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A set of partial differential equations, arising in a calculation of hydrodynamic lubrication 
effects, was solved using a perturbation technique. All of the algebraic manipulations required 
to find the solution were performed using Maple. The main challenge was the efficient handling 
and simplification of very long expressions, which was met by the power of Maple's built-in 
procedures and by algebraic transformations suggested by the solution to the lowest-order 
approximation. As a result, the solution was obtained to a higher order, with greater reliability, 
than would otherwise have been possible. 

1. Introduction 

The friction between moving bodies is greatly reduced by lubrication, when the surfaces 
that would be in contact are separated by a thin film of viscous fluid. The theory of 
lubrication is based on an analysis of the stress in this fluid film. The Navier-Stokes 
equations, which govern the fluid motion in the film, are greatly simplified by the fact that 
the film is very thin, because many physical effects, such as the inertia of the fluid, can be 
ignored. A typical approximate calculation of the force between two plane surfaces is given 
in Batchelor (1967, p. 219). Here we give a brief report on the use of the symbolic 
manipulation language Maple (Char et al., 1988) to calculate the force between two 
spherical surfaces. For  a detailed report, concentrating on the fluid mechanical theory, see 
Corless & Jeffrey (1988a). For a comparison of Maple, muMATH (Stoutemeyer & Rich, 
1983), and CAMAL (Fitch, 1983) as aids in solving this problem, see Corless & Jeffrey 
(1988b). The notation of the present paper agrees with Corless & Jeffrey (1988a), though 
there are some differences with their second paper (1988b). 

Let the gap between the moving surfaces be of width e, a small quantity. The 
mathematical formulation uses the smallness of ~ to convert the problem into a calculation 
of perturbation expansions for the fluid velocities and the pressure (O'Neill & Majumdar, 
1970). The equations obtained after approximation are relatively simple, and the main 
difficulty in solving them is that, at each stage of the solution, the length of the 
expressions appears to grow exponentially. Since we are not interested in the full details of 
the flow field, but only some integral properties of it--the force, couple, and a quantity 
called the stresslet--the final expressions we require are not very long. As an added 
simplification, we do not want complete expressions for these quantities, but only the 
singular terms (those containing In e terms) in the expressions for the force, couple, and 
stresslet. Early investigators, working unaided by computer algebra, arrived at expressions 
for the singular terms by working always with asymptotic expressions. This is what was 
done in O'Neill & Stewartson (1967), for example, although only for a geometrically 
simpler case, and to a lower order. It is conceivable that something similar could have 
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been done for the present calculations, but it would have been a very long calculation, and 
the approach taken here is superior in that we have many additional checks that the 
differential equations and boundary conditions have been satisfied at each order of 
approximation. This method is also more efficient, because there are several cases to 
cons ider - - for  example, the spheres could be either translating or rotating. Unaided, a 
person would take roughly the same amount  of time for each case, but with Maple new 
cases were done quickly. 

The  equations are expressed in cylindrical coordinates (r, 0, z) and must be solved for 
three velocity components  u, v, w and a pressure p. It happens that 0 can be removed from 
the equations because the velocity vector can be expressed as (U cos 0, V sin 0, W cos 0) 
and so using also the approximation that the separation e is a small quantity, we arrive at 
the algebraic problem summarized in O'Neill & Majumdar (1970) and Jeffrey & Onishi 
(1984). 

The  velocities and pressure are calculated using the series approximations 

U =Uo+sUI +~2U2+ ... ,  V =  Vo+~V~+ezV2+ ..., 

W = 81/2(W0 + 8W t + 82 W 2 + . . . ) ,  P = 8- 3/2(P 0 + sP1 + e2p2 + . . . ) ,  

and the "stretched" variables R = r/e lj2 and Z = z/8. The governing equations can be 
written as 

o-~ = ~ - g ~  + w - , 0 . 1 )  

oP O2U ( 2 ) 
OR - OZ 2 +8 - r u -  - ~ ( u  + v) , (1.2) 

P O2V ( - ~  (U + V)) (1.3) 
R - OZ 2 +8 T V -  

using the operator  

~U 1 OW 
+ ~-=(u+ v)+ T i  = o, (1.4) 

0 2 1 0 
r = b-~ + ~ 0~. 

The fluid is enclosed between one moving and one stationary spherical boundary, and 
boundary  conditions must be applied at each surface, where the velocities are known. The 
moving surface is a sphere of radius 1, centred at Z = 1 + e, and the stationary surface is a 
sphere of radius -- 1/x, where x < 0, centred at Z = 1/~. The equations for the surfaces are 
expanded in the neighbourhood of the gap as series in e. The moving surface is 
approximated by 

Z 1 = (1 + � 8 9  . . . .  H 1 + ~-R* + . . .  

and the stationary surface by 

Z 2 = �89 2 +/3~-1c3R 4 + . . . .  H 2 + ~-~tcaR 4 + . . . .  

If the moving sphere is rotating, we specify the velocities on the surface to be 

U = - V = - I - e ( Z - - 1 )  and W = - R  on Z = Z >  
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If the moving sphere is translating, we have 

U = - V = I  and W = 0  on Z = Z r  

In either case, the velocities are zero on Z = Z2, the stationary sphere. 

2. Solution of the Equations with Maple 

We used Maple version 4.0 (Char et al., 1988), and later version 4.1, to solve this 
problem for each set of boundary conditions, with an error O(e3). By the time this paper 
reaches publication, Maple version 4.3 will have been released. We remark that several 
procedures we wrote to solve this perturbation problem would have been coded differently 
had any of the later versions been available at the time this work was done. Some of the 
Maple code we did use is appended to the paper, as we used it at the time, together with 
some commentary on how it could be changed to use the features of the newer versions. 

The system of equations is effectively decoupled at each order, and turns out to have 
solutions polynomial in Z and rational in R. While describing our general method, we 
shall include for illustration at each step specific expressions for the simplest (order 0) case. 
At each order, we first integrate equation (1.1) with respect to Z to obtain an expression for 
the pressure, which then contains an unknown function of R. At order zero, the unknown 
function is the only contribution, so P0 = P(R). Boundary conditions cannot be applied 
yet, but later they will lead to a differential equation for the unknown function introduced. 
Next, equations (1.2) and (1..3) can be integrated with respect to Z separately; for the 
zeroth-order solution, we get 

1 dP Z2 + A(R)Z + B(R) (2.1) 
Uo = ~  dR 

and 

1 P Z2 + C(R)Z + D(R), (2.2) VO= n 
where A, B, C, and D are unknown functions of R, which will be determined by the 
boundary conditions on U and V. For example, 

[ i 1 
1 dP H2- ] - 1 - ~ ~ (H~-H22) 

[ ; ] = [  H1 I1-1 - 1 - 2 d - R  1 1 = h ( R )  (2.3) 
H2 1 dP H2 l 1 dP ' 

where 
1 

h(R)=I+QR 2 and Q=�89 

are variables used to keep the length of the expressions manageable. The conservation 
equation (1.4) is then integrated with respect to Z to determine the W~, and one of the 
boundary conditions on W is used to evaluate the unknown function of R that arises as a 
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constant of integration. This leaves us with an expression for W~ which depends on Z, R, 
and the still unknown P(R). The resulting expression for Wo is 

1 d2P(R) (_  2Z + 3 + R 2 + QR2)(- R 2 + 2QR 2 + 2Z) 2 
W~ = 48 dR 2 

1 dP(R) ( - R  2+2QR2+2Z)(14R*Q2+7QR, 7R, - . [ - - -  _ 

48 dR R 

- 14QR2Z + 16R2Z + 30QR 2 -  15R 2 - 4Z 2 + 6Z) 

-- ,-~P(R) ( -  2Z + 3 + R 2 + QR2)(-- R 2 + 2QR 2 + 2Z) 2 
R 2 

+�88 (2.4) 

The other boundary condition on W is used to determine an inhomogeneous linear 
second-order ordinary differential equation with rational coefficients for P(R). It turns out 
that this differential equation differs from order to order only in the inhomogeneous terms; 
and further that only its particular integral is needed, because it can be shown by 
considering how the solution must decay at the edge of the gap that the general solution to 
the homogeneous equation cannot enter our solution--hence the constants of integration 
must be zero (O'Neill & Stewartson, 1967). At the zeroth order, this differential equation is 

R z d 2P 
+ h(R)R(1 + 7QR 2) ~R --P = - 12QRSh3(R) 

and it can easily be shown that a particular solution to this differential equation is given 
by 

P(R) = -~Rh2(R). 

In general, we find a solution to this ODE by looking for a rational solution; in fact, we 
can predict a solution of the form (polynomial in R) multiplied by h"+Z(R) (which we recall 
is rational in R) at the nth order. To find the polynomial we generate a polynomial 
template of high enough degree, and use the Maple routines map, coeff, and solve. The 
resulting linear system for the unknown coefficients is overdetermined, and will have a 
unique solution only if our predicted form is correct. The Maple routine solve is capable of 
solving overdetermined linear systems (if they have solutions) and reporting "no solutions 
found" if the system is inconsistent, which would here require raising the degree of the 
template. 

After the solution for U, V, W and P was obtained to the desired order, we wished to 
calculate the force, couple, and stresslet. We used Maple tables for the stress tensor and the 
vector normal to the spheres, and calculated the desired integrands, as follows. The desired 
coefficients of the stress tensor are calculated using 

aU 8W 

8CrRR = e -  l12p + 281/2 ~_~, 

8V W 
8 o 0 z  = ~ - 8 ~, 

eaoR = ~1/2R ~ (V /R) -  
U 

R 
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and 
S~zz = -- s- 1/2p + 2e112 8W 

8Z" 

The vectors normal to the surface of the spheres are, on the moving sphere, 

nz = - 1 + e (Z -  1), nR = ~1/2R, 

and on the stationary sphere 

n z = 1 --e~Z, n R = -rs~12R, 

and finally, the desired integrands for force, couple, and stresslet on the moving sphere are 

f dna R Force = #~ (~Rznz + CrRRnR-- aoznz-- aoRnR)e -dR d , 

f dnz 
Couple = �88 {nR(tTZRnR + azznz)--nz[(aeR ne + (~RZnZ)-- (aoRnR + O'0znz)]} -dR dR, 

S tresslet = �88 ~ {n R(azR nR + aZZ nz) + nz [(aRR nR + aRz nz)-- (aoe ne + Cr0z nz) ] } dnz dR, 
J dR 

and similarly for the stationary sphere. 
These integrals are not actuaUy calculated; the integrands are expanded in asymptotic 

series in powers of R as R ~oo,  and the 1/R term gives the desired singular behaviour. 
Notice that this term gives rise to a logarithmic singularity when integrated: In R--*oo as 
R-~ o~. The correct mathematical treatment of this term is given in Codess & Jeffrey 
(1988a). The manipulations needed in this calculation were merely multiplication, 
substitution of the value of Z on the appropriate boundary, and taking Taylor series with 
respect to s and to 1/R. We remark that, due to our training on the older computer algebra 
systems CAMAL (Fitch, 1983) and REDUCE (Hearn, 1984), we expected that a feature 
like the "let EPS**3 = 0" construct, which automatically eliminates higher powers of EPS 
during calculation, would be useful here. Maple does not explicitly have such a construct; 
however, we are assured by M. B. Monagan, one of the designers of Maple, that the Maple 
routine taylor automatically avoids calculation of higher-order products if it can. So, if one 
is careful to code products of truncated power series entirely inside calls to taylor, one 
should be able to save significantly on computing expense. However, explicit calls to 
expand first would force the calculation of these unnecessary terms, and should be avoided. 

3. Verification of Results 

Although it is often claimed for computer algebra systems that they perform algebra 
more accurately than a human, it must be remembered that in an application of the size 
described here the possibility of algebra errors has been replaced by the possibility of 
programming errors. So, the results were checked in four ways. First, the solutions 
obtained were substituted back into the original differential equations and boundary 
conditions, which were indeed satisfied to the proper order of e. Secondly, selected terms of 
the solution at the zeroth and first orders were compared with a solution earlier produced 
by CAMAL (Jeffrey & Onishi, 1984). Thirdly, the quantities of interest--the force, couple, 
and stresslet--were compared for internal consistency using a reciprocal theorem from 
fluid mechanics: the force on the moving sphere in the rotational case should be the same 
as the couple on the moving sphere in the translation case. Finally, a comparison was 
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Table  1. Force, couple, and stresslet on the moving sphere (rotational case) 

(4x-l) , 32~ca+33~2+83~c-43 . 
Force ~ - _ ~  m ~- 125(x - 1) ~ s m e 

_ 68441c ~ - 78947x '~- 309572x 3 - 167647~ 2 + 80828x + 29069 s2 In e + 0(~3 In e) 
393750(x-- 1) 4 

Couple 

Stresslet 

2 2(8tr 2-6x+33) e In s 
5(x-- 1) In a-~ 125(lc-- 1) 2 

(171 lx 4 - 1804x3 _ 79614~c 2 -- 64279x-- 41864) e2 
+ 196875(x----Z~ " In e+O(e 3 In ~) 

(2x+1) In ~+ (16rc3+61~c2+lS0x--2) - ' -  
10(x-- 1) 2 250(K-- 1) 3 ~ u, e 

+ (3422~c~--71917~c 4- 621727x3--765317~c2--316802x+ 80791! 52 In 8+0(8 ~ In 8) 
787500(x-- 1) 4 

made with a solution valid when the gap is not small, which is found as a power series 
(Jeffrey, 1989). The singularities calculated here can be used to improve the convergence of 
the power  series solution, but obviously only if they are correct (Corless & Jeffrey, 1988a). 
Table  1 shows a sample of the results; as is evident, the final expressions are not very long, 
al though the intermediate expressions for the velocities and pressure occupied several 
pages of compute r  output. 

4 .  C o n c l u s i o n s  

With the calculation of the force, couple and stresslet to a higher power of s than had 
been previously attempted, Maple has shown itself to be a useful tool for lubrication 
theory, and more generally for per turbat ion expansions. The use of computer  algebra for 
per turba t ion  expansions is hardly new, but  has generally been confined to the older 
languages. In  particular, CAMAL was designed with this sort of problem in mind, and in 
contrast, Maple  was  designed to be a more general symbolic manipulat ion language. This 
repor t  confirms tha t  per turbat ion series have not been sacrificed by the designers of Maple 
in their quest  for more  generality. In fact, the generality of Maple added greatly to the 
convenience of using Maple for the solution of this problem. For example, CAMAL has no 
G C D  algorithm, and  even the division of polynomials  could be problematic if the divisor 
had more  than two terms; here, one need not  worry about  this. 

Several Maple functions were particularly useful for this problem: normal, taylor and 
solve, together  which accounted for mos t  of the computer  resources used. Normal was used 
to simplify the rational expressions that  occurred, and had a very noticeable effect on the 
size of  the expressions. Taylor was necessary to drop  higher order terms in ~ as well as to 
isolate the coefficient of 1/R in the integrands for the force, couple and stresslet. Solve was 
useful for the solution of the ordinary differential equation at each stage; once the 
polynomial  form for  the solution had  been determined by inspection, a call to solve to 
solve the overdetermined set of linear equations was convenient and effective. In addition, 
the Maple  p rog ramming  language was very useful in setting up some auxiliary routines for 
simplification. 
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On the other side of the coin, there are a few features that we missed in Maple version 
4.0. We are happy to report that the main conveniences have been put in place by Maple 
version 4.3--the most notable additions being the new manual for Maple version 4.2 and 
the new "echo" facility of version 4.3, that allows echoing of input commands together 
with the output. This facility is invaluable in a project of this size, and the advent of the 
Macintosh version of Maple, with its windowing capability, does not obviate the need for 
echoing. There are still some useful things missing, however; for example, a facility 
allowing Maple to quit reading a file if it encounters an error (currently, Maple 
accommodates its test suite by continuing to read from the file even after an error has been 
encountered, which is appropriate only in a test suite context). Also, it would be nice to 
have a feature that would allow a user to send a break to Maple if the expression being 
printed was too long. However, the final conclusion is that in spite of missing features, 
even Maple 4.0 was powerful enough to solve this sizeable problem. 
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AppendixmSeleeted Version 4.0 Maple Procedures 

BASIC DEFINITIONS AND AUXILIARY ROUTINES 

#The boundary conditions on sphere 1 are applied on the parabola Z=H1 
H1 :=1 + (1/2)*R^2; 
#The boundary conditions on sphere 2 are applied on the parabola Z=H2 
H2: = (1/2)* KAPPA* R ̂  2; 
# Experience with CAMAL shows that Q is a better variable to work in. 
KAPPA:=1 -2*Q;  
#The total distance between the parabolas is H (KAPPA is negative) 
H:= expand(H1 - H2); 
# 
#Also following the CAMAL program, we introduce h = l / H .  
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#We use the user interface of the function diff, 
# to  define the derivative of h by defining a function 'diff/h'. 
# 
'd i f f /h ' :  = proc (exp, indet) 

2*Q*exp*h (exp) ^ 2*diff (exp, indet) 
end; 
#The upsilon operator is defined in the paper Corless & Jeffrey (1988a) 
UPS: = proc (exp) 

diff(R*diff (exp, R), R)/R; 
end; 
# 
#This matrix is used to solve the equations resulting from applying the b.c. 
# 
B Cmatrix: =array( [[1 ,-- 1 ], [ - H2, H1 ]] ): 
B Cmatrix: = lina Ig [sca larmu I] (B Crnatrix, h (R)): 
# 
#This routine attempts to divide the numerator by H and reduce the highest 
#power  of h(R) by one. Mainly needed for muMATH but retained for maple 
R educeLast: = proc (exp) 

local l exp, lterm,quot, deg; 
lexp: = col lect (convert(exp, polynom), h (R) ); 
deg: = degree(lexp, h (R)); 
Iterm : = Icoeff (lexp, h (R)); 
if not divide(Iterm, H,quot) then 

lexp 
else 

l e x p -  iterm*h (R) ^deg+quot*h(R)  ^ ( d e g -  1) 
fi; 

end: 
# 
#This routine uses the properties of h(R) to put several terms over a 
#common denominator (i.e. they are all multiplied by the same power of h) 
comden: = proc (exp) 

local lexp, deg, result, i; 
lexp: = collect(convert(exp, polynom), h (R) ); 
deg: = degree (lexp, h (R)); 
result: = O; 
for i from 0 to deg do 

result: = result + coeff(lexp, h(R),i)*H ^ (deg- i ) ;  
od; 
expand (resu It) * h (R) ^ deg; 

end: 
# 
#The aim of this routine is to use taylor to remove higher order terms, but 
# otherwise avoid the taylor data type which caused problems for expand 
# in  Maple version 4.0. 
# Notice that the variable Order will determine how many terms are kept. 
taylEPS: = proc(exp) 

convert (taylor (exp, E PS = 0), polynom); 
end: 
#The two  surfaces are given by Z = Z l  and Z=Z2 
# 
Z1 :---1 + (1 - (1  --EPS*R^2) ^(1/2))/EPS: 
# >  Order:----4; for taylEPS above 
Order: = 4; 
Zl : =taylEPS(Zl ); 
# 
Z2: = (1 -- (1 - EPS*KAPPA^2*R ^2) ^ (1/2))/(EPS*KAPPA): 
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Z2: = taylEPS (Z2); 
# Laplace is the scaled laplacian operator. 
LAPLACE: = proc(exp): 

diff (diff (exp,Z),Z) + EPS*diff (R*diff (exp, R), R)/R: 
end: 
# A  little routine here to extract terms 
#Supplanted already in version 4.1 by the routine "isolate" 
extract: = proc(exp, subexp): 

expand(exp-subs(subexp= O, exp)): 
end: 

MAPLE CODE FOR THE ZEROTH ORDER 

read lib (isolate): 
# Program in Maple to solve asymmetric motion between spheres in low Reynolds 
# number f low (lubrication theory). # December 87 Rob Corless & David Jeffrey 
# 
#The following functional references can be streamlined with the use of 
#~he (new for version 4.3) facility "alias", which can serve as a partial 
#replacement for the DEPENDS feature of muMATH, REDUCE, or Macsyma 
# 
MAXORDER:=2:  
for i from 0 to MAXORDER do 

p. i := P.i(R,Z): 
u. i := U.i(R,Z): 
v.i: = V.i(R,Z): 
w.i: =W.i(R,Z): 

od: 
# 
#The solution of the first (trivial) equation. 
pO: = PO(R): 
#expand each function in powers of EPSilon 
# 
i := ' i ' :  
p: =sum('p,i'*EPS^i,i=O..MAXORDER): 
u: = su m('u.i'* EPS ̂ i,i = O..MAXO R DER): 
v: = sum ('v.i'* EPS ̂  i,i = O.,MAXO R D ER): 
w:  =sum('w. i ' *EPS^i , i= O..MAXORD ER): 
EQuu : = - R ̂ 2*diff (p, R) + R ̂ 2*diff (u,Z,Z) + EPS*(R ̂ 2*UPS(u) - 2 * ( u  +v)) :  
EQuv: =p*R + R^ 2*diff (v,Z,Z) + EPS*(R^2*U PS(v) --2*(u +v)) :  
EQuw: = - d i f f  (p,Z) + EPS*diff (w,Z,Z) + EPS^2*(UPS(w) - -w/R ^2): 
EQuC: = R*diff (u, R) + u + v +  R*diff (w,Z): 
# Equations now established. Separate orders 
# 
EOuuS: =collect (EQuu, EPS): 
EQuvS:=collect (EQuv, EPS): 
EQuwS: =collect (EQuw, EPS): 
EQuCS: =collect (EQuC, EPS): 
# w e  have now separated all equations by order in EPS. Now we integrate. 
# 
int(int(coeff (EQuuS, EPS, O),Z),Z): 
# Now we have reduced it to an a-lgebraic equation. 
uO: =op(2,isolate(', UO(R,Z))); 
#This gives us Equation (2.1) in the text. 
# Of course we will need to use the boundary conditions to evaluate the 
#arbitrary function, linear in Z, which should be added to the above. 
# 
# Now we do the same for the equation for vO 
int(int(coeff (EQuvS, EPS,O),Z),Z): 
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vO: = o p (2, isolate (",VO ( R, Z) ) ); 
#This gives us equation (2.2) in the text, once constants of integration 
# are added. 
# 
#The boundary conditions are UO(R,Z) = - 1  when Z=H1,  UO=O when Z=H2. 
# 
sol1 : = s u b s ( Z = H l , u O + l ) :  
sol2: = subs{Z = H 2, uO): 
soln: = linalg[multiply] (BCmatrix,[-soll, -so l2] ) :  
#soln[1]~=~A(R) in the text 
#soln[S]4=>B(R) in the text, equation (2.2) 
uO: -- uO + soln [1 ]*Z + soln [2]: 
uO: =comden(uO); 
#This gives us the results presented in equation (2.3) in the text 
#VO= I  when Z----H1, and VO=O when Z=H2. 
# 
sol1 : =subs(Z = H 1,vO~ 1 ): 
sol2: =subs(Z= H2,vO): 
sol n : = linalg [multiply] (B Cmatrix, [ -so l1 ,  -so l2 ]  ): 
# soln[1],=~C(R) 
#soln[2]~=~D(R) in the text, equation (2.3) 
vO: = vO + soln [1 ]*Z +soln [2]: 
vO: ---- comden (vO); 
# 
# Now we find wO. 
# 
(uO +vO+ R*diff (uO, R)): 
wO: = - (1/R)*int ( ' ,  Z): 
# 
#This next construction evaluates the arbitrary function of R 
#by applying the boundary condition wO=O at Z---H2. 
# 
wO: =wO--  subs(Z = H2, wO): 
#At  this point we have the result presented in equation (2.4) 
#in the text, though several simplifying collections and factorings 
#were done to get it in the form presented in the text. 
# 
#we now obtain the differential equation for pO 
# 
subs(Z= H1 ,wO) + R: 
d i feq:=12*R^2*" :  
difeq: = comden (d ifeq): 
difeq : = normal (difeq/(H *h (R)) ); 
# Finally we substitute the known solution for pO 
# 
sol:---- (6/5)* R*h(R) ^2; 
expand(subs(PO(R) =sol,difeq)); 
difeq: =comden( ' ) ;  
# 
#Having verified that pO is (6/5) Rh(R)^2 
#we substitute this into the expressions for uO, vO and 
# 
#wO to obtain explicit expressions for the zeroth solution. 
# 
# Note that the following substitutions can be carried out with a 
#single assignment statement in version 4.1 or later. 
# 
pO:-----sol: 
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uO: = subs(PO(R) = sol, uO): 
vO: = subs(PO (R) = sol,vO): 
wO:---subs(PO(R) =sol,wO): 
uO: = ReduceLast(uO, h(R), H): 
uO: = normal (comden (uO)); 
vO: = ReduceLast(vO): 
vO: = normal(comden (vO)); 
wO: = ReduceLast (wO): 
wO: = normal (comden (wO)); 

SOLUTION OF THE ODE FOR P(R) AT SECOND ORDER 

# 
# Now we proceed to solve this differential equation. We 
#expect a solution of the form S(R)/H^6, where S(R) is a 
#polynomial. 
subs(P2(R) = S(R)*h(R) ^6,normal(difeq/h(R) ^5)): 
numer("): 
polydif: = comden (", h(R), H)/h (R) ^8; 
i: = ' i ' :  
# 
#The following construction was necessary for version 4.0 because of a 
#subtle bug in the Maple routine "sum". The sum function behaved differently 
#for large integer arguments than it did for small ones. There was an 
#obscure bug with this process in earlier versions of Maple. However, 
#this workaround also works in the later versions, though it is no 
# longer necessary. 
#In order to avoid premature evaluation of a.i in the loop, 
#we use quotes--but this shifts the index of i by one by 
# reason of the delayed evaluation. 
# 
solution:= O; 
f o r i f r o m - 1  t o 1 4 d o  

solution: = solution +'a.i '* R ̂  (2"i + 1 ) 
od: 
subs(S(R) =solution,polydif): 
eqs: = collect(numer ("), R): 
deg: = degree (eqs, R); 
# Use "solve" to solve the overdetermined system of equations, 
#and use "map" and "coeff" to conveniently set up the equations. 
# 
solve(map(proc(n) coeff (eqs, R, n)end,{$(O..deg)}),(a.(O..15)}); 
assign("): 
# 
solution : = collect (expand (solution), R); 
p2:=subs(P2(R) = solution*h(R) ^ 6,p2): 


