Suppose that α, β ∈ R1 andæ > 0 are constants

such that

|f (t)| ≤ æeαt and |g(t)| ≤ æeβt .

Then
(a) if α ≠ β , there exists a constant æ > 0 satisfying

|(f ∗ g)(t)| ≤ æemax{α,β}t
;

(b) if α = β , for any ϵ > 0 there exists a constant æϵ > 0 satisfying

|(f ∗ g)(t)| ≤ æϵe(α+ϵ)t .
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Proof. Because f and g are causal functions, we know that the convolution of f and g exists.
For α ≠ β , without loss of generality, we may assume that α < β . Then direct computations lead to the estimate

|(f ∗ g)(t)| =

∫ t

0
f (τ )g(t − τ) dτ


≤

∫ t

0
|f (τ )||g(t − τ)|dτ

≤ æ2
∫ t

0
eατeβ(t−τ)dτ

= æ2eβt
∫ t

0
e(α−β)τ dτ

=
1

β − α
æ2(1 − e−(β−α)t)eβt

≤
1

β − α
æ2eβt

= æemax{α,β}t .

For α = β , we can similarly obtain the estimate

|(f ∗ g)(t)| =

∫ t

0
f (τ )g(t − τ) dτ


≤

∫ t

0
|f (τ )||g(t − τ)| dτ

≤ æ2
∫ t

0
eατeβ(t−τ) dτ

= æ2teβt .

It follows from the above derivations that for any ϵ > 0 there exists a constant æϵ such that t ≤ æϵeϵt . Therefore, it holds
that

|(f ∗ g)(t)| ≤ æ2teβt ≤ æ2æϵe(β+ϵ)t
= æϵe(β+ϵ)t ,

where æϵ = æ2æϵ . This completes the proof. �

For the initial-value problem of linear constant-coefficient DAEs (2.1), according to [17] we assume that its solution x(t)
satisfies x(t) ∈ L1loc(R̄

1
+
), where R̄1

+
= [0,+∞) and

L1loc(R̄
1
+
) := {x(t) : x(t) ∈ L1(Ω) is locally integrable for every openΩ ⊂ R̄1

+
}.

Let {tn}∞n=0 be an increasing series of positive reals satisfying limn→∞ tn = ∞, and denote by Ωn = [0, tn]. Then we have
R̄1

+
= ∪

∞

n=0Ωn. In accordance with the theory of Sobolev space [17,18], we know that the set of restrictions to Ωn of the
functions inC∞

0 (R
1) ⊂ C∞(R1) is dense in L1(Ωn). This shows that the solution x(t) of the DAEs (2.1), when restricted toΩn,

can be well approximated by the functions in C∞

0 (R
1) ⊂ C∞(R1). Noticing that limn→∞Ωn = R̄1

+
, we can then conclude

that the above-mentioned approximation can be done on the domain R̄1
+
.

For a given small positive real number γ , we define a function space on R̄γ = [γ ,+∞) as

C∞

γ (R̄γ ) =

x(t) : ‖x(t)‖γ ,∞ < ∞


,

where the norm ‖ · ‖γ ,∞ is defined as

‖x(t)‖γ ,∞ = sup
m≥0

max
t∈R̄γ

dmx(t)
dtm

 .
Then the following conclusion holds true.

Theorem 3.1. The function space C∞
γ (R̄γ ) is complete under the norm ‖ · ‖γ ,∞.

Proof. We denote by

‖x(t)‖γ ,k = sup
0≤m≤k

max
t∈R̄γ

dmx(t)
dtm

 .
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Let {xk(t)}∞k=0 ⊂ C∞
γ (R̄γ ) be a Cauchy sequence. Then for any ε > 0, there exists a positive integer no such that

‖xn(t)− xm(t)‖γ ,∞ < ε, ∀n,m ≥ no.

It follows immediately that

‖xn(t)− xm(t)‖γ ,k < ε, ∀k ≥ 0.

Hence, there exist continuous functions x(k) and x(k+1) such that

dkxn(t)
dtk

−→ x(k) and
dk+1xn(t)
dtk+1

−→ x(k+1), ∀k ≥ 0,

where the symbol ‘‘−→’’ means that a sequence of functions converges uniformly to a limiting function. Moreover, we have

x(k+1)
=

dx(k)

dt
.

So, we see that there exists a function x(t) satisfying

dkxn(t)
dtk

−→
dkx(t)
dtk

, ∀k ≥ 0.

Obviously, for any k ≥ 0, there exists a positive integer n̄k > no such that

‖xn̄k(t)− x(t)‖γ ,k < ε.

Therefore, it holds that

‖x(t)‖γ ,k ≤ ‖x(t)− xn̄k(t)‖γ ,k + ‖xn̄k(t)− xno+1(t)‖γ ,k + ‖xno+1(t)‖γ ,k
≤ 2ε + ‖xno+1(t)‖γ ,k
≤ 2ε + ‖xno+1(t)‖γ ,∞, ∀k ≥ 0.

This clearly shows that

‖x(t)‖γ ,∞ ≤ 2ε + ‖xno+1(t)‖γ ,∞ < ∞

and, hence, x(t) ∈ C∞
γ (R̄γ ).

In addition, because for any k ≥ 0 it holds that

‖xn(t)− xm(t)‖γ ,k < ε, ∀n,m ≥ no,

and there exists a positive integer m̄k > no such that

‖xm̄k(t)− x(t)‖γ ,k < ε,

we have

‖xn(t)− x(t)‖γ ,k ≤ ‖x(t)− xm̄k(t)‖γ ,k + ‖xm̄k(t)− xn(t)‖γ ,k < 2ε, ∀k ≥ 0.

This straightforwardly implies that

‖xn(t)− x(t)‖γ ,∞ ≤ 2ε, ∀n ≥ no.

Therefore, C∞
γ (R̄γ ) is complete. �

Define a function space

Tσ ,γ =

x(t) : e−σ tx(t) ∈ C∞

γ (R̄γ )

.

The norm equipped in Tσ ,γ is

‖x(t)‖σ = ‖e−σ tx(t)‖γ ,∞.

SinceC∞
γ (R̄γ ) is complete,Tσ ,γ is also complete under the norm ‖·‖σ .We smoothly prolong x(t) ∈ Tσ ,γ as a causal function

and consider different prolongations of x(t) as the same function. Denote by Tσ the set of all the above prolonged functions,
and define the norm in Tσ as ‖ · ‖σ again. Then we conclude that Tσ is complete under the norm ‖ · ‖σ . In the remainder,
we will concentrate on the space Tσ . It is straightforward that the abscissa of Tσ is σTσ = σ .

Furthermore, we can demonstrate that the solution of the DAEs (2.1) is of exponential order. This result is precisely
described in the following lemma.
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Lemma 3.2. For the initial-value problem of linear constant-coefficient DAEs (2.1) with the regular matrix pencil λB + A, let
f (t) ∈ Tn

σ . Then its solution x(t) is of exponential order, where σ is a real number and Tn
σ := Tσ × Tn−1

σ , n = 2, 3, . . . , with
T1
σ = Tσ .

Proof. According to Theorem 2.2, there exist nonsingular matrices P and Q such that

PBQ =


I 0
0 N


and PAQ =


C 0
0 I


.

Let x(t) = Qy(t) and post-multiply P on both sides of (2.1). Then we obtain

PBQ ẏ(t)+ PAQ y(t) = Pf (t), y(0) = y0 , Q−1x0,

or equivalently,
I 0
0 N

 
ẏ1(t)
ẏ2(t)


+


C 0
0 I

 
y1(t)
y2(t)


=

f1(t)f2(t)

, y(0) =


y10
y20


,

withf (t) = Pf (t). In block vector form, the above equations can be rewritten as
ẏ1(t)+ Cy1(t) =f1(t),
Nẏ2(t)+ y2(t) =f2(t),

which has the explicit solution
y1(t) = e−tCy10 +

∫ t

0
e−(t−τ)Cf1(τ ) dτ ,

y2(t) =


I + N

d
dt

−1f2(t).
It follows immediately from f (t) ∈ Tn

σ that y(t) is of exponential order and, hence, x(t) = Qy(t) is of exponential order,
too. �

Remark 3.2. Since the solution of the DAEs (2.1) is of exponential order, it is reasonable to discuss the waveform relaxation
method for (2.1) in the space Tn

σ of functionals of exponential orders.

4. Explicit expression of waveform relaxation method

In this section, we are going to propose a new explicit expression of the waveform relaxation method for the DAEs (2.1).
The basic assumption on the DAEs (2.1) is that the corresponding matrix pencil λB + A is regular. By splitting the matrices
B, A ∈ Cn×n into

B = MB − NB and A = MA − NA,

we can precisely describe the waveform relaxation method for the DAEs (2.1) as follows:
MBẋ(k)(t)+ MAx(k)(t) = NBẋ(k−1)(t)+ NAx(k−1)(t)+ f (t),
x(k)(0) = x0.

(4.1)

According to Theorem 2.2, for each k the problem in (4.1) is solvable if the matrix pencil λMB + MA is regular. Moreover,
x0 should be chosen as the consistent initial condition or the admissible initial value, which admits the solution be smooth;
see, e.g., [13,7].

Miekkala introduced an explicit expression of the waveform relaxation method (4.1) for the DAEs (2.1) in [7]. Since the
matrix pencil λMB + MA is regular, according to Theorem 2.1 there exist nonsingular matrices P , Q ∈ Rn×n such that the
scheme (4.1) can be transformed into

˙̃x
(k)
1 (t)+ J x̃(k)1 (t) = NB1

˙̃x
(k−1)

(t)+ NA1 x̃
(k−1)(t)+f1(t),

H ˙̃x
(k)
2 (t)+ x̃(k)2 (t) = NB2

˙̃x
(k−1)

(t)+ NA2 x̃
(k−1)(t)+f2(t), (4.2)

with

PMBQ =


I 0
0 H


, PMAQ =


J 0
0 I


,

PNBQ =


NB1
NB2


, PNAQ =


NA1
NA2


,

Q−1x(t) = x̃(t) =


x̃1(t)
x̃2(t)


, Q−1x0 = x̃0 =


x̃10
x̃20


,
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and

f (t) = Pf (t) =

f1(t)f2(t)

,

where H is a matrix with nilpotency ν. Then the scheme (4.2) can be rewritten into the operator form

x̃(k+1)(t) = (H x̃(k))(t)+ Φ(t), (4.3)

where

H =


H1
H2


, (H x̃)(t) =


(H1x̃)(t)
(H2x̃)(t)


,

with 
(H1x̃)(t) = NB1 x̃(t)+

∫ t

0
e(s−t)J(NA1 − JNB1)x̃(s)ds,

(H2x̃)(t) =

ν−1−
i=0

(−1)iH i

NB2

d
dt

+ NA2


dix̃(t)
dt i

,

and

Φ(t) =


e−tJ x̃10 − e−tJNB1 x̃0 +

∫ t

0
e(s−t)Jf1(s)ds

ν−1−
i=0

(−1)iH i d
if2(t)
dt i

 .

This operator form seems very complicated. In order to analyze its convergence property, Miekkala made several
assumptions that are difficult to be verified; see [7]. We will review these assumptions in the next section.

Therefore, it is necessary to find a better operator form for the waveform relaxation method (4.1). In fact, we can take
advantage of the Laplace transform to obtain a simpler and more useful operator form, which is precisely described in the
following theorem.

Theorem 4.1. Consider the initial-value problem of linear constant-coefficient DAEs (2.1)with the regular matrix pencil λB+ A.
Let

B = MB − NB and A = MA − NA

be splittings of the matrices B, A ∈ Rn×n such that λMB + MA is a regular matrix pencil. Assume that x0 is a consistent initial
condition, and both x(k−1)(t) and f (t) belong to Tn

σ , with σ a real number. Then the waveform relaxation method (4.1) can be
rewritten into the operator form

x(k)(t) = K(x(k−1)(t))+ Φ(f (t)), (4.4)

where
K(x(t)) = (L−1(sMB + MA)

−1(sNB + NA)L)(x(t)),
Φ(f (t)) = (L−1(sMB + MA)

−1L)(f (t)).

Moreover, if Re(s) ≤ σ holds for ∀s ∈ sp(MA,−MB) := {s ∈ C1
: det(MA + sMB) = 0}, then x(k)(t) also belongs to Tn

σ , which
means that the iteration (4.1) is closed in Tn

σ .

Proof. Without loss of generality, we simply assume that x0 = 0. Because x(k−1)(t), f (t) ∈ Tn
σ , according to Lemma 3.2 we

know that the solution x(k)(t) of the problem (4.1) is of exponential order. Hence, we can apply the Laplace transform to
both sides of (4.1), i.e.,

L(MBẋ(k)(t)+ MAx(k)(t)) = L(NBẋ(k−1)(t)+ NAx(k−1)(t)+ f (t)),

obtaining the equality

sMBL(x(k)(t))+ MAL(x(k)(t)) = sNBL(x(k−1)(t))+ NAL(x(k−1)(t))+ L(f (t))

due to the linearity of L, or equivalently,

L(x(k)(t)) = (sMB + MA)
−1(sNB + NA)L(x(k−1)(t))+ (sMB + MA)

−1L(f (t)). (4.5)

Assume that the inverse Laplace transform L−1 can be applied to

(sMB + MA)
−1(sNB + NA)L(x(k−1)(t)) and (sMB + MA)

−1L(f (t)).
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As Theorem A.3 shows that L−1 is one-to-one, we can act L−1 on both sides of (4.5), i.e.,

x(k)(t) =

L−1(sMB + MA)

−1(sNB + NA)L

(x(k−1)(t))+


L−1(sMB + MA)

−1L

(f (t))

= K(x(k−1)(t))+ Φ(f (t)),

obtaining the expression (4.4) due to the linearity of L−1.
Now we turn to prove the existence of L−1 with respect to

(sMB + MA)
−1(sNB + NA)L(x(k−1)(t)) and (sMB + MA)

−1L(f (t)).

To this end, we let P and Q be real matrices transforming the matrix pencil sMB + MA into the Kronecker canonical form

P(sMB + MA)Q = s

I 0
0 N


+


C 0
0 I


,

or

(sMB + MA)
−1

= Q

(sI + C)−1 0

0 (sN + I)−1


P,

where

N =

N1
. . .

Nℓ

 , Nj =


0 1 · · · 0

. . .
. . .

...

. . . 1
0

 ∈ Rnj×nj ,

and nj (j = 1, 2, . . . , ℓ) are positive integers such that
∑ℓ

j=1 nj = n. Evidently, the block matrices C and N correspond to the
nonzero and the zero generalized eigenvalues in sp(MA,−MB), respectively. Here, for ℓ = 0, we have stipulated that the
matrix block N does not exist or the matrix block C is of size n × n.

The inverse of any nonsingular matrix G = (gi,j) ∈ Rn×n can be expressed as

G−1
=

1
det(G)

G1,1 G2,1 · · · Gn,1
G1,2 G2,2 · · · Gn,2
· · · · · · · · · · · ·

G1,n G2,n · · · Gn,n

 ,

where Gi,j denotes the algebraic complement of the element gi,j, i, j = 1, 2, . . . , n. Based on this fact, we know that the
elements of (sI + C)−1 are of the form p(s)

q(s) , with p(s) and q(s) being real-coefficient polynomials with respect to s and
satisfying:

(i) deg(q(s))− deg(p(s)) ≥ 1, if the elements of (sI + C)−1 are on the diagonal;
(ii) deg(q(s))− deg(p(s)) ≥ 2, if the elements of (sI + C)−1 are on the off-diagonal.

On the other hand, the elements of (sNj + I)−1, the jth diagonal block of (sN + I)−1, are of the form

(sNj + I)−1
=

nj−1−
k=0

(−1)kskNk
j =



1 −s · · · · · · (−s)(nj−1)

1 −s
...

. . .
. . .

...

. . . −s
1

 .

It then follows that the elements of (sMB + MA)
−1(sNB + NA) and (sMB + MA)

−1 are of the form

u(s) := r(s)+
p(s)
q(s)

, with deg(r(s)) ≥ 0 and deg(q(s))− deg(p(s)) ≥ 1,

where r(s), p(s) and q(s) are real-coefficient polynomials with respect to s. Hence, to prove the existence of L−1 for
(sMB + MA)

−1(sNB + NA)L(x(k−1)(t)) and (sMB + MA)
−1L(f (t)), we only need to demonstrate the existence of L−1 for

u(s)L(x), where x := x(t) denotes a scalar-valued causal function in Tσ . Because u(s) = r(s)+ p(s)
q(s) , it is sufficient to discuss

the existence of L−1(r(s)L(x)) and L−1(
p(s)
q(s)L(x)).
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For x ∈ Tσ , by applying Theorem A.1 to snL(x)we immediately obtain

snL(x) = L


dnx
dtn


, for s ∈ C1 with Re(s) > σ .

It then follows from Theorem A.3 that

L−1 (r(s)L(x)) = L−1L


r


d
dt


(x)


= r


d
dt


(x)

holds for ∀s ∈ C1 satisfying Re(s) > σ . As x ∈ Tσ , r( d
dt )(x) belongs to Tσ , too. Therefore, L−1 (r(s)L(x)) exists and belongs

to Tσ .
In addition, by applying the partial fractional expansion technique we can rewrite the rational function p(s)

q(s) , with
deg(q(s))− deg(p(s)) ≥ 1, as the sum of terms like

ξ

(s + a)k
and

ηs + µ

((s + b)2 + c2)l
,

where k, l are nonnegative integers, and ξ , η, µ, a, b and c are real numbers. Because
L(tk−1e−at)


(s) =

(k − 1)!
(s + a)k

, for s ∈ C1 with Re(s) > −a,
L(e−bt sin(ct))


(s) =

c
(s + b)2 + c2

, for s ∈ C1 with Re(s) > −b, and


L(e−bt cos(ct))


(s) =

s + b
(s + b)2 + c2

, for s ∈ C1 with Re(s) > −b,

by repeatedly applying Theorem A.2 to the terms like ηs+µ
((s+b)2+c2)l

, with l an integer not less than 2, based on Theorem A.3 we
can easily determine

h(t) := L−1

p(s)
q(s)


, for s ∈ C1 with Re(s) > σ ,

whereσ is the least upper bound of Re(s), ∀s ∈ sp(MA,−MB). Define σ̄ = max{σ ,σ }. Then both L(h(t)) and L(x(t)) exist
as absolutely convergent integrals in the half plane Re(s) > σ̄ . It then follows from Theorem A.4 that

L(h ∗ x)(t) =
p(s)
q(s)

L(x), for s ∈ C1 with Re(s) > σ̄ .

Thereby, by making use of Theorem A.3 we have

L−1

p(s)
q(s)

L(x)


= (h ∗ x)(t), for s ∈ C1 with Re(s) > σ̄ .

In summary, we have obtained the equality

H(t) := L−1 
(sMB + MA)

−1(sNB + NA)L(x(k−1)(t))


+ L−1 
(sMB + MA)

−1L(f (t))

, for s ∈ C1 with Re(s) > σ̄ .

Moreover, if Re(s) ≤ σ , ∀s ∈ sp(MA,−MB), we have σ̄ = σ .
Hence, we have demonstrated that x(k)(t) = K(x(k−1)(t)) + Φ(f (t)) belongs to Tn

σ , which shows that the waveform
relaxation iteration (4.1) is closed in Tn

σ . �

Remark 4.1. K is a linear operator due to the linearity of the Laplace transform L. For the initial-value problem of linear
constant-coefficient DAEs (2.1) satisfying f (t) ∈ Tn

β , with β the abscissa of f (t), we know that x(t) belongs to Tn
σ , where

σ = max{α, β} and α is the least upper bound of Re(s) such that s ∈ sp(A,−B). In fact, from Lemma 3.2 we know that the
solution x(t) of the DAEs (2.1) is of exponential order. Thus we can apply the Laplace transform L to (2.1), obtaining

L(x(t)) = (sB + A)−1L(f (t))− (sB + A)−1Bx0

in a similar fashion to Theorem 4.1. By denoting

L(H(t)) = (sB + A)−1, for s ∈ C1 with Re(s) > α,

from Theorem A.4 and Lemma 3.1 we have the estimate

|(x(t))i| ≤ æemax{α,β}t , i = 1, 2, . . . , n,
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where æ is a positive constant and (x(t))i represents the ith element of x(t). It is deserved to mention that α is also the least
upper bound of the abscissas of elements in H(t). Therefore, the solution x(t) of the DAEs (2.1) can be approximated in the
function space Tn

σ .

5. Convergence theory

From Theorem 4.1we see that the convergence property of thewaveform relaxationmethod (4.1) closely depends on the
linear operatorK . In this section, wewill discuss the asymptotic convergence rate of thewaveform relaxationmethod (4.1).

To this end, let x⋆(t) be the solution of the DAEs (2.1) and define

ε(k)(t) = x(k)(t)− x⋆(t).

Then by Theorem 4.1 we have

ε(k)(t) =

K(x(k−1)(t))+ Φ(f (t))


− (K(x⋆(t))+ Φ(f (t)))

= K(x(k−1)(t))− K(x⋆(t))
= K(x(k−1)(t)− x⋆(t))
= K(ε(k−1)(t))
= Kk−1(ε(1)(t)).

Hence, to analyze the convergence of the functional sequence {ε(k)(t)}∞k=0, we need to determine the spectral radius of the
operator K , which is denoted by ρ(K).

In [7], Miekkala determined the spectral radius of the operator H in (4.3) under the following assumptions:

(a) when Re(λ) ≥ 0, it holds that det(λB + A) ≠ 0;
(b) when Re(λ) ≥ 0, it holds that det(λMB + MA) ≠ 0;
(c) if ν ≥ 1, then NB2 = 0;
(d) if ν ≥ 2, then NB2 = 0 and NA2 = 0;
(e) f (t) in the DAEs (2.1) is bounded.

Here NB2 and NA2 are matrices in (4.2), and ν is the nilpotency of the matrix H in (4.2). The result can be described in the
following theorem.

Theorem 5.1 ([7]). If the above assumptions (a)–(e) are satisfied, then the spectral radius of the operator H in (4.3) is given by

ρ(H) = sup
Re(s)=0

ρ (K(s)) ,

where K(s) = (sMB + MA)
−1(sNB + NA) is the dynamic iteration matrix.

This result has been well known and widely used in the literature; see, e.g., [8,10–12].
In fact, two of the above assumptions are not necessary when we study the convergence property of the waveform

relaxation method (4.1) based on the new operator K in (4.4), and the other three assumptions can be much weakened.
Specifically, we only need to impose the following conditions:

(a) there exists λ ∈ C1 such that det(λB + A) ≠ 0;
(b) there exists λ ∈ C1 such that det(λMB + MA) ≠ 0;
(e) f (t) in the DAEs (2.1) is of exponential order.

Under the above weaker assumptions, we can obtain a more general theorem.

Theorem 5.2. Consider the initial-value problem of linear constant-coefficient DAEs (2.1)with the regular matrix pencil λB+ A.
Let

B = MB − NB and A = MA − NA

be splittings of the matrices B, A ∈ Rn×n such that λMB + MA is a regular matrix pencil. Assume that x0 is a consistent initial
condition, and x(k−1)(t) and f (t) belong to Tn

β , with β a real number. Define σ = max{α, β}, with α the least upper bound of
Re(s) such that s ∈ sp(A,−B). Then, for ∀s ∈ sp(MA,−MB) with Re(s) ≤ σ , the spectral radius of the iteration operator K of
the waveform relaxation method (4.1) is given by

ρ(K) = sup
Re(s)=σ

ρ (K(s)) , (5.1)

where K(s) = (sMB + MA)
−1(sNB + NA) is the dynamic iteration matrix.
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Proof. Denote by sp(K) the spectral set of the operator K defined on the function space Tn
σ . Then we have

sp(K) = spp(K) ∪ spr(K) ∪ spc(K),

where spp(K) is the point spectrum, spr(K) is the residual spectrum, and spc(K) is the continuous spectrum.
Now, we are going to prove spr(K) = spc(K) = ∅, which immediately implies C1

\ sp(K) = C1
\ spp(K). We remark

that complex numbers in the complementary set C1
\ sp(K) are called regular numbers of the operator K defined on the

function space Tn
σ .

In fact, for λ ∈ C1
\ spp(K), the operator λI − K is invertible. By direct computations we have

(λI − K)(x) = L−1 
λI − (sMB + MA)

−1(sNB + NA)

L(x), ∀x := x(t) ∈ Tn

σ .

For ∀y := y(t) ∈ Tn
σ , the solution x ∈ Tn

σ of the operator equation

(λI − K)(x) = y,

or equivalently,

L−1 
λI − (sMB + MA)

−1(sNB + NA)

L(x) = y,

can be computed in the following way. First, by applying the Laplace transform operator L on both sides we get
λI − (sMB + MA)

−1(sNB + NA)

L(x) = L(y).

As λI − K is invertible, for Re(s) ≥ σ ,

λI − (sMB + MA)
−1(sNB + NA) = (sMB + MA)

−1 [s(λMB − NB)+ (λMA − NA)]

is invertible, too. This readily implies

Re(s) < σ, ∀s ∈ sp(λMA − NA,−(λMB − NB)).

Hence, it holds that

L(x) =

λI − (sMB + MA)

−1(sNB + NA)
−1

L(y).

Now, similar to the proof of Theorem 4.1, we apply L−1 to both sides of the above equality, obtaining

x = L−1 
λI − (sMB + MA)

−1(sNB + NA)
−1

L(y)

= L−1 
[s(λMB − NB)+ (λMA − NA)]−1 (sMB + MA)


L(y).

It follows immediately that x ∈ Tn
σ and range(λI − K) = Tn

σ , ∀λ ∈ C1
\ spp(K), where range(λI − K) represents the

range space of λI − K . This fact clearly shows that spr(K) = spc(K) = ∅, or in other words, C1
\ sp(K) = C1

\ spp(K)
or sp(K) = spp(K). Furthermore, we have

ρ(K) = sup{|λ| : λ ∈ sp(K)}
= sup{|λ| : λ ∈ spp(K)}

= sup{|λ| : (λI − K)(x) = 0, ∃ x ∈ Tn
σ \ {0}}

= inf{ϱ : (λI − K)(x) ≠ 0, 0 ≠ x ∈ Tn
σ , |λ| > ϱ}

= inf{ϱ : L−1 
λI − (sMB + MA)

−1(sNB + NA)

L(x) ≠ 0, 0 ≠ x ∈ Tn

σ , |λ| > ϱ}.

Because Re(s) ≤ σ , ∀s ∈ sp(MA,−MB), according to Theorem 4.1 we know that there exists a matrix-valued function H(t)
such that

L(H(t)) = (sMB + MA)
−1(sNB + NA)

exists for any s, satisfying Re(s) > σ , as absolutely convergent integrals in the componentwise fashion. Therefore,

ρ(K) = inf{ϱ : det(λI − (sMB + MA)
−1(sNB + NA)) ≠ 0, Re(s) > σ, |λ| > ϱ}

= sup
Re(s)>σ

ρ((sMB + MA)
−1(sNB + NA))

= sup
Re(s)=σ

ρ((sMB + MA)
−1(sNB + NA)).

This completes the proof. �
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Remark 5.1. Theorem 5.1 is just a special case of Theorem 5.2 when we consider the bounded case, i.e., σ = 0. In general,
the waveform relaxation method (4.1) is convergent under the condition

ρ(K) := sup
Re(s)=σ

ρ((sMB + MA)
−1(sNB + NA)) < 1,

with ρ(K) being the corresponding asymptotic convergence factor. In fact, it is difficult to understand the convergence of
the waveform relaxation method for the linear DAEs (2.1) when it displays infinite time blow up, but it will truly happen.
According to Lemma 3.2, the solution of the linear DAEs (2.1) is a function of exponential order, which can be simply
considered as the product of a bounded function and an exponential function. Therefore, the waveform relaxation iteration
will make the exponential part of the iterate remain the exponential order and the bounded part converge to a certain
bounded function as long as the convergence factor ρ(K) is less than one.

6. Numerical results

Consider the initial-value problem
1 0
0 0

 
ẋ1(t)
ẋ2(t)


+


2 1
1 2

 
x1(t)
x2(t)


=


(sin(t)+ 2.02)e0.02t

(2 sin(t)+ 1)e0.02t


, (6.1)

with the initial conditions x1(0) = 1 and x2(0) = 0. The exact solution of (6.1) is

x⋆(t) =


e0.02t

sin(t)e0.02t


.

We solve this problem by the SOR waveform relaxation (SORWR) method, for which the splittings are chosen as

MB =


1 0
0 0


, NB =


0 0
0 0


and

MA =
1
ω


2 0
0 2


−


0 0

−1 0


, NA =

1 − ω

ω


2 0
0 2


+


0 −1
0 0


,

where ω is a relaxation parameter. The corresponding dynamic iteration matrix is given by

KSOR(s) =

s +
2
ω

0

1
2
ω


−1 2(1 − ω)

ω
−1

0
2(1 − ω)

ω

 ,

where s = σ + ıξ , with ξ ∈ R1 and ı the imaginary unit. According to Remark 4.1, we have σ = 0.02.
With respect to different ω, Fig. 1 shows the spectral radius of the dynamic iteration matrix of the SORWR method

evaluated as a function of the frequency ξ . We see that the spectral radius always keeps less than one, with the maximal
spectral radius appearing around ξ = 0. When ξ goes away from 0, the spectral radius keeps small, which implies that the
SORWR method for the initial-value problem (6.1) is convergent in an infinite time interval.

In actual computations, to perform an infinite time simulation on a computer is often infeasible. Instead we take a long
time simulation to illustrate the behavior of thewaveform relaxationmethod. So, we setω = 1 and choose the time interval
to beΩt = [0,1t × ℓt ], where 1t = 0.01 is the time stepsize and ℓt is the number of time steps. In Figs. 2 and 3 we plot
the error ϵ(k)2 (t) of the second component of the iterate after k = 0, 1, 2 and 3 iteration steps for ℓt = 5000 and 80000,
respectively. In both figures, we see that the errors decrease rapidly along the whole time interval Ωt during the iteration
process. Moreover, in Fig. 3 we find that each iteration lengthens the convergence time interval for the larger time step case
ℓt = 80 000, and the upper bound of the error decreases monotonically after every iteration. We remark that the situation
for the error ϵ(k)1 (t) of the first component of the iterate is very similar. Hence, we can expect that the waveform relaxation
method is convergent in an infinite time interval.

In Table 1 we show the numbers of iteration steps of the SORWR method for different ω and time intervals. Here, the
stopping criterion is set to be

max

sup
t∈Ωt

|ϵ
(k)
1 (t)|, sup

t∈Ωt

|ϵ
(k)
2 (t)|


< 10−6.

Evidently, the SORWR method is convergent for all tested cases. We see that the number of iteration steps of the SORWR
method increases only one time, while the length of time interval increases 15 times for differentω, i.e., the length increases
from 50 to 800. Furthermore, choosing ω around one will lead to less number of iteration steps.
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a b

c d

Fig. 1. Spectral radius of the dynamic iteration matrix of the SORWR method evaluated as a function of the frequency ξ : (a) ω = 0.75; (b) ω = 1; (c)
ω = 1.25; (d) ω = 1.5.

a b

c d

Fig. 2. The error ϵ(k)2 (t) after the kth iterate for 5000 time steps and ω = 1: (a) k = 0; (b) k = 1; (c) k = 2; (d) k = 3.
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a b

c d

Fig. 3. The error ϵ(k)2 (t) after the kth iterate for 80000 time steps and ω = 1: (a) k = 0; (b) k = 1; (c) k = 2; (d) k = 3.

Table 1
Numbers of iterations of the SORWR method for different ω and time intervals.

ℓt 5000 10000 20000 40000 80000
Ωt [0, 50] [0, 100] [0, 200] [0, 400] [0, 800]
ω = 0.75 22 23 26 32 44
ω = 1.00 11 11 13 15 21
ω = 1.25 12 13 15 18 24
ω = 1.50 25 27 30 37 50

7. Concluding remarks

We have studied the waveform relaxation methods for solving the linear constant-coefficient differential-algebraic
equations by applying the Laplace transform, obtaining explicit expression and asymptotic convergence rate for this class of
iteration schemes without demanding the boundedness of the solutions. This theory extends the existing one to problems
of wider and more useful backgrounds, and provides a fundamental and powerful tool for analyzing the convergence of
the waveform relaxation methods for solving the initial-value problems of linear constant-coefficient differential-algebraic
equations.
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Appendix. Basic properties about Laplace transform

Theorem A.1 (Differentiation in Time Domain). Let f : R1
→ C1 be a causal function which is, in addition, differentiable in R1.

In a half plane where Lf and Lf ′ both exist one has

(Lf ′)(s) = s(Lf )(s)− f (0+) = s(Lf )(s),

where f ′
:= f ′(t) denotes the first-order derivative of f (t) with respect to t.

Theorem A.2 (Differentiation in Frequency Domain). Let f : R1
→ C1 be a function with the Laplace transform F(s) = Lf (s),

and let σa be the abscissa of absolute convergence. Then F(s) is an analytic function of s for Re(s) > σa, and

d
ds

F(s) = −(L(tf (t)))(s).

Theorem A.3 (The Laplace Transform is One-to-One). Let f (t) and g(t) be two causal functions of exponential orders, and
F(s) = (Lf )(s) and G(s) = (Lg)(s) be the Laplace transforms of f (t) and g(t), respectively. When F(s) = G(s) holds in a
half plane Re(s) > σ , f (t) = g(t) is satisfied at all points where both f and g are continuous. Here, σ is a given real number.

Theorem A.4 (Convolution Theorem for L). Let f , g : R1
→ C1 be two causal functions, and the Laplace transforms F = Lf

and G = Lg exist as absolutely convergent integrals in a half plane Re(s) > σ , with σ a given real number. Then L(f ∗ g) exists
for ∀s ∈ C1 such that Re(s) > σ , and satisfies

L(f ∗ g)(s) = F(s)G(s) = (Lf )(s) · (Lg)(s).
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