
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
ARTICLE

Variants Near FOXE1 Are Associated with Hypothyroidism
and Other Thyroid Conditions: Using Electronic Medical
Records for Genome- and Phenome-wide Studies

Joshua C. Denny,1,2,17,* Dana C. Crawford,3,4,17 Marylyn D. Ritchie,1,3,4 Suzette J. Bielinski,5

Melissa A. Basford,6 Yuki Bradford,4 High Seng Chai,7 Lisa Bastarache,1 Rebecca Zuvich,3,4

Peggy Peissig,8 David Carrell,9 Andrea H. Ramirez,2 Jyotishman Pathak,7 Russell A. Wilke,2

Luke Rasmussen,8 Xiaoming Wang,6 Jennifer A. Pacheco,14 Abel N. Kho,10 M. Geoffrey Hayes,10

Noah Weston,9 Martha Matsumoto,7 Peter A. Kopp,10,14 Katherine M. Newton,8 Gail P. Jarvik,11

Rongling Li,12 Teri A. Manolio,12 Iftikhar J. Kullo,13 Christopher G. Chute,7 Rex L. Chisholm,14

Eric B. Larson,9 Catherine A. McCarty,15 Daniel R. Masys,1 Dan M. Roden,2,16 and Mariza de Andrade7

We repurposed existing genotypes in DNA biobanks across the Electronic Medical Records and Genomics network to perform a

genome-wide association study for primary hypothyroidism, the most common thyroid disease. Electronic selection algorithms incor-

porating billing codes, laboratory values, text queries, and medication records identified 1317 cases and 5053 controls of European

ancestry within five electronic medical records (EMRs); the algorithms’ positive predictive values were 92.4% and 98.5% for cases

and controls, respectively. Four single-nucleotide polymorphisms (SNPs) in linkage disequilibrium at 9q22 near FOXE1 were associated

with hypothyroidism at genome-wide significance, the strongest being rs7850258 (odds ratio [OR] 0.74, p ¼ 3.96 3 10�9). This

association was replicated in a set of 263 cases and 1616 controls (OR ¼ 0.60, p ¼ 5.7 3 10�6). A phenome-wide association study

(PheWAS) that was performed on this locus with 13,617 individuals and more than 200,000 patient-years of billing data identified

associations with additional phenotypes: thyroiditis (OR ¼ 0.58, p ¼ 1.4 3 10�5), nodular (OR ¼ 0.76, p ¼ 3.1 3 10�5) and multi-

nodular (OR ¼ 0.69, p ¼ 3.9 3 10�5) goiters, and thyrotoxicosis (OR ¼ 0.76, p ¼ 1.5 3 10�3), but not Graves disease (OR ¼ 1.03,

p ¼ 0.82). Thyroid cancer, previously associated with this locus, was not significantly associated in the PheWAS (OR ¼ 1.29, p ¼
0.09). The strongest association in the PheWAS was hypothyroidism (OR ¼ 0.76, p ¼ 2.7 3 10�13), which had an odds ratio that

was nearly identical to that of the curated case-control population in the primary analysis, providing further validation of the PheWAS

method. Our findings indicate that EMR-linked genomic data could allow discovery of genes associated with many diseases without

additional genotyping cost.
Introduction

Since 2005, more than 900 genome-wide association

studies (GWASs) have identified genomic variants associ-

ated with more than 200 diseases and traits.1 Although

genotyping costs are decreasing, GWASs targeting a single

disease or trait are expensive, and recruitment of the neces-

sary number of patients can be challenging. Recently, elec-

tronic medical record (EMR)-linked DNA biobanks have

allowed researchers to study the genetic basis of disease

by using phenotypes derived solely from information con-

tained within the EMR.2–8 Most EMRs contain a dense

longitudinal record of a patient’s health conditions, the

evolution of those conditions, and responses to treat-
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ments. EMR-linked DNA biobanks might allow genetic

analysis of many phenotypes with little to no incremental

genotyping cost because patients often have more than

one clinically apparent disease. In this study, we explored

the hypothesis that genetic data from five previously con-

ducted EMR-based GWASs could be reused in a study of

a different phenotype of broad public health importance,

primary hypothyroidism (PH).

PH is the most common thyroid disorder; it affects

1%–5% of the population,9 and up to 12% of the elderly

express subclinical hypothyroidism.10 The majority of

cases result from chronic lymphocytic thyroiditis, or

Hashimoto thyroiditis (HT [MIM 140300]). Treatment

involves thyroid hormone replacement and lifelong
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Table 1. Evaluation of Primary Hypothyroidism Algorithm at the Five eMERGE Sites

Site Primary Phenotype Total Genotyped Subjects

Primary Hypothyroidism

Cases Controls Case PPV (%) Control PPV (%)

Group Health dementia 2532 397 1,160 98 100

Marshfield cataracts 4113 514 1,187 91 100

Mayo Clinic peripheral arterial disease 3043 233 1,884 82 96

Northwestern type 2 diabetes 1217 92 470 98 100

Vanderbilt normal cardiac conduction 2712 81 352 98 100

All sites 13,617 1317 5053 92.4a 98.5a

Genotype counts represent all subjects who were found by the hypothyroidism algorithms at each site and who were genotyped. Counts are limited to those
classified as ‘‘white’’ in the electronic medical record of each site. PPV ¼ positive predictive value.
a Average weighted for number of samples contributed to the total.
monitoring of serum hormone levels. A number of rare

mutations have been shown to result in congenital hy-

pothyroidism, which is readily detectible through new-

born screening. These mutations can cause central hypo-

thyroidism (e.g., TSHB [MIM 188540]) or primary

hypothyroidism due to thyroid dysgenesis (e.g., TSHR

[MIM 603372]), alterations in thyroid transcription factors

(NKX2-1 [MIM 600635], FOXE1 [MIM 602617], and PAX8

[MIM 167415]), or dyshormonogenesis (NIS [MIM

601843], TG [MIM 188450], DUOX2 [MIM 606759],

DUOXA2 [MIM 612772], SLC26A4 [MIM 605646], and

DEHAL1[MIM 612025]).11–13 There is evidence of a genetic

component in autoimmune thyroid disease, including

PH;14,15 candidate-gene analysis and linkage studies16–19

suggest that loci contributing to the pathogenesis of PH

include CTLA4 (MIM 123890), PTPN22 (MIM 600716),

and the thyroglobulin (TG) gene. A GWAS of levels of

thyroid-stimulating hormone (TSH) in euthyroid individ-

uals has identified associations at 1p36.13,20 PDE8B21,22

(MIM 603390). and to a lesser degree, FOXE1.22,23

Implementation of EMRs can lead to a higher quality of

care, reduced cost, and improved adherence to guide-

lines.24–26 More recently, investigators have used EMRs

as a longitudinal resource for clinical and genomic re-

search.27 Significant challenges inherent in EMR-based

research include the accurate identification of cases and

controls from a data source that was not designed for

such a task. Methods of achieving high precision have

been developed and include cohort-selection algorithms

that identify subjects via a combination of billing codes,

records of medication prescription, laboratory or report

data, and use of informatics techniques such as natural

language processing to search for biomedical concepts in

unstructured clinical documentation.2,28,29 The portability

of such algorithms from one EMR system to another has

not been systematically evaluated and remains a potential

obstacle to secondary use of EMR data,30 a goal for the

recently released Meaningful Use criteria of the Health

Information Technology for Economic and Clinical Health

(HITECH) Act.
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We sought to develop and implement a transportable

EMR-based algorithm to identify hypothyroidism cases

and controls. This study was performed in the Electronic

Medical Records and Genomics (eMERGE) Network, a

project that is sponsored by the National Human Genome

Research Institute and which involves five institutions

(Group Health Cooperative [GHC], Marshfield Clinic

[MFC], Mayo Clinic [MC], Northwestern University [NU],

and Vanderbilt University Medical Center [VU]) that

each have DNA biorepositories linked to their EMRs.3

Using genotype data derived from five prior GWASs per-

formed in five institutions, we conducted a GWAS to

identify genetic variants associated with PH. We then per-

formed a phenome-wide association study (PheWAS) on a

single-nucleotide polymorphism (SNP) associated with PH

to investigate the pleiotropy of this region. The PheWAS

method uses custom case and control definitions to

perform an unbiased scan of diseases represented in billing

codes accrued in the medical record; we have previously

demonstrated its validity through rediscovery of known

associations.4
Subjects and Methods

eMERGE Network Sites
As of mid-2011, the eMERGE Network consisted of five institu-

tions (noted above) that each had DNA biorepositories linked to

their EMRs. Each EMR is linked to a DNA biobank. Details of these

biobanks have been published elsewhere.31,32 Each site has inves-

tigated at least one primary phenotype (Table 1) by performing

a GWAS after implementing and validating computer selection

logic to identify cases and controls from available EMR data. After

genotyping for these primary GWASswas complete, each site iden-

tified individuals with the network-wide phenotype PH from

within their genotyped population.

Five different EMR systems are used across eMERGE; three

sites (MFC, MC, and VU) use custom-developed EMR systems.

NU and GHC use EpicCare (Epic Systems Corporation, Verona,

WI). NU also uses Cerner PowerChart (Cerner Corporation,

Kansas City, MO). Each eMERGE site maintains research data
7, 2011



warehouses to make EMR data accessible for clinical and genetic

research. Details of these systems have been published previ-

ously.3,31–33
Evaluation and Development of Phenotype-Selection

Logic
The algorithm identifying cases and controls for PH was initially

created and iteratively refined at VU and then deployed at the

other four eMERGE sites. At VU, two physicians not associated

with algorithm development reviewed algorithm results with

access to the entire deidentified clinical records of individuals

meeting selection criteria. The results of the manual classification

were then used for improving the algorithms, and the procedure

was iterated until the positive predictive value reached the predes-

ignated target of R 95% for a random selection of unreviewed

algorithm-determined cases and controls.

The final algorithm required the presence of a thyroid replace-

ment medication for at least three months and at least one

International Classification of Disease, 9th edition code for

hypothyroidism, or abnormal thyroid function study, defined

as a study showing the laboratory value of thyroid stimulating

hormone (TSH) to be greater than 5 mIU/ml or showing the

laboratory value of abnormal free thyroxine (FT4) to be less

than 0.5 ng/dl. Secondary causes of hypothyroidism (e.g., post-

surgical hypothyroidism or medication-induced hypothy-

roidism) and other thyroid conditions (e.g., Graves disease

[GRD; MIM 275000], pregnancy-related hypothyroidism, or

thyroid cancer) were excluded by queries for medications,

billing codes, and radiology tests (so that contrast exposure

was excluded). Control subjects had at least one normal TSH

value (defined as between 0.5 and 5 mIU/ml) and had no occur-

rences of hypothyroidism billing codes, abnormal thyroid func-

tion tests, or thyroid replacement medications. Both cases and

controls excluded patients who had received medications po-

tentially altering thyroid function (such medications include

phenytoin, lithium, methimazole, and propylthiouracil). The

complete description of the final algorithm is available online

(see Web Resources). So that algorithm accuracy could be

determined, a randomly selected subset of cases and controls

was manually reviewed at each site by trained chart abstractors

or physicians, each of whom was blinded to the algorithm’s case

or control determination and had full access to the EMR data.

The review included a total of 300 cases and 300 controls.

Reviewers were instructed to mark as false positives individuals

designated as having subclinical hypothyroidism only and not

overt hypothyroidism.
Genotyping
Genotyping was performed at the Center for Genotyping and

Analysis at the Broad Institute (two sites) and the Center for In-

herited Disease Research at Johns Hopkins University (three sites)

with the Human660W-Quadv1_A BeadChip, consisting of

561,490 SNPs and 95,876 intensity-only probes on a total of

13,617 subjects of European American ancestry, as designated in

the EMRs.

Data were cleaned with the quality-control (QC) pipeline

developed by the eMERGE Genomics Working Group.34 This

process includes evaluation of sample and marker call rate,

gender mismatch and anomalies, duplicate and HapMap concor-

dance, batch effects, Hardy-Weinberg equilibrium (HWE), sample

relatedness, and population stratification (implemented with
The Americ
STRUCTURE35 and EIGENSTRAT36). Relatedness was determined

on the basis of identity by descent (IBD) estimates generated

from the genome-wide genotype data in PLINK. All study sites

had individuals with an IBD estimate greater than 0.0625. We

also identified two inter-site related pairs from Mayo and Marsh-

field. In all cases of suspected relatedness, one individual from

each related pair and the child from identified trios were removed

from the analysis.

After QC, 522,164 SNPs were used for analysis on the basis of the

following QC criteria: SNP call rate> 99%, sample call rate> 99%,

minor allele frequency > 0.01, 99.99% concordance rate in dupli-

cates, unrelated samples only, and individuals of European

descent only (determination of European descent was based on

STRUCTURE analysis showing a >90% probability of being in

the CEU [Utah residents with ancestry from northern and western

Europe] cluster).We flagged all markers with HWE p< 13 10�4 for

further evaluation after analysis with standard criteria.34 The QC

and data analysis were performed with a combination of

PLINK,37 PLATO,38 and the R statistical package.
Statistical Analysis
We evaluated the positive predictive value of case and control

determination for the automated algorithm. The positive pre-

dictive value was calculated as the number of true positive cases

(or controls), as determined by human expert review, divided

by the total number of cases (or controls) selected by the

algorithm.

Genetic analyses were limited to subjects of European American

ancestry (as determined by genetic ancestry) given the relatively

few individuals identified not to be of European descent (28 cases

and 146 controls). Single-locus tests of association were per-

formed via logistic regression in PLINK under the assumption of

an additive genetic model. The model was adjusted for birth

decade, sex, and site of ascertainment. Birth decade was chosen

instead of age of diagnosis because the latter is usually not avail-

able within EMR records and the former also allows adjustment

for possible differences in iodine supplementation over time. A

second model included birth decade, sex, site of ascertainment,

and the first principal component from EIGENSTRAT. The

genomic inflation factor for data in both models was 1.00.

Linkage disequilibrium was calculated and plotted with Locus-

Zoom.39 Tests of heterogeneity were performed with METAL.40

Analyses involving 1000 genomes data were carried out with

SNP Annotation and Proxy Search (SNAP) in the CEU population

panel.41

In addition to an unmatched analysis, we performed a genome-

wide association study of cases matched to controls.

In the matched analysis, controls were matched to cases by site,

sex, genotypic ancestry designation, and birth decade. We used

principal components one and two to match by genetic ancestry

with EIGENSTRAT; these values were allowed to vary slightly

between matches. To increase the number of controls matched

to cases, additional controls were added if the birth decade was

within one decade. For unrelated cases and controls, the

control-to-case matching ratio was at least 3:1. Cases were strati-

fied with their related controls, where appropriate, and matched

with additional nonrelated controls, when necessary, so that a

3:1 control-to-case ratio was achieved. Conditional logistic regres-

sion was performed for each SNP under the assumption of an

additive genetic model adjusted for birth decade and two prin-

cipal components.
an Journal of Human Genetics 89, 529–542, October 7, 2011 531



Replication
Variants reaching genome-wide significance (p < 5 3 10�8) in

the discovery set were tested for association with PH in the

Mayo Genome Consortia (MayoGC), which includes Mayo

Clinic patients with both EMR and GWAS data derived from

prior studies on Illumina HumanHap550, Human610-Quad,

and Human660W-Quad platforms. Currently, the cohort

includes 6508 patients from three studies, the eMERGE periph-

eral arterial disease cases and controls, case and control patients

from a study of venous thromboembolism, and control patients

from a study of pancreatic cancer.42,43 Participants in the venous

thromboembolism study were genotyped with the Illumina

Human660W-Quad platform. Participants in the pancreatic

cancer study were genotyped with Illumina HumanHap550

and the Human 610-Quad chips. The PH algorithm was used

for identification of cases and controls from the non-eMERGE

subjects (n ¼ 3110). The top associations in the initial GWAS

were analyzed in the replication set via PLINK with logistic

regression under the assumption of an additive genetic model

adjusted for age and sex. MayoGC samples used for the replica-

tion analysis had distinct medical-record numbers from the

primary analysis, and IBD analysis within PLINK was used for

removal of any first-degree relatives (or twins or replicate

samples) of those individuals used within the primary eMERGE

analysis.
Phenome-wide Association Study
After defining a region of interest in GWAS, we used all individ-

uals of European Ancestry in the eMERGE data set (N ¼ 13,617)

to investigate for possible pleiotropy due to this locus. To define

diseases, we queried all International Classification of Disease

(ICD), 9th edition, codes from the respective EMRs from the five

eMERGE sites. The PheWAS software uses these ICD codes to

classify each person as having one of 957 possible clinical pheno-

types (typically representing diseases). Each phenotype is treated

independently such that one person can have both the general

diagnosis of hypothyroidism as well as the specific diagnosis of

Hashimoto’s thyroiditis, presumably as the cause of their hypo-

thyroidism, if both are supported by the individual’s billing

record. For each disease, the PheWAS code defines relevant

control groups for each disease or finding, such that patients

with related diseases do not serve as controls for that disease

(e.g., a patient with psoriatic arthritis cannot serve as a control

for an analysis of rheumatoid arthritis). Analysis of each pheno-

type then proceeds using a pairwise analysis of all case and con-

trol groups for each SNP. We have observed that positive predic-

tive values increase when codes are present more than once in

the EMR, and here we required each case to have at least two

ICD codes in a PheWAS case group. We also did not analyze

phenotypes occurring in less than 20 patients (a prevalence of

0.15% in the data set). Controls were excluded if they had any

ICD codes in the PheWAS control exclusion ranges. After genera-

tion of case and control groups for each of the PheWAS pheno-

types, association analyses were performed with PLINK using

logistic regression adjusted for age, sex, and the first three prin-

cipal component analyses as calculated by EIGENSTRAT. To deter-

mine if PheWAS-detected disease associations were the result of

co-occurrence with hypothyroidism or a result of pleiotropy, we

then performed a PheWAS adjusted for diagnosis of hypothy-

roidism (defined by PheWAS code) as well as age, sex, and the first

three principal components.
532 The American Journal of Human Genetics 89, 529–542, October
Results

Identification of subjects with Primary

Hypothyroidism

Table 1 presents the positive predictive value of the PH

phenotype algorithm at each of the five sites. A total of

13,617 subjects of European American ancestry were gen-

otyped for one of five primary eMERGE GWAS. The PH

algorithm identified 1,317 cases and 5,053 controls from

these samples. The remaining 7,247 individuals with

GWAS data across eMERGE were excluded because either

they met an exclusion criterion (e.g., on medications

such as amiodarone) or there was insufficient evidence

that they qualified as a control (e.g., lacking a TSH labora-

tory test or insufficient visit data). The average positive

predictive value, weighted by site sample size, was

92.4% for cases and 98.5% for controls. Positive predictive

values exceeded 90% for controls at all sites and for cases

in four of five sites. Cases were predominantly women

(73%) with median birth decade in the 1930s (Table 2).

All patient populations averaged more than a decade of

data within their EMRs. Figure S1 presents a schematic

of the algorithm.
Genome-wide Analysis for Primary Hypothyroidism

The analysis identified four SNPs associated with hypo-

thyroidism at genome-wide significance after adjustment

for birth decade, sex, and study site: rs7850258,

rs965513, rs925489, and rs10759944 (Figure 1, Table 3,

Table S1). The minor alleles of all four SNPs are underrep-

resented among cases compared with controls at p <

8.2x10�9 and odds ratio (OR) 0.74 (95% confidence

interval 0.67-0.82). Analysis including the first principal

component did not alter the results. The four SNPs

located on chromosome 9 are in strong pair-wise linkage

disequilibrium (r2 > 0.98) with one another and 58-71 kb

from the nearest gene, FOXE1 (Figure 2). Analysis of

the pilot low coverage CEU data from 1000 genomes

found the four FOXE1 SNPs were not in linkage disequi-

librium (r2 > 0.80) with any coding region variants

(Figure S2).

To further investigate these genome-wide significant

results, we examined the tests of association within each

of the five sites. All four SNPs near FOXE1 were associated

with PH at p < 0.03 with similar effect sizes and direction

(OR 0.60-0.81, Table 4). The associations with PH were

strongest within the Marshfield Clinic Personalized Medi-

cine Research Project set, which had the largest case

sample size (n ¼ 514) among the study sites. There was

no evidence of heterogeneity across the study sites for

these four SNPs (p ¼ 0.9).

The replication population contained 263 cases and

1616 controls (Table 2). Analysis of the four genome-

wide significant variants near FOXE1 replicated the most

significant findings in the discovery data set with p <

1.1x10�5 (Table 4).
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Table 2. Characteristics of Hypothyroidism Cases and Controls

Primary Analysis Replication Set

Cases (n ¼ 1317) Controls (n ¼ 5053) Non-TSH Controls (n ¼ 5632) Cases (n ¼ 263) Controls (n ¼ 1616)

Median birth decade 1930 1930 1940 1930 1940

Age (yr)a 68.7 5 14.0 60.7 5 12.5 52.9 5 14.6 58.9 5 14.2 53.9 5 13.5

Female (%) 73.0 48.3 43.8 78.7 43.9

Follow-up (yr)b 19.3 5 9.4 15.5 5 9.5 13.0 5 11.0 11.9 5 4.9 10.1 5 5.6

Plus-minus values are mean 5 SD.
a Age is calculated as the first age matching case definition (e.g., a qualifying billing code, laboratory value, or medication) or, for controls, first billing code.
b Follow-up entries were calculated as the number of years the patients was observed by billing codes.
To assess the possibility of ascertainment bias, i.e., the

hypothesis that the physician ordering of a TSH labora-

tory test may bias toward patients with other autoim-

mune diseases, we also compared the PH cases to

patients who had no evidence of thyroid disease or

thyroid-active medications, but did not have TSH testing

performed (‘‘non-TSH controls’’; n ¼ 5,643 of the 7,247

patients excluded from the primary analysis). GWAS,

adjusted for age and sex, of PH cases to non-TSH controls

revealed results consistent in direction and magnitude to

those of our primary analysis. Results are presented in

Table 3 and Figure S3. The top four associated SNPs

were identical between both analyses and also reached

genome-wide significance (rs7850258, OR ¼ 0.74, p ¼
8.2x10�9). These data argue against a role for ascertain-

ment bias.

In addition to the genome-wide significant association

identified for SNPs along chromosome 9 near FOXE1, we

also identified several SNPs in the same chromosome
Figure 1. Genome-wide Association Analysis of Individuals with P
SNP tests of association (logistic regression) under the assumption of
site; the tests incorporated 522,164 SNPs. The red horizontal line ind

The Americ
associated with PH near genome-wide significance.

Specifically, SNPs rs4979402, rs4979397, rs1408528,

and rs1535971 are associated with PH at p < 3.7x10�6

(Table 3) and are located in DFNB31 [MIM 607928].

DFNB31 is ~16.6Mb from FOXE1 and not in linkage

disequilibrium with the FOXE1 variants identified in

this study (r2 < 3x10�4); thus, these associations poten-

tially represent an independent locus associated with PH.

However, these regions were not as strongly associated

with hypothyroidism when compared with the non-

TSH control group. The analysis to non-TSH controls

identified additional areas of possible significance near

PVT1 [MIM 165140] (rs4733792), near TBL1X [MIM

300196] (rs17280788), and within CCBE1 [MIM

612753] (rs1791303) (Table 3). A genome-wide analysis

conditioned on rs925489 demonstrated that each of

the loci in Table 3 are independent of the FOXE1 vari-

ants with similar P values and effects as those presented

in Table 3.
rimary Hypothyroidism versus Controls
an additive genetic model adjusted for sex, birth decade, and study
icates p ¼ 5 3 10�8, the threshold for genome-wide significance.
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Table 3. SNPs Associated with Hypothyroidism at p < 10�6 with Either Primary Controls or Non-TSH Controls

SNP Chromosome Position Minor Allele Nearest Gene

Minor Allele Frequency Cases versus ontrols Cases versus Non-TSH Controls

Case Controls Non-TSH Controls OR (95% CI) p Value OR (95% CI) p Value

rs7850258 9 99588834 A FOXE1 0.285 0.348 0.3452 0.74 (0.67–0. ) 3.96 3 10�9 0.74 (0.67–0.82) 8.17 3 10�9

rs965513 9 99595930 A FOXE1 0.286 0.348 0.3456 0.74 (0.67–0. ) 4.19 3 10�9 0.74 (0.67–0.82) 1.15 3 10�8

rs925489 9 99586421 C FOXE1 0.286 0.348 0.3452 0.74 (0.67–0. ) 4.68 3 10�9 0.74 (0.67–0.82) 1.17 3 10�8

rs10759944 9 99596793 A FOXE1 0.286 0.347 0.3445 0.75 (0.68-0.8 ) 8.19 3 10�9 0.74 (0.67–0.82) 1.50 3 10�8

rs4979402 9 116262496 G DFNB31 0.288 0.247 0.2518 1.29 (1.16–1. ) 1.23 3 10�6 1.17 (1.05–1.30) 0.0035

rs4979397 9 116259709 T DFNB31 0.286 0.246 0.2500 1.28 (1.16–1. ) 1.91 3 10�6 1.17 (1.06–1.31) 0.0033

rs1877432 9 99583701 A 9q22.3; near FOXE1 0.437 0.382 0.3885 1.25 (1.14–1. ) 1.99 3 10�6 1.28 (1.16–1.41) 4.29 3 10�7

rs1408528 9 116260594 C DFNB31 0.286 0.246 0.2507 1.28 (1.16–1. ) 2.07 3 10�6 1.17 (1.05–1.30) 0.0039

rs17827152 4 55173443 A 4q12; closest to KIT 0.263 0.219 0.2348 1.28 (1.15–1. ) 3.20 3 10�6 1.16 (1.04–1.29) 0.0084

rs1535971 9 116269221 T DFNB31 0.299 0.260 0.2629 1.27 (1.15-1.4 ) 3.65 3 10�6 1.17 (1.05–1.30) 0.0035

rs17043990 3 72963160 C SHQ1 0.0091 0.0024 0.0050 3.71 (2.08–6. ) 8.34 3 10�6 2.47 (1.44–4.25) 0.0011

rs4733792 8 128909458 T PVT1 0.4445 0.4077 0.3884 1.18 (1.08,1.3 ) 2.35 3 10�4 1.26 (1.14–1.39) 2.40x10�6

rs4733789 8 128903585 C PVT1 0.4461 0.4112 0.391 1.17 (1.07, 1. ) 5.51 3 10�4 1.26 (1.14–1.38) 3.01x10�6

rs17280788 X 9638573 T TBL1X 0.2612 0.2382 0.2133 1.14 (1.02–1. ) 0.019 1.35 (1.20–1.52) 9.94x10�7

rs1791303 18 55606206 T CCBE1 0.3651 0.4068 0.4111 0.83 (0.75, 0. ) 6.70 3 10�4 0.79 (0.72–0.87) 2.13x10�6

rs4940904 18 55606041 T CCBE1 0.3662 0.4071 0.4112 0.83 (0.76,0.9 ) 1.10 3 10�4 0.79 (0.72–0.88) 2.93x10�6

Analyses performed with logistic regression adjusted for birth decade, sex, and site of ascertainment. DFNB31 SNPs are in the gene. FOXE1 SNPs are from 5 –71 kb to the gene. The DIRAS2 SNP is in the gene. SHQ1 (MIM
602322) SNPs are in the gene.
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Figure 2. Regional Associations Near FOXE1
The matched GWAS used 1314 cases and 3150 controls. Of

the 4464 subjects, 4185 (94%) were unrelated. The results

of the matched analysis were essentially identical to the

primary analysis except that significance levels tended to

be slightly lower (p < 2.6x10�8 for the top association,

Figures S4 and S5, Tables S2–S4), likely due to reduced

sample size.
Phenome-wide association study of rs965513

Once associations with PH were established, we conducted

a PheWAS on rs965513 near FOXE1 to investigate for

other phenotypes potentially associated with this locus.

We selected rs965513 because it was strongly associated

with PH in our analysis and had also previously been

associated with an increased risk of thyroid cancer in

individuals of European descent.23,44 For this analysis, we

combined all self-identified European American individ-

uals from the five eMERGE sites (n ¼ 13,617). Subjects

had a total of 5,964,605 billing codes accrued over a total

of 217,619 patient-years. A total of 866 phenotypes from

more than 20 cases were analyzed, yielding a Bonferroni

correction of p ¼ 0.05/866 ¼ 5.8 3 10�5; this correction

is probably overly stringent given that many phenotypes

are related to each other. Figure 3 and Table 5 show pheno-

types associated with rs965513, which included acquired

hypothyroidism (OR ¼ 0.76, p ¼ 2.7 3 10�13), thyroiditis

(OR ¼ 0.58, p ¼ 1.4 3 10�5), nodular (OR ¼
0.76, p ¼ 3.1 3 10�5), and multinodular (OR ¼ 0.69,

p ¼ 3.9 3 10�5) goiters, nutritional deficiency anemias

(OR ¼ 1.41, p ¼ 3.7 3 10�5), and thyrotoxicosis (OR ¼
0.76, p ¼ 1.5 3 10�3). The locus was also associated with

chronic lymphocytic thyroiditis (OR ¼ 0.58, p ¼ 2.5 3

10�4), a subset of thyroiditis, the most common cause of

PH. However, Graves disease (an autoimmune cause of

hyperthyroidism and one of the major etiologies of thyro-

toxicosis) was not associated with this locus (OR ¼ 1.03,

p ¼ 0.82). Associations with thyroid cancer, the previously

reported association, trended toward significance in this

analysis (OR ¼ 1.29, p ¼ 0.09), although only 96 cases

were present in this data set. However, rs965513 was
The American Journal of Hum
weakly associated with other malignancies:

lymphoid tumors, including lymphosar-

coma and reticulosarcoma (n ¼ 130, OR ¼
1.35, p ¼ 0.02), salivary gland cancers

(n ¼ 22, OR ¼ 1.97, p ¼ 0.025), and eye

cancers (n ¼ 20, OR ¼ 1.97, p ¼ 0.03). The

PheWAS analysis adjusted for hypothy-

roidism status demonstrated more-signifi-

cant associations with nutritional-defi-
ciency anemia, pernicious anemia, atrial flutter, and

thyroid cancer. Association with thyroid-related pheno-

types, such as goiters and thyroiditis, were weaker; many

of these also result in PH. Indeed, 80% of the individuals

with Hashimoto thyroiditis and 73% of those with

thyroiditis also had diagnoses of PH.

Discussion

We demonstrate that one can repurpose previously geno-

typed samples linked to longitudinal EMR-derived data to

identify variants associated with a disease unrelated to

the original study hypotheses. In this study, we found

that 9q22 variants near FOXE1, also known as thyroid

transcription factor 2, are associated with PH in a

European-American population. This association was ob-

served independently with consistent effect size and

direction in each of the five sites from which samples

were derived, and it was independently verified in a

sixth EMR-derived population. Importantly, neither the

primary analysis nor the replication set required new gen-

otyping. Furthermore, the phenotype algorithm devel-

oped at a single site proved portable to four other institu-

tions and used only patient information derived as a

byproduct of normal clinical care. PheWAS of this region

suggests that these variants near FOXE1 are specifically

associated with Hashimoto thyroiditis and might be

associated with other thyroid conditions as well. These

results support a growing body of evidence that DNA-

linked EMRs might represent a powerful and cost-effec-

tive platform for future genomic investigation of many

phenotypes.

FOXE1 is an intronless gene. These variants near

FOXE1 have been previously associated with increased

risk for both papillary and follicular thyroid cancer.23

Of note, the rs965513 minor allele has been shown to

confer risk of thyroid cancer in this and prior studies,23

whereas the major allele confers risk to PH, as demon-

strated in this study. Some retrospective studies have sug-

gested an association between thyroiditis and thyroid
an Genetics 89, 529–542, October 7, 2011 535
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cancer, although the primary process is unclear.45,46 In

addition, higher TSH levels have been associated with

an increased incidence of thyroid cancer and advanced-

stage disease.47 Mutations in the coding region of

FOXE1 have also been associated with a rare form of syn-

dromic congenital hypothyroidism (Bamforth-Lazarus

syndrome: hypothyroidism, cleft palate, choanal atresia,

spiky hair [MIM 241850]),11 and cleft lip with or without

cleft palate and isolated cleft palate).48,49 These observa-

tional data from humans are consistent with model

systems showing that mice null for Foxe1 also exhibit

cleft palate and thyroid abnormalities.50 Moreover, prior

research has demonstrated that the FOXE1 variants iden-

tified in this study are also associated with lower serum

TSH levels in euthyroid individuals.23,51 FOXE1 also

has a polymorphic polyalanine stretch; variations in

the length of this polyalanine stretch have been shown

to result in variable transcription activity and risk of

congenital hypothyroidism resulting from thyroid

dysgenesis.52,53

FOXE1 is expressed during embryologic development

and plays an important role in morphogenesis of the

thyroid gland.54 Targeted disruption of Foxe1 in mice

leads to a sublingual thyroid or thyroid agenesis, and

patients with biallelic mutations are usually athyr-

eotic.55 Later in development and in adults, the FOXE1

gene product binds to response elements in the pro-

moter regions of the thyroglobulin (TG) and thyroid

peroxidase (TPO [MIM 606765]) genes and helps regulate

transcription of both proteins.56,57 The majority of PH

patients exhibit autoantibodies to thyroglobulin or

thyroid peroxidase,58 suggesting a possible link between a

change in regulation of TPO production and the forma-

tion of autoantibodies.

The strongest association in the PheWAS analysis was

hypothyroidism with an odds ratio nearly identical to

that of the curated case-control population in the primary

analysis, providing further validation of the PheWAS

method. PheWAS also supports an association with

thyroiditis, of which themost common form is Hashimoto

thyroiditis. The relatively more significant odds ratio for

those individuals with thyroiditis (0.58 versus 0.74)

suggests that the underlying pathology for FOXE1-related

risk of PH may be thyroiditis, especially when one

considers that the underlying cause of most PH is Hashi-

moto thyroiditis. Although other variants, such as CTLA4

and PTPN22, that confer risk for PH have been associated

with Graves disease,19 rs965513 was not. B-12-deficiency

anemia occurs more commonly in individuals and family

members with PH;59 however, the PheWAS associations

of rs965513 with B-12-deficiency anemia and PH were

inversely related, despite the fact that patients with hy-

pothyroidism were more likely to have B-12-deficiency

anemia in the eMERGE population (OR ¼ 4.8). Thus, these

results suggest that other genetic or clinical factors might

mediate the clinical and familial associations of PH with

B-12-deficiency anemia.
7, 2011



Figure 3. Manhattan Plot of Phenome-wide Association Study for rs965513
The PheWAS considered 866 phenotypes via single SNP tests of association (logistic regression) adjusted for age and sex. The red line
indicates Bonferroni significance for these associations, p ¼ 5.8 3 10�5. The blue line indicates p ¼ 0.05. For labeled associations, the
dot size varies by the magnitude of the odds ratio. For purposes of display, we normalized all odds ratios by taking the multiplicative
absolute value such that all values were greater than 1 (e.g., an odds ratio of 0.5 becomes 2).
The association of FOXE1 variants with at least two

structures derived from the embryonal foregut suggests

that disorders of other foregut-derived adult organs might

also display a genetic association with this locus. These

organs include the pharynx; mouth and palate; thymus

gland and related lymphoid tissue; esophagus, stomach,

hepatic cells, and bile cannaliculi; gall bladder and com-

mon bile duct; pancreatic acinar and island cells; and

upper duodenum.60 The association between these vari-

ants and thyroid cancer as well as, possibly, several cancers

of lymphoid and salivary glands suggests that FOXE1 plays

a role in the development and differentiation of these

tissues. Further investigation of the PheWAS findings high-

lighted in this analysis will require future study with care-

fully defined phenotypes.

Previous genetics studies of PH have included family-

based linkage and association studies.19 These studies

have implicated several chromosomal regions61 and

candidate genes,62 but none have localized a gene linked

to PH. Interestingly, the HLA region, which is a can-

didate region in light of the autoimmune basis of PH,
The Americ
has not been consistently linked to autoimmune thyroid

disease63 and was not associated with PH in this data set

(Table S5 in the Supplemental Data available online).

The lack of consistent findings across prior studies could

be due to a variety of factors, such as insufficient statistical

power, unaccounted-for environmental influences, ge-

netic heterogeneity, and phenotypic heterogeneity.

Indeed, case definitions differed greatly across studies.

Some studies included both Graves disease and autoim-

mune hypothyroidism in their case definition, whereas

others did not. The present study excluded Graves disease

from PH case definition, and the fact that Graves disease

was not associated with rs965513 by the PheWAS analysis

supports this exclusion. Previous candidate-gene studies

have shown associations with hypothyroidism and

PTPN22 rs2476601;17 this association was observed in

this analysis (controls: p ¼ 5.0 3 10�4, OR ¼ 1.29; non-

TSH controls: p ¼ 4.3 3 10�4, OR ¼ 1.30), albeit not at

genome-wide significance. CTLA4 rs3087243 has also

been associated with hypothyroidism,16 but no associa-

tions with CTLA4 were detected here; however, this SNP
an Journal of Human Genetics 89, 529–542, October 7, 2011 537



Table 5. Phenotypes Associated with rs965513 Near FOXE1 in PheWAS Analysis

Associated Phenotype n

Primary PheWAS PheWAS Adjusted for PH

Odds Ratio (95% CI) p Value Odds Ratio (95% CI) p Value

Hypothyroidism 2108 0.76 (0.70–0.81) 2.7 3 10�13 – –

Thyroiditis 185 0.58 (0.46–0.74) 1.4 3 10�5 0.52 (0.33–0.82) 4.8 3 10�3

Nontoxic nodular goiter 605 0.76 (0.67–0.86) 3.1 3 10�5 0.78 (0.66–0.93) 4.0 3 10�3

Nutritional deficiency anemiaa 332 1.41 (1.20–1.66) 3.7 3 10�5 1.44 (1.23–1.70) 9.7 3 10�6

Nontoxic multinodular goiter 319 0.69 (0.57–0.82) 3.9 3 10�5 0.75 (0.59–0.96) 0.02

Hashimoto’s thyroiditis 127 0.58 (0.43–0.77) 2.5 3 10�4 0.51 (0.27–0.97) 0.04

Abnormal thyroid function studies 295 0.71 (0.59–0.85) 2.8 3 10�4 0.77 (0.64–0.93) 7.0 3 10�3

Thyrotoxicosis 354 0.76 (0.64–0.90) 1.5 3 10�3 0.71 (0.53–0.95) 0.02

Deficiency of B-vitamins 393 1.26 (1.09–1.46) 2.1 3 10�3 1.30 (1.13–1.51) 3.9 3 10�4

Pernicious or B12-deficiency anemia 182 1.40 (1.13–1.74) 2.1 3 10�3 1.45 (1.17–1.80) 7.7 3 10�4

Atrial flutter 486 1.25 (1.08–1.45) 3.1 3 10�3 1.29 (1.12–1.50) 6.9 3 10�4

Hemorrhoids 2916 0.90 (0.84–0.97) 4.4 3 10�3 0.91 (0.85–0.98) 0.01

Simple goiter 389 0.80 (0.68–0.93) 5.1 3 10�3 0.94 (0.77–1.16) 0.57

Thyroid cancer 96 1.29 (0.96–1.72) 0.09 1.55 (1.16–2.09) 3.5 3 10�3

Iatrogenic hypothyroidismb 197 0.85 (0.69–1.06) 0.15 – –

Benign thyroid neoplasm 55 1.23 (0.84–1.81) 0.29 1.36 (0.93–1.99) 0.11

Graves disease 106 1.03 (0.78–1.38) 0.82 0.86 (0.44–1.67) 0.65

All associations with p< 53 10�3, as well as other thyroid-related phenotypes, are shown. Bonferroni significance for these associations are p¼ 0.05/866¼ 5.83
10�5.
a Includes B12, folate, and protein-deficiency anemias as well as other unspecified nutritional anemias. It excludes iron-deficiency anemia.
b Includes hypothyroidism resulting from surgery or radioiodine ablation.
and others in strong LD with it are not assayed on the

Illumina 660-W BeadChip.

The results of this study demonstrate the successful reuse

of EMR-linked genotype data as a discovery resource. This

approach could support investigation of many diseases

because individuals commonly experience many clinically

important health conditions over the course of their

lifetime. As the number of EMR-linked DNA biobanks

increase, the possibility for numerous in silico genetic

analyses also increases. The EMR contains a longitudinal

record of disease, response to treatment, and evolution of

care—all possible targets for future genomic and pharma-

cogenomic association studies. Moreover, as EMRs accrue

additional phenotypic information through more wide-

spread adoption and use in routine clinical care, the utility

of such resources will grow.

A rate-limiting step toward EMR-based genetic associa-

tion studies is identification of relevant case and control

populations. Often, this involves either manual review of

patient charts or creation of phenotype algorithms that

incorporate a combination of techniques such as queries

of billing code data, laboratory values, and natural

language processing to interrogate data found in clinical

notes. The phenotype selection logic developed at one

site was successfully deployed with similar performance
538 The American Journal of Human Genetics 89, 529–542, October
at five different sites with different EMR systems. One

site, the Mayo Clinic, noted a lower positive predictive

value for PH case identification. Algorithm classification

errors largely resulted from exclusionary events predating

electronic records (e.g., thyroidectomy in the 1940s) or

from events occurring at outside medical facilities (e.g.,

military personnel treated at the VA). More advanced

application of natural language processing might im-

prove the ability to detect such non-coded data. Devel-

oping libraries of phenotype selection algorithms is a

goal of the eMERGE network; a repository of phenotype

selection algorithms is available online (see Web

Resources).

Several limitations of this study deserve comment.

Application of phenotype selection logic requires robust

EMR systems capable of efficient data querying so that

cohorts of patients matching specific criteria can be identi-

fied. Although our specific phenotype selection logic per-

formed well for PH at these five sites, similar efforts will

be needed if new selection logics uniquely suited for the

study of other traits are to be developed. Our ascertain-

ment and evaluation of phenotype characterization for

cases and controls was limited to information available

in the medical record; thus, some of our patients might

have secondary causes for hypothyroidism, but these
7, 2011



might not have been recognized by their treating physi-

cians. Given that PH accounts for the vast majority of

hypothyroid cases, we suspect that this misclassification

bias is low. Although we asked reviewers validating our

algorithm to exclude patients having only subclinical

hypothyroidism from our analysis, it is possible that

some of these patients had subclinical hypothyroidism

instead of overt PH. However, patients with subclinical

hypothyroidism often develop overt PH, especially in the

absence of secondary causes (e.g., radiation exposure)

specifically excluded in this study.64,65 Although we did

not have formal iodine measurement available in our

patients, the United States has supplemented dietary

iodine intake through iodinated salt since 1920, making

iodine-related hypothyroidism rare.66,67 Finally, our repli-

cation set was about a decade younger than the discovery

set. However, because all control subjects had normal

TSH values and absence of thyroid replacement medica-

tions in their medication lists, we believe that false-

negative controls were rare.

In summary, this study demonstrates several notable

findings. First, the study identifies and replicates variants

near FOXE1 as genetic risk factors for PH. Second, it quan-

tifies the portability of automated selection logic applied

across five health centers with heterogeneous data models,

EMR systems, and local practice patterns. Third, this study

demonstrates the utility of EMR data for finding multiple

clinically relevant phenotypes, based on the co-occurrence

of multiple diseases in individuals. Finally, this study

shows the potential for discovery of previously unknown

genetic associations through the reuse of existing genomic

data linked to clinical findings recorded in EMRs.
Supplemental Data
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based study of chronic autoimmune hypothyroidism in

Danish twins. J. Clin. Endocrinol. Metab. 85, 536–539.

15. Hansen, P.S., Brix, T.H., Iachine, I., Kyvik, K.O., and Hegedüs,
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