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a b s t r a c t

G protein-coupled receptors (GPCRs) mediate many important physiological functions and are consid-
ered as one of the most successful therapeutic target classes for a wide spectrum of diseases. Drug
discovery projects generally benefit from a broad range of experimental approaches for screening
compound libraries and for the characterization of binding modes of drug candidates. Owing to the
difficulties in solubilizing and purifying GPCRs, assay formats have been so far mainly limited to cell-
based functional assays and radioligand binding assays. In this study, we used fluorescence cross-
correlation spectroscopy (FCCS) to analyze the interaction of detergent-solubilized receptors to various
types of GPCR ligands: endogenous peptides, small molecules, and a large surrogate antagonist repre-
sented by a blocking monoclonal antibody. Our work demonstrates the suitability of the homogeneous
and time-resolved FCCS assay format for a robust, high-throughput determination of receptoreligand
binding affinities and kinetic rate constants for various therapeutically relevant GPCRs.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
G protein-coupled receptors (GPCRs), also known as seven-
transmembrane receptors, are the largest family of cell surface re-
ceptors. They are activated by a wide variety of stimulants,
including light odorant molecules, peptide and nonpeptide neu-
rotransmitters, hormones, growth factors, and lipids. GPCRs control
a wide variety of physiological processes, including sensory trans-
duction, cellecell communication, neuronal transmission, and
hormonal signaling [1]. Due to a high potential for GPCR-specific
therapeutic interventions using small molecules or peptidomi-
metics, GPCRs became the largest family of drug targets. These
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receptors are the target of 40e50% of the current therapeutic
agents on the market. Therefore, development of GPCR assays and
ligand screening remain the major focus of drug discovery research
worldwide [2e9].

Currently available assays to assess GPCReligand binding af-
finity, specificity, and potency fall into two main categories: (i)
assays where binding of radioactively or fluorescently labeled li-
gands directly to a specific GPCR is measured [10e15] and (ii) cell-
based functional assays that measure downstream effects of
ligandereceptor interaction (numerous events in the signal trans-
duction cascade have been used for this purpose, e.g., intracellular
accumulation of inositol 1,4,5-triphosphate or cAMP and release of
Ca2þ ions into the cytosol) [16]. An ideal ligand binding assay
should be simple, robust, homogeneous and hence amenable to
automation, and it should allow acquisition of time-resolved data
for determination of kinetic parameters.

For determination of GPCReligand affinities, fluorescence cor-
relation spectroscopy (FCS) and fluorescence cross-correlation
spectroscopy (FCCS) are attractive alternatives to other homoge-
neous fluorescent techniques such as time-resolved fluorescence
resonance energy transfer (TReFRET) [4,17]. In FCS, information on
the mobility and concentration of molecules is obtained from an
analysis of fluorescence fluctuations, caused by diffusion of
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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fluorescently labeled molecules through a subfemtoliter confocal
detection volume. In FCCS, concerted fluorescence fluctuations,
caused by co-diffusion of two spectrally well-separated fluo-
rophores, are detected [18]. Contrary to FRET, the signal in FCCS
does not depend on the distance of fluorophores. Therefore, there
are no constraints on the use of a flexible linker between a fluo-
rophore and a GPCR-specific probe. With sensitivity in the sub-
nanomolar range, FCS has become an important tool to address
molecular dynamics and interactions in cells and subcellular
compartments [19].

Herewe report the first successful application of FCCS for a high-
throughput determination of affinity between recombinantly
expressed GPCRs and their ligands (agonists or antagonists). Equi-
librium thermodynamic parameters (KD/KI values) were deter-
mined for three distinct examples of human GPCRs: neurotensin
receptor type 1 (NTR1), b2-adrenergic receptor (ADRB2), and C-X-C
chemokine receptor type 4 (CXCR4). Furthermore, in this study we
show examples that also kinetic parameters (kon/koff) for a fluo-
rescently labeled probe, as well as for unlabeled compounds
(henceforth “competitors”), can be readily determined by FCCS.
FCCS used in the presented format is simple, reliable, and rapid. It
requires minimal sample preparation and minute sample volumes,
and it can be easily automated.

Materials and methods

Materials

Reagents were obtained from Anatrace (Maumee, OH, USA),
AppliChem (Darmstadt, Germany), Carl Roth (Karlsruhe, Germany),
or SigmaeAldrich (St. Louis, MO, USA) unless stated otherwise.
Unlabeled compounds were purchased from Tocris (Bristol, UK) or
Abcam (Cambridge, UK) with the exception of (�)-norepinephrine
and SR48692 (SigmaeAldrich), SR 142948A (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA), neurotensin (8e13) (NT; AnaSpec/
MoBiTec, Goettingen, Germany), and TC 14012 (Cayman Chemical,
Ann Arbor, MI, USA). Anti-CXCR4monoclonal antibody clone 44708
(murine IgG2A; cat. no. MAB171) was acquired from R&D Systems
(Minneapolis, MN, USA). Unlabeled recombinant hCXCL12/SDF-1a
was obtained as a gift from Annette Beck-Sickinger (Institut für
Biochemie, Universit€at Leipzig, Germany). Human synthetic stro-
mal cell-derived factor 1 (SDF1a) labeled specifically on residue
Lys64 with AlexaFluor 647 (henceforth “SDF1a-AF647”; cat. no.
CAF-11) was acquired from Almac (Craigavon, UK).

Human GPCR variants

The open reading frame (ORF) of selected wild-type GPCRs was
polymerase chain reaction (PCR) amplified from a plasmid DNA
encoding a particular receptor and subcloned into a mammalian
expression vector pCGTO in frame with a C-terminal fusion partner
(GFP) and a short linker (KLGGG) in between the GPCR and GFP. The
GFP used in this study is an enhanced GFP with two mutations
(Phe64Leu and Ser65Thr) [20] and was subcloned into the vector
pCGTO from pEGFP-N1 (Clontech, Mountain View, CA, USA). In-
ternal restriction sites (e.g., EcoRI and HindIII) that could interfere
with the plasmid constructionwere removed from the ORFs by PCR,
with reverse complementary primer pairs introducing the required
silent mutations. The cloned GPCRs were human b2 adrenergic
receptor (UniProt ID: P07550), human neurotensin receptor type 1
(UniProt ID: P30989), and human C-X-C chemokine receptor type 4
(UniProt ID: P61073). Based on previously reported engineered
variants of rat NTR1 with substantially improved thermostability in
detergents [21,22], we also constructed mutated variants of human
NTR1: single mutants Ala85Leu, Ile252Ala, and Phe353Val and
triple mutant “TTM,” which combines the three single mutations
A85L1.54, I252A5.54, and F353V7.42.

Fluorescent labeling of neurotensin (8e13)

The hexapeptide neurotensin (8e13) is an active fragment of
neurotensin, and it has been shown that the modification of neu-
rotensin (8e13) (henceforth “NT”) on its N terminus does not affect
its affinity to NTR1 [23]. NT was coupled via its primary NH2 group
to DY-647-PEG4 as follows. First, 300 nmol (245 mg) of NT and
198 nmol (200 mg) of DY-647-NHS ester carrying a 4-polyethylene
glycol spacer (PEG4; Dyomics, Jena, Germany) were dissolved and
mixed in a total of 80 ml dimethyl sulfoxide (DMSO). On the addition
of 0.7 ml N,N-diisopropylethylamine, the mixture was incubated in
the dark at room temperature (RT) for 20 h. The reaction was
stopped by the addition of 160 ml dH2O, and the conjugate was
isolated by reversed-phase high-performance liquid chromatog-
raphy (HP-1100, Agilent, Palo Alto, CA, USA) using a linear gradient
of water (containing 0.05% trifluoroacetic acid)eacetonitrile (con-
taining 0.08% trifluoroacetic acid). Labeled NT (henceforth “NT-
DY647”) was lyophilized, dissolved in DMSO, and stored at �20 �C
prior to use in a binding assay. The identity of the conjugate was
verified by mass spectroscopic analysis.

Labeling of anti-CXCR4 monoclonal antibody

Themonoclonal antibody anti-CXCR4 (clone 44708) was labeled
with PEG4-DY-647-NHS ester. The reactive dye (4 mg/ml in dime-
thylformamide) was added to the solution of the antibody (2 mg/
ml) in sodium bicarbonate buffer (0.1 M, pH 8.3) and incubated at
RT in the dark with gentle agitation for 1 h. Unconjugated dye was
separated from the labeled protein by size exclusion chromatog-
raphy using Zetadex-25 fine resin (emp Biotech, Berlin, Germany)
and phosphate-buffered saline (PBS) as eluent. A degree of labeling
(DOL) of 1.6 was determined spectrophotometrically using extinc-
tion coefficients of 203,000 and 250,000 M�1 cm�1 for a typical
antibody in the IgG format at 280 nm and the dye at 653 nm,
respectively. Due to the absorbance of the dye DY-647 at 280 nm, a
correction factor of 0.031 suggested by the manufacturer was
applied for the calculation of the DOL. The labeled antibody was
flash-frozen in liquid nitrogen and stored at �80 �C.

Labeling of alprenolol

Briefly, the allyl moiety of alprenolol was exploited to introduce
a cysteamine linker using a thio-ene reaction. The resulting inter-
mediate product (amine) was reacted with Cy5-NHS ester to yield
the desired fluorescent conjugate alprenolol-Cy5. Details of the
synthesis, purification, and characterization of alprenolol-Cy5 are
described in the online supplementary material.

Cell culture and receptor expression

Human embryonic kidney HEK293 cells were cultured in Dul-
becco's modified Eagle's medium with high glucose (cat. no. BE12-
604F; Lonza, Basel, Switzerland) in the presence of 10% (v/v) fetal
calf serum (cat. no. S0115; Biochrom, Berlin, Germany) and 5% CO2
at 37 �C in a humidified incubator.

Typically, HEK293 cells (5 � 106) were transfected with 8 mg of
plasmids encoding GFP-tagged GPCR using the Nanofectin trans-
fection kit (cat. no. Q051-005; PAA, C€olbe, Austria). Transfected cells
were investigated microscopically or harvested 24 h after the
transfection. Alternatively, the transfected cells were selected using
zeocin (cat. no. R25001; Life Technologies) at a concentration of
0.1 mg/ml over a period of several weeks to generate stably
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transfected cell lines. During the harvest, the cells were washed
twice with PBS, pelleted for 5 min at 1100g, and then frozen
at �80 �C.

Membrane preparation and receptor solubilization

A cell pellet corresponding to approximately 2 � 107 cells har-
vested from one 14.5-cm dish was resuspended in 1 ml of ice-cold
TBS (50 mM TriseHCl [pH 7.4] and 150 mM NaCl) supplemented
with protease inhibitor cocktail (Complete; Roche, Basel,
Switzerland) (henceforth “TBS/PI”) and broken by sonication on ice
(10 cycles: 15-s probe sonication at 35 W, 50% of the time, 15-s
pauses in between) using an Ultrasonic homogenizer SONOPULS
HD 2070 (Bandelin, Berlin, Germany). Cell debris was removed by
centrifugation for 5 min at 1100 g at 4 �C, and the supernatant was
centrifuged for 1 h at 21,000 g at 4 �C. The resulting pellet con-
taining cellular membranes was then rinsed with 500 ml of TBS/PI
and resuspended in 500 ml of TBS/PI by using a Dounce homoge-
nizer (tight pestle). This suspension is denoted as “membrane
preparation.” Protein content in the membrane preparation was
determined using a BCA (bicinchoninic acid) Protein Assay Kit
(Thermo Scientific, Rockford, IL, USA), and aliquots of the mem-
brane preparation were flash-frozen in liquid N2 for long-term
storage at �80 �C.

For GPCR solubilization, the membrane preparation was diluted
with TBS/PI to a concentration of 1 mg/ml (total membrane pro-
tein), and 20-fold concentrated single detergent or detergent
mixture was added. For NTR1 and CXCR4, the highest activity was
obtained with the mixture of detergents DDM (n-dodecyl b-D-
maltoside)/CHAPS/CHS (cholesteryl hemisuccinate) at their final
concentrations of 0.25/0.5/0.1% (w/v), respectively. For ADRB2, the
best results were obtained with DDM at a final concentration of
0.5% (w/v). The membrane preparation was solubilized for 1 h at
4 �C with end-over-end rotation. Insoluble material was pelleted by
centrifugation typically for 1 h at 100,000 g at 4 �C. Supernatant
containing solubilized GPCRs was used in ligand binding assays,
which were carried out at RT unless stated otherwise.

Live cell imaging/confocal microscopy

Confocal laser scanning microscopy was conducted on an
LSM510 confocal microscope connected to an Axiovert 200M
equipped with a C-Apochromat 40 � water immersion objective,
NA 1.2 (Carl Zeiss, Jena, Germany), in multitrack mode. Fluo-
rophores AlexaFluor 647 (AF647), Cy5, and DY-647 were excited
using a 633-nm heliumeneon laser, whereas the 488-nm laser line
of an argoneion laser was employed to excite the enhanced GFP.

The emitted fluorescent light was directed over a main dichroic
beam splitter HFT UV/488/543/633 and then separated by a series
of secondary dichroic beam splitters; light at longer wavelengths
that passed through the NFT 635 VIS dichroic beam splitter and a
650LP longpass filter was detected by the photomultiplier tube
(PMT) for the red (Cy5) channel, whereas light at shorter wave-
lengths that was redirected at the NFT 635 VIS and NFT 545 dichroic
beam splitters and passed through a BP505-550 bandpass filter was
collected at the PMT detector for the green (GFP) channel.

Fluorescence cross-correlation spectroscopy

FCCS measurements with samples at equilibrium (typically with
a volume of 20 ml) were performed with a ConfoCor2 FCS unit
connected to an Axiovert 200M equipped with a C-Apochromat
40xwater immersion lens, NA 1.2 (Carl Zeiss), whereas FCCS data for
binding kinetics were acquired on an Insight plate reader (Evotec
Technologies, Hamburg, Germany) fitted with a U-Apo300
40xwater immersion lens, NA 1.15 (Olympus, Germany). Both sys-
tems used a 633-nm heliumeneon laser for excitation of Cy5,
AF647, and DY647 dyes and the 488-nm laser line of an argoneion
laser to excite the enhanced GFP. At the ConfoCor2 instrument, the
emitted fluorescent light was directed over an HFT 488/633 and an
NFT 610 beam splitter to the avalanche photodiode (APD). Fluo-
rescence in the green (GFP) channel was detected using a BP500-
550 bandpass filter, whereas fluorescence in the red (Cy5) chan-
nel was detected using an LP650 longpass filter. At the Insight in-
strument, the emitted light was split into two APD channels
equipped with an HQ 535/50 bandpass filter for green fluorescence
and a 670DF40 bandpass filter for red fluorescence. The fitting of
the autocorrelation functions and data analysis were carried out
either in the ConfoCor2 software or with FCS þ plus (Evotec
Technologies software). Data acquisition for samples in equilibrium
typically took 20e60 s per sample. The kinetics was monitored by
FCCS over the course of 20e60 min, during which the single
measurements were taken for 5e20 s depending on the rate of the
complex formation.
Equilibrium binding models

To determine the total active receptor level (RT) of a solubilized
GPCR and the equilibrium dissociation constant (KD) of its respec-
tive fluorescent probe (L) from the saturation binding FCCS data, we
used a two-state single-site binding model. Data from binding as-
says with NTR1, ADRB2, or CXCR4 for which labeled small mole-
cules or peptides were available were fitted by using Eq. (1) in order
to obtain best estimates of RT and KD:

C ¼ RTLF
KD þ LF

¼
RTLTp

�
tf
�

KD þ LTp
�
tf
� ; (1)

where C is concentration of receptorefluorescent probe complexes
calculated from the number of cross-correlating particles. LT and LF
were derived from autocorrelation function for Cy5 signal and
relate to concentrations of total and free labeled fluorescent probe,
respectively. p(tf) is the population of free (i.e., fast-moving) fluo-
rescent probe. tf is diffusion time of free fluorescent probe and was
obtained from one-component fit of Cy5 signal acquired in the
presence of a competitor in a large molar excess. p(tf) value was
obtained from two-component fit of Cy5 signal acquired for a
fluorescent probe applying autocorrelation function with a fixed
diffusion time tf.

FCCS data from saturation binding assays where a labeled spe-
cific antibody in IgG format was used as a surrogate fluorescent
probe for CXCR4 (IgG is a relatively large molecule with a diffusion
time similar to that of the solubilized receptor) were fitted by
applying Eq. (2), which does not require prior determination of p(tf)
or LF:

C ¼ RT þ LT þ KD �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRT þ LT þ KDÞ2 � 4RTLT

q
2

: (2)

The advantage of fitting FCCS data from equilibrium saturation
binding assays by applying Eq. (1) is that potential off-target
binding of the labeled ligand cannot skew the KD determination.

IC50 values were determined from competition binding data by
using a previously described four-parameter logistic function (see
Eq. (1) in Ref. [24]). The equilibrium dissociation constant for a
competitor (inhibition constant KI) was calculated by using by the
ChengePrusoff equation [25].
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Kinetic model for binding of a fluorescent probe

Standard one binding site model for reversible interaction be-
tween free receptor (RF) and free fluorescent probe (LF) is defined in
Eq. (3), where k1 (or kon) is the association rate constant and k2 (or
koff) is the dissociation rate constant:

RF þ LF
k1
#
k2

C: (3)

During kinetic measurements, we routinely applied fluorescent
probes at � 10 M excess over RT and, thus, assumed only negligible
changes in concentration of LF during the binding of fluorescent
probe to its cognate receptor (LF z LT). Pseudo first-order reaction
rates kobs were determined for a concentration series of a fluores-
cent probe (LT) at a constant receptor concentration (RT) by fitting
the concentration of complexes (C) to monoexponential kinetic Eq.
(4) adapted from Ref. [26]:

Ct ¼ Ceq
�
1� e�kobs t

�
; (4)

where Ceq is the concentration of complexes at equilibrium. Rate
constants k1 and k2 were obtained from the plot of kobs values
against the corresponding LT values applying linear Eq. (5):

kobs ¼ LT k1 þ k2: (5)
Kinetic model for binding of unlabeled competitor

The kinetic parameters for an unlabeled competitor (I) were
calculated based on the theoretical model developed by Motulsky
and Mahan [27]. Following this model, a fluorescent probe with
known binding kinetics (i.e., rate constants k1 and k2 were deter-
mined in preliminary experiments) was co-incubated with a
competitor. The competition binding kinetics of the fluorescent
probe is dependent on both the concentration and kinetic param-
eters of the competitor [27]; therefore, the experimentally derived
rate of specific ligand binding can be fitted to provide the associ-
ation and dissociation rates of the unlabeled competitor. In this
work, a simple model of competition kinetics was employed,
defined by standard Eqs. (3) and (6):

RF þ IF
k3
#
k4

RI; (6)

where RF, IF, and RI are the concentrations of free receptor, free
competitor, and the receptorecompetitor complex, respectively.
Assuming that only a small fraction (<10%) of fluorescent probe and
competitor binds to receptors (i.e., LFz LT and IFz IT), the following
set of equations (Eqs. (7)e(12)) can be derived from standard Eqs.
(3) and (6) in order to fit RT and rate constants k3 and k4:

KA ¼ k1LT$10
�9 þ k2 (7)

KB ¼ k3IT$10
�9 þ k4 (8)

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKA � KBÞ2 þ 4k1k3LTIT$10�18

q
(9)

KF ¼ 0:5 ðKA þ KB þ SÞ (10)
KS ¼ 0:5 ðKA þ KB � SÞ (11)

Ct ¼RT
k1LT$10�9

KF�KS

�
k4ðKF�KSÞ

KFKS
þðk4�KFÞ

KF
e�KFt �ðk4�KSÞ

KS
e�KSt

�
:

(12)

Concentrations of LT, IT, and RT are in units of nM, k1 is in units of
M�1 min�1, and k2 is in units of min�1. Association rate constant k3
(M�1 min�1) and dissociation rate constant k4 (min�1) for the
competitor were calculated by fitting the data from the competition
kinetic experiments, Ct versus time t, by applying Eqs. (7)e(12).
Furthermore, prior to nonlinear regression, obvious outliers were
removed from datasets.

Results

Preparation of fluorescent probes and their characterization by live
cell imaging

To evaluate a general applicability of FCCS for the analysis of
GPCReligand interactions, we decided to test fluorescently labeled
representative examples of four distinct probes: (i) a small organic
molecule (antagonist alprenolol), (ii) a short peptide (endogenous
agonist NT), (iii) a cytokine (endogenous agonist SDF1a), and (iv) a
monoclonal antibody in the IgG format (antagonistic anti-CXCR4
antibody). The latter example (a blocking antibody) can be used
as a surrogate probe in the case where endogenous ligands are
unknown (orphan GPCRs) or where known ligands do not possess a
suitable reactive group for coupling to a fluorescent dye. The GPCR
targets of the selected compounds are pharmaceutically relevant
GPCRs of the class A family: NT is an agonist of neurotensin receptor
type 1 involved in hyperthermia, pain, schizophrenia, Parkinson
disease, and cancer; SDF1a and the anti-CXCR4 monoclonal anti-
body recognize an active form of human C-X-C chemokine receptor
type 4, an extensively validated drug target in cancer and AIDS; and
alprenolol is an antagonist of b2-adrenergic receptor, which plays a
crucial role in hypertension and cardiac arrhythmia.

The selected probes were labeled with Cy5, AF647, or DY-647, all
of which are far-red fluorophores emitting in the spectral range
above 650 nm. The fluorescent conjugates are referred to as
“fluorescent probes” in the text below.

The selected GPCRs were recombinantly expressed with the C-
terminal GFP fusion in stably transfected HEK293 cells. By choosing
the enhanced GFP as a fluorescent tag for GPCRs, we ensured a
minimal spectral overlap with fluorescence emission from the
labeled probes. In each case, the GFP signal was present mainly in
the plasmamembrane, and only a minor population of the receptor
fusions resided in internal cellular compartments (endoplasmic
reticulum/Golgi apparatus/endosomes) (Fig. 1; see also Fig. S1 in
supplementary material). In general, GPCR localization in the
plasma membrane correlates well with a proper GPCR folding,
translocation, and activity [28,29].

When we added the fluorescent probes in two-digit nanomolar
concentrations into the cell culture medium, we observed a strong
overlap between the GFP and Cy5/AF647/DY-647 signals at the
plasma membrane, which indicated that both the GFP-tagged re-
ceptors and the fluorescent probes are functional. The cell surface
staining with the fluorescent probes was highly target specific, and
it was completely prevented in the presence of receptor-specific
competitors (Fig. 1 and Fig. S1). The fluorescently labeled antago-
nist alprenolol and the antagonistic anti-CXCR4 MAb remained
localized exclusively on the plasma membrane in cells expressing
ADRB2 and CXCR4, respectively, even after a 60-min incubation of
the cells at RT (Fig. S1A and S1B). In contrast, the DY-647-labeled



Fig.1. Live cell imaging of NTR1-GFP stably expressed in HEK293 cells and binding of NT-DY647. Images of the NTR1-GFP fusion (green, left panel), mainly localized in the plasma
membrane, and the fluorescent probe NT-DY647 (red, middle panel) were obtained by confocal microscopy. Representative images are shown. (A) Co-localization of both NTR1-GFP
and NT-DY647 (yellow, right panel) on the cell surface were observed at 2 min following the addition of the fluorescent probe. (B) After 40 min incubation of NT-DY647, NTR1-GFP
was partially internalized as well as the fluorescent probe. (C) HEK293 cells expressing NTR1-GFP were incubated with NT-DY647 in the presence of 10 mM unlabeled NT. No NT-
DY647 binding was observed. (D) HEK293 cells expressing an irrelevant GPCR-GFP fusion (CXCR4-GFP) were incubated with NT-DY647. No co-localization was observed.
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agonist NT was rapidly internalized into the NTR1-expressing cells
within 10e20 min under identical conditions (Fig. 1). We also
observed internalization of the labeled SDF1a into HEK293 cells
expressing CXCR4 (Fig. S1C); however, this process was not as rapid
and complete as in the case of the labeled NT internalized into the
cells expressing NTR1. Internalization of receptoreligand com-
plexes is a common event observed on agonist binding to its
cognate GPCR [3]. We inferred from these data that the three GFP-
fused GPCR targets and their cognate fluorescent probes are func-
tional and hence can be applied in FCCS.

Solubilization of GPCRs in a functional form

FCCS allows the detection and real-time monitoring of inter-
molecular interactions directly in living cells, in crude cell lysates,
or in preparations with purified or partially enriched targets.
Although FCS-based detection of ligandereceptor interactions on
the plasma membrane of intact cells has been reported for several
GPCRs [30e38], this application is technically demanding and time-
consuming and is not amenable to high-throughput screening
(HTS). However, FCS/FCCS can be run in HTS format with mono-
disperse solutions containing soluble or solubilized targets. In the
case of hydrophobic integral membrane proteins, such as GPCRs,
solutions containing native proteins can be prepared on solubili-
zation of whole cells or isolated membranes by using detergents
[39].

In initial experiments, we set out to solubilize NTR1 in a func-
tional form by using DDM/CHAPS/CHS as a detergent mixture that
was initially used by Tucker and Grisshammer for the solubilization
of NTR1 from Escherichia coli membranes [40]. This detergent
mixture has also been used successfully by others for the selection
of stabilized engineered NTR1 variants [21,41] as well as for the
selection of specific NTR1 binders from the DARPin library by using
ribosome display [42]. Because it has been reported that wild-type
NTR1 is unstable at RT, we tested in parallel mutated variants of
human NTR1 that were shown to have substantially higher stability
in detergents: single mutants Ala85Leu, Ile252Ala, and Phe353Val
and a triple mutant TTM that combines these three single
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mutations [22,43]. Indeed, we observed by FCCS that wild-type
NTR1 is highly unstable at RT, whereas the mutated NTR1 variant
with three mutations A85L/I252A/F353V as well as the single
mutant NTR1-A85L exhibited high stability in the solubilized state;
although very little ligand binding was observed for the WT re-
ceptor at RT, the ability of the two mutants (TTM and A85L) to
specifically bind the labeled ligand NT-DY647 at a concentration of
20 nM was minimally affected on incubation in detergent for 1 h at
RT. The ligand binding to mutants I252A and F353V was quite low
at RT, which is probably due to lower stability of these two single
mutants in comparison with the NTR1 variants TTM and A85L
(Fig. S2). In Fig. S3A and Table S1 in the supplementary material, we
show for solubilized stabilized mutant NTR1-A85L an example of
FCCS data transformed using autocorrelation and cross-correlation
functions. The data acquired with the labeled ligand and active
receptor applied at their approximately stoichiometric concentra-
tions clearly indicate that the binding of NT-DY647 to detergent-
solubilized NTR1-A85L is (i) accompanied by a shift in diffusion
time of NT-DY647 due to a substantial difference in molecular
weight of free and receptor-bound NT-DY647 and (ii) completely
inhibited in the presence of large excess of unlabeled NT (10 mM).

We solubilized ADRB2 in the functional form with DDM alone,
which was previously applied by Kobilka and coworkers for solu-
bilization, purification, and crystallization of this receptor [44,45].
Similarly as for NTR1-A85L, the FCCS data clearly indicate that the
binding of the fluorescent probe (alprenolol-Cy5) to DDM-
solubilized ADRB2 was (i) accompanied by a shift in diffusion
time of labeled alprenolol due to a substantial difference in mo-
lecular weight of free and receptor-bound alprenolol-Cy5 and (ii)
completely inhibited in the presence of 10 mM unlabeled alprenolol
(Fig. S3B and Table S1).

The FCS analysis of diffusion time of the solubilized receptor
indicated monodispersity for solubilized wild-type ADRB2 as well
as for the solubilized stabilized NTR1 variant A85L; only a single
population with diffusion time of approximately
200e250 ms (derived from one-component fit; Table S1) was
identified for these two solubilized GPCRs.

CXCR4 was successfully solubilized with the detergent mixture
DDM/CHAPS/CHS. Specific interaction with solubilized CXCR4 was
clearly detected by FCCS for both fluorescent probes: SDF1a -AF647
and anti-CXCR4 MAb-DY647. In Fig. S3C and S3D, we show exam-
ples of FCCS data transformed using autocorrelation and cross-
correlation functions for the two fluorescent probes of CXCR4;
the binding of the fluorescent probes to detergent-solubilized
CXCR4 was accompanied by a clear shift in diffusion time of the
fluorescent probes (Fig. S3C and S3D and Table S1). Intriguingly,
binding of anti-CXCR4 MAb-DY647 to CXCR4 could not be
completely inhibited in the presence of 10 mM unlabeled small
molecule IT1t (Fig. S3D). The residual binding of anti-CXCR4 MAb-
DY647 seen in the presence of competitor was most likely due to a
partially non-overlapping binding site of anti-CXCR4 MAb and IT1t
given that no cross-correlation was detected on incubation of anti-
CXCR4 MAb-DY647 with an irrelevant GFP-fused GPCR solubilized
under the same conditions as CXCR4 (Fig. S3D).

The FCS analysis of diffusion time of solubilized CXCR4 indicated
two receptor populations: a major one (~80%) with diffusion time t1
of approximately 280 ms and a minor one (~20%) of receptor ag-
gregates with an approximately 5-fold slower diffusion time t2
(diffusion times t1 and t2 were derived from two-component fit;
Table S1).

Besides diffusion time, FCS analysis also provides information
about concentration (particle count) and the molecular brightness
of the fluorophores/fluorescently labeled molecules [46]. Molecular
brightness constitutes the fractional contribution of each particle to
the total fluorescence and can be used to study oligomerization or
receptoreligand stoichiometry [32,47]. Analyzing the molecular
brightness and particle count for the tested fluorescent probes
alprenolol-Cy5, NT-DY647, and SDF1a-AF647 in the presence of
their cognate solubilized GPCRs, the FCS data did not reveal any
difference in these parameters between the receptoreligand
binding reactions carried out in the presence or absence of com-
petitors (data not shown; experimental conditions are described in
the legend of Table S1), indicating the stoichiometry of the recep-
toreligand binding 1:1 where we refer to a receptor molecule as a
solubilized GPCR-GFP fusion in a detergent micelle.

The analysis of the molecular brightness and particle count for
the fluorescently labeled anti-CXCR4 MAb tested under the
experimental conditions described in the legend of Table S1
revealed a decrease of approximately 30% in the particle count
and an increase of approximately 30% in molecular brightness of
anti-CXCR4 MAb-DY647 in the presence of solubilized CXCR4 (data
not shown), which can be reconciled with the 2:1 binding stoi-
chiometry for solubilized CXCR4 bound to an anti-CXCR4 bivalent
monoclonal antibody (IgG format) applied in a sub-stoichiometric
amount.

Determination of equilibrium binding constants for solubilized
GPCRs

Following demonstration of specificity of ligand binding and the
optimization of solubilization conditions, we determined ligand
binding affinities for the selected GPCRs. Because wild-type NTR1
was unstable at RT, we conducted further ligand binding experi-
ments with NTR1-WTat 4 �C. The stabilized NTR1 variants TTM and
A85L, as well as wild-type ADRB2 and CXCR4, were incubated with
tested compounds at RT.

First, we performed saturation binding assays to determine the
equilibrium dissociation constants (KD) for the interaction between
the solubilized GPCRs and their fluorescent probes. Data from the
equilibrium saturation binding assays are shown in Fig. 2, and
calculated KD values are summarized in Table 1. Intriguingly, the
determined affinity of NTR1 variants for the labeled NT increased in
rank: WT < A85L < TTM, which correlates with the observed dif-
ferences in the stability of solubilized NTR1 variants (see Fig. S2 in
supplementary material).

In the next step, we determined in competition binding assays
inhibition constants (KI) for several commercially available ligands
of ADRB2, NTR1, and CXCR4. Noteworthy, in our competition
binding assays we worked with solubilized receptors diluted to the
concentration of approximately 3e5 nM and with fluorescent
probes at concentrations slightly above their KD values. We ensured
by these measures that the depletion of fluorescent probes due to
their binding to a specific target was below 10% in order to fulfill the
criteria of the ChengePrusoff equation (LF z LT).

The KI values determined for a series of unlabeled ADBR2 li-
gands alprenolol, propranolol, CGP 12177, and ICI 118551 ranged
from 6 to 16 nM, whereas the reported KI values determined by
other methods for these compoundswere up to 1 log lower (Table 2
and Fig. 3). The KI values for agonist norepinephrine (~30 mM) was
in very good agreement with previously published KI values
determined by other techniques (Table 2 and Fig. 3).

The KI values obtained with solubilized NTR1-WTor NTR1-A85L
for NTR1 ligands matched well with previously published KI values
determined by other techniques (Table 3). Intriguingly, compared
with the wild-type NTR1, the stabilized triple mutant NTR1-TTM
showed approximately 17-fold weaker affinity for antagonist SR
48692, although the affinities determined for agonist NT and
antagonist SR 142948 were similar between the two receptor var-
iants (Table 3). This finding is consistent with a previously pub-
lished study where a single mutation of Phe358 to Ala in rat NTR1



Fig.2. Equilibrium saturation binding assays with solubilized GPCRs and fluorescent probes. Membranes from HEK293 cells expressing a GPCR-GFP fusion were isolated and
solubilized as described in Materials and Methods. During the binding assays, solubilized receptors were incubated for 1e2 h at RT (or at 4 �C in the case of NTR1-WT) with
fluorescent probes at various concentrations: (A) NT-DY647 was used for NTR1 variants; (B) alprenolol-Cy5 was used for wild-type ADRB2; (C) SDF1a-AF647 and anti-CXCR4 MAb-
DY647 were used for wild-type CXCR4. Transformed FCCS data (concentration of receptoreligand complexes (C) were fitted with Eq. (1) for NTR1 variants and for ADRB2 or with Eq.
(2) for CXCR4.

Table 2
Determination of K values in equilibrium binding assays by FCCS for solubilized
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(corresponding to the position F353 in human NTR1; mutation
F353V is present in the TTM triple mutant) was reported to result in
approximately 5-fold lower affinity of the receptor for SR 48692
[48].

Both CXCR4-specific fluorescent probes (SDF1a-DY647 and the
anti-CXCR4 MAb-DY647) proved to be valuable; binding assays
using these fluorescent probes yielded for three different compet-
itors very similar KI values, which are also close to those reported in
the literature (Table 4).

Overall, when we compare our FCCS-based KI values with data
from radioligand binding assays reported in the literature, we find
good agreement with previously published data for all three tested
GPCRs (Tables 2e4).
Table 1
Determination of KD values in equilibrium binding assays by FCCS for selected sol-
ubilized GPCRs and various fluorescent probes.

GPCR Fluorescent probea KD
b

(nM)
Tc

NTR1-WT NT-DY647 17 ± 3 4 �C
NTR1-A85L NT-DY647 12 ± 2 RT
NTR1-TTM NT-DY647 1.7 ± 0.1 RT
ADRB2 Alprenolol-Cy5 13 ± 2 RT
CXCR4 SDF1a-AF647 26.2 ± 0.6 RT
CXCR4 anti-CXCR4 MAb-DY647 2.7 ± 0.8d RT

a Preparation of fluorescent probes is described in Materials and methods.
b KD values are expressed as means ± standard errors.
c T is temperature at which the binding assay was performed.
d Functional affinity (avidity) [63] considering the multivalent nature of the

fluorescent probe; labeled monovalent antibody in the IgG format.
Determination of binding kinetics using FCCS

Compounds with the same affinity (KD) but different associa-
tion and dissociation rates can have a very different biological
activity profile. Drug target residence time, which is the recip-
rocal of the dissociation rate constant (1/koff), has been found to
have a considerable impact on target selectivity and duration of
effect because typically a drug is efficacious only as long as it
binds to, and modulates the action of, its physiological target(s)
[49e52].
I

human ADRB2 by using alprenolol-Cy5 as fluorescent probe.

Competitor FCCSa Literature

(rac) Alprenolol 10 ± 4 nM 2e6 nMb

(rac) Propranolol 16 ± 7 nM 0.6e1.1 nMc

(�)-Norepinephrine 33 ± 2 mM 4e97 mMd

CGP 12177 6 ± 2 nM 0.4 nMe

(R-) ICI 118551 12 ± 6 nM 0.6 nMe/3e4 nMf

a KI values are expressed as means ± standard errors.
b Determined in radioligand binding assays with solubilized ADRB2 [64,65].
c Determined in radioligand binding assays with membrane preparations or

whole cells [66e68].
d Determined in radioligand binding assays with membrane preparations

[67,69,70].
e Determined in radioligand binding assays with membrane preparations or

whole cells [66,68].
f Determined in radioligand binding assays with ADRB2 solubilized from hamster

or rat lung [71].



Fig.3. Equilibrium inhibition binding assay with solubilized ADRB2. Membranes from
HEK293 cells stably expressing ADRB2-GFP fusion were isolated and solubilized as
described in Materials and Methods. The solubilized receptor and fluorescent probe
alprenolol-Cy5 applied at a constant concentration and unlabeled competitors applied
at various concentrations were incubated together at RT for 1e2 h. Data from a
representative experiment where [alprenolol-Cy5] ¼ 20 nM are shown. Transformed
FCCS data (concentration of receptoreligand complexes C) were fitted by using a four-
parameter logistic function as indicated in Materials and Methods.
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For this reason, we also opted to characterize kinetics of the
receptoreligand interaction for a few selected fluorescent probes as
well as for unlabeled competitors. As examples of GPCR targets, we
chose NTR1 and CXCR4 mainly because kinetic data acquired in
homogeneous binding assays had been reported for these two re-
ceptors [53e55]. We applied the active solubilized receptors at a
concentration of approximately 2 nM and adjusted concentrations
of fluorescent probes and unlabeled competitors to levels that
exceed the concentration of the receptor by a factor of �10. In this
way, we ensured that during the whole course of kinetic mea-
surements, the depletion of fluorescent probes or unlabeled com-
petitors due to their binding to a specific target was below 10% (i.e.,
LF z LT and IF z IT) in order to comply with the assumptions of the
kinetic models implemented in this study. First, we determined
kinetic parameters kobs, kon, and koff for the fluorescent probes NT-
DY647 and SDF1a-AF647 using samples with solubilized NTR1-
Table 3
Determination of KI values in equilibrium binding assays by FCCS for solubilized human

Competitor FCCS (nM)a

WT A85L

NT 2 ± 0.6 1.2 ± 0.2
SR 142948 0.9 ± 0.2 0.8 ± 0.2
SR 48692 8 ± 5 8 ± 3

a KI values are expressed as means ± standard errors.
b Determined in radioligand binding assays with membrane preparations or whole ce
c Determined in radioligand binding assays with membrane preparations [74].
d Determined in radioligand binding assays with membrane preparations [72].

Table 4
Determination of KI values in equilibrium binding assays by FCCS for human CXCR4.

Competitor FCCS (nM)a

Probe: SDF1a-AF647

SDF1a 9 ± 1
IT1t 2.4 ± 0.9
TC14012 6 ± 2

a KI values are expressed as means ± standard errors.
b Anti-CXCR4 MAb-DY647.
c Determined in radioligand binding assays with whole cells or membrane preparatio
d Determined in radioligand binding assays with membrane preparations [80,81].
e Determined in radioligand binding assays with whole cells [82]. The KI value was calcu

[125I]SDF1a ¼ 7.9 nM [75].
A85L and CXCR4, respectively (Fig. 4 and Table 5) as described in
detail in Materials and Methods. Fig. 4A and B show examples of
kinetic traces for the two fluorescent probes analyzed at various
concentrations (LT values) for their binding to their cognate re-
ceptors. The association rate of a fluorescent probe (kon) was
calculated as the slope of a line that represents a plot of kobs versus
the corresponding LT, whereas the dissociation rate (koff) is deter-
mined by the y-intercept of the line (Fig. 4C and Table 5).

In the next step, we determined kon and koff values for repre-
sentative unlabeled competitors known to interact with NTR1 or
CXCR4. As shown in Table 6, the resulting KI values match quitewell
with the KI values obtained from the equilibrium competition
binding assays. In Fig. 5, we show examples of time-resolved
binding of fluorescent probes to solubilized cognate receptors in
the absence or presence of different unlabeled competitors. The
data could be fitted in concordance with the kinetic model
described in Materials and Methods (Eqs. (6)e(12)) and theory
elaborated elsewhere [27]. Kinetic traces of unlabeled NT and SR
48692 (ligands of NTR1) (Fig. 5A) are typical for a competitor that
has a slower dissociation than the corresponding fluorescent probe
(here NT-DY647; k4 < k2), whereas the kinetic traces of unlabeled
IT1t and SDF1a (ligands of CXCR4) (Fig. 5B) are typical for a
competitor that has a faster dissociation than a corresponding
fluorescent probe (here SDF1a-AF647; k4 > k2) [27].

Our kinetic parameters and resulting KI values are also in good
agreement with data published by other groups that used surface
plasmon resonance (SPR) for time-resolved affinity determination
[53,54]. A discrepancy in the dissociation rate constant for unla-
beled SDF1a determined by FCCS (koff: 0.23 ± 0.03 min�1) and SPR
(koff: 4.8e30 min�1) might be due to numerous differences in the
experimental setup (immobilization of CXCR4 in SPR vs. freely
diffusing assay components in FCCS and/or additives used in the
particular SPR setups such as MgCl2, CaCl2, and extra lipids) [54].

Intriguingly, we have noticed for both probes NT and SDF1a an
approximately 1-log difference in affinity for their cognate GPCR
targets when comparing KD and KI values of the labeled and unla-
beled forms of a probe, respectively. Although the dissociation rate
(koff¼ 1/residence time) did not vary substantially between the two
NTR1 variants by using NT-DY647 as fluorescent probe.

Literature (nM)

TTM WT

0.6 ± 0.04 0.2e5b

1.9 ± 0.3 0.3e1c

130 ± 30 4d

lls [23,72,73].

Literature (nM)

Probe: MAbb

4 ± 2 3.6e85c

5 ± 2 7.9e22.5d

14 ± 2 2.9e

ns [75e79].

lated from the IC50 value using the ChengePrusoff equation applying the KD value of



Fig.4. Kinetics studies of both fluorescent probes NT-DY647 and SDF1a-AF647 by FCCS. (A) Representative time-resolved measurements of the interaction between 1.75 nM
solubilized NTR1-A85L-GFP and the two indicated concentrations of NT-DY647. Data points are experimental values of complexes measured for 8 s. The solid lines represent the best
fitted curves according to Eq. (4) and yielding reaction rates kobs of 1.1 and 3.4 min�1 for 20 and 93 nM DY-647, respectively. (B) Representative time-resolved measurements of the
interaction between 2 nM solubilized CXCR4 and the three indicated concentrations of SDF1a-AF647. Data points are experimental values of complexes measured for 18 s. The fits
yielded kobs of 0.3, 0.4, and 1.3 min�1 for 20, 40, and 93 nM SDF1a-AF647, respectively. (C) The kobs values determined in three independent experiments were plotted versus the
different concentrations of fluorescent probes used. The solid line represents the best linear regression, and kon and koff of the fluorescent probes were estimated from the slope and
y-intercept, respectively. kon and koff values of NT-DY647 and SDF1a-AF647 are summarized in Table 5.

Table 5
kon and koff values determined for various fluorescent probes in time-resolved FCCS-based binding assays.

GPCR Probe kon
(nM�1 min�1)

koff
(min�1)

KD

(Kinetics, nM)
KD

(Equilibrium, nM)

NTR1-A85L NT-DY647 0.0287 ± 0.0005 0.6 ± 0.1 20 ± 4 12 ± 2
CXCR4 SDF1a-AF647 0.0076 ± 0.0003 0.22 ± 0.05 29 ± 8 26.2 ± 0.6

Table 6
kon and koff values for unlabeled competitors of NTR1 or CXCR4 determined in time-resolved FCCS-based binding assays.

GPCR Competitor kon
(nM�1 min�1)

koff
(min�1)

KI

(Kinetics, nM)
KI

(Equilibrium, nM)

NTR1-A85La NT 0.19 ± 0.02 0.26 ± 0.02 1.5 ± 0.1 1.2 ± 0.2
SR 142948 0.16 ± 0.03 0.19 ± 0.02 1.3 ± 0.1 0.8 ± 0.2
SR 48692 0.020 ± 0.003 0.20 ± 0.02 11 ± 1 8 ± 3

CXCR4b SDF1a 0.10 ± 0.02 0.23 ± 0.03 2.7 ± 0.4 9 ± 1
IT1t 0.14 ± 0.02 0.78 ± 0.2 6 ± 1 2.4 ± 0.9

Note. All values are expressed asmeans ± standard errors. The binding assay was performed at room temperature. The data were generated from competition binding assays at
concentrations of competitors: 20e50 nM for NTR1 or 10e20 nM for CXCR4.

a NTR1-A85L kinetics measurements were performed using NT-DY647 as fluorescent probe.
b CXCR4 kinetics measurements were performed using SDF1a-AF647 as fluorescent probe.

T. Antoine et al. / Analytical Biochemistry 502 (2016) 24e3532
forms of the same probe (Tables 5 and 6), there were considerable
differences in the association rate (kon) related to the increase in
size on the labeling of a probe with a fluorophore (Tables 5 and 6).
The increase in size can result in a slower diffusion of the probe
through the receptor crevice and hence can hinder the docking of
probe molecules within the binding site in the receptor. A longer
time needed for binding of the target is typically reflected in lower
kon values.



Fig.5. Competitive kinetics with NTR1 and CXCR4 competitors. (A) A representative
example of time-resolved measurements of the interaction between approximately
2 nM solubilized NTR1-A85L-GFP and 113 nM NT-DY647 in the absence or presence of
20 nM NT and 50 nM SR 48692. Data points are experimental values of complexes
measured for 8 s. (B) Representative time-resolved measurements of the interaction
between approximately 1 nM solubilized CXCR4-GFP and 68 nM SDF1a-AF647 in the
absence or presence of 10 nM IT1t and SDF1a. Data points are experimental values of
complexes measured for 16 s. The solid lines represent the best fitted curves according
to Eq. (12) yielding kon and koff values for both unlabeled competitors. kon and koff
values of the different competitors tested are summarized in Table 6.
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Discussion

In our current study, we have demonstrated on three pharma-
cologically distinct G protein-coupled receptors (human NTR1,
ADRB2, and CXCR4) that fluorescence cross-correlation spectros-
copy can be reliably applied for characterization of direct
ligandeGPCR interaction in a high-throughput screening mode as
well as for determination of kinetic parameters (kon and koff values
related to the onset of the compound's effect and residence time on
a therapeutic target) for binding of labeled compounds as well as
unlabeled compounds. We also showed that almost any molecule
within a very broad range of sizes can be used as a probe (e.g., a
small molecule, a small or large peptide, or an antibody in IgG
format).

In previously published reports, FCS/FCCS has been applied
mainly to native nonsolubilized GPCRs in intact cells (in vivo FCS;
reviewed elsewhere [31,37]). These measurements are technically
tedious, time-consuming, and not straightforward for numerous
reasons: (i) focus of the laser beam needs to be stably positioned
during the signal acquisition to the upper membrane of the living
and therefore motile cells; (ii) a GPCR of interest is often not uni-
formly distributed in the plasma membrane but rather localizes in
membrane microdomains (lipid rafts), making the accurate quan-
tification of receptor complexes demanding; and (iii) the target can
undergo endocytotic internalization during the course of the
binding assay and therefore obscure the determination of recep-
toreligand complexes in equilibrium [30], thereby preventing
automation and high-throughput testing of numerous competitors
at a wide range of concentrations. Cramb and coworkers published
an FCCS-based method for affinity determination by using a model
GPCR (m opioid receptor) embedded in native membranes within
vesicles termed “nanopatches.” Although the affinity determined in
their studies resembled values obtained from radioligand binding
assays, the FCCS carried out in the presence of vesicles of poorly
defined and very heterogeneous sizes with hundreds of receptor
copies/vesicles clearly suffered from sample heterogeneity and
required the use of alternative models for “pseudo” KD determi-
nation based on the Hill equation for multiligand binding [56,57].

What are major advantages of FCCS over the other techniques
for affinity determination? Many alternative methods have some
unique superior features, for instance, extremely high sensitivity
and broad dynamic range of radioligand binding assays. However,
all alternative techniques have, besides their advantages, also their
limitations and weaknesses (extensively reviewed elsewhere
[4,55,58]). The presented FCCS-based assay for GPCRs performed in
the homogeneous format combines several important features that
an assay for affinity determination and kinetics should definitely
possess: (i) a technically easy and straightforward procedure (no
need for receptor overexpression, purification, or reconstitution in
any artificial membranes, nanopatches, or vesicles), (ii) high
reproducibility, (iii) good sensitivity and relatively broad linear
range (KI values ranging from subnanomolar to millimolar con-
centrations can be reliably determined for all kinds of unlabeled
competitors regardless of their molecular size), (iv) suitability for
automation and high throughput (the assay does not require any
washing step and is routinely performed in a 384-well format, and
sufficiently robust measurements can be performed in just 5e10 s/
data point), (v) relatively versatile design of fluorescent probes (no
distance constraints are imposed on a linker between probe and
fluorophore and no size limit on a probe as long as it can specifically
recognize its target), and (vi) high content information (e.g., about
fractions of free/bound ligand and diffusion time/relative molecular
size of all fluorescently labeled components during the whole
course of binding reaction). Another advantage of using FCCS, in
comparison with radioligand binding assays, is the possibility of
acquiring data for the whole time course during kinetic measure-
ments continuously from a single well, hence providing substan-
tially better time resolution and saving material.

Our high-throughput FCCS setup involves receptor solubiliza-
tion with detergents that can cause inactivation of labile GPCR
targets. However, we have shown in an example of the neuro-
tensin receptor variant NTR1-A85L that robust FCCS data can also
be obtained for GPCRs that aredas wild-type moleculesdvery
unstable in the solubilized form in detergent. A minimal muta-
genesis (a single point mutation in the transmembrane domain 1),
which is generally not expected to significantly affect receptor
functioning, made NTR1 sufficiently stable for the equilibrium
measurements as well as the kinetic measurements at room
temperature. Several different protein engineering methods, such
as alanine scanning and powerful directed evolution approaches
based on fluorescence-activated cell sorting (reviewed elsewhere
[59]), have enabled selection of numerous thermostabilized GPCRs
that were successfully used, for instance, in protein crystallization/
structural biology [60]. Some of these reported mutants with
slightly enhanced stability and unaffected ligand binding profile
contained as little as one single point mutation [61] and thus are
suitable for FCCS-based ligand binding studies with wild-type-like
receptor molecules when the wild-type receptor is unstable in
detergent.
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Although not exemplified in this study, the FCCS-based assay
can be used not only for determination of KI values for compounds
directly competing for the orthosteric binding site (here a labeled
probe is typically derived from an endogenous agonist acting on a
given GPCR) but also for identification and characterization of
positive and negative allosteric modulators based on their effect on
the binding of orthosteric fluorescent probes [62].
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