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1. Introduction

We consider the Cauchy problem for the semilinear damped wave equation

{u“ — Au+a)bt)u; = f(u), (t,x) € (0, 00) x R", (1)

u(0,x) =up(x),  ur(0,x) =ui(x), x€R’,
where the coefficients of damping are
a) =ap(x)™*,  bt)=(1+0F, withap>0, &, >0, a+p <1,

where (x) = (1 + |x|?)"/?. Here u is a real-valued unknown function and (ug, u;) is in H'(R") x L?(R"). We note that 1y and
uy need not be compactly supported. The nonlinear term f (u) is given by

fu) ==+ul or [uff'u
and the power p satisfies

n
1<p§72 (n > 3), l<p<oo (n=1,2).
n—

Our aim is to determine the critical exponent p., which is a number defined by the following property:

If p. < p, all small data solutions of (1.1) are global; if 1 < p < p., the time-local solution cannot be extended time-
globally for some data.

It is expected that the critical exponent of (1.1) is given by

2
pc:1+ .
n—uo
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In this paper we shall prove the existence of global solutions with small data when p > 14 2/(n — «). However, it is still
open whether there exists a blow-up solutionwhen1 <p <14 2/(n — «).
When the damping term is missing and f (u) = |u|P, that is

u(0, X) = ug(x), u:(0,x) = uy(x), xR, (12)

{uﬁ — Au=uf, (t,x) € (0,00) xR,
it is well known that the critical exponent p,, (n) is the positive root of (n — 1)p?> — (n4+1)p—2 = 0forn > 2 (p,, (1) = 00).
This is the famous Strauss conjecture and the proof was completed by the effort of many mathematicians (see [1-10]).
For the linear wave equation with a damping term

Uy — Au+c(t,x)u, =0, (t,x) € (0,00) x R",
{u(O,x) = up(x), u(0,x) = uy(x), xR, (1.3)
there are many results about the asymptotic behavior of the solution. When c(t, x) = co > 0 and (ug, uy) € (H' N L) x
(L NL"), Matsumura [11] showed that the energy of solutions decays at the same rate as the corresponding heat equation.
When the space dimension is 3, using the exact expression of the solution, Nishihara [12] discovered that the solution of
(1.3) with c(t, x) = 1is expressed asymptotically by

u(t, x) ~ v(t, x) + e 2w(t, x),

where v(t, x) is the solution of the corresponding heat equation

ve—Av =0, (t,x) €(0,00) xR,
v(0,%) = up(x) + u;(x), xeR

and w(t, x) is the solution of the free wave equation

we —Aw =0, (t,x) € (0,00) x R,
w(0, X) = ug(x), we(0,x) = ug(x), €R>.

These results indicate a diffusive structure of damped wave equations. On the other hand, Mochizuki [13] showed that if
0 <c(t,x) < C(1+|x)~'~?% where§ > 0, then the energy of solutions of (1.3) does not decay to O for nonzero data and the
solution is asymptotically free. We can interpret this result as (1.3) loses its “parabolicity” and recover its “hyperbolicity”.
Wirth [14,15] treated the time-dependent damping case, that is c(t, x) = b(t) in (1.3). By the Fourier transform method,
he got several sharp [P — L9 estimates of the solution and showed that there exists a diffusive structure for general b(t)
including b(t) = bo(1+t)"#(—=1 < B < 1).Todorova and Yordanov [16] considered the case c(t, x) = a(x) = ao(x) " with
a € [0, 1) and Kenigson and Kenigson [17] considered space-time dependent coefficient case c(t, x) = a(x)b(t), a(x) =
ag(x)™®, b(t) = (1+t)~#, (0 < a+B < 1).They established the energy decay estimate that also implies diffusive structure
even in the decaying coefficient cases. From these results, the decay rate —1 of the coefficient of the damping term is the
threshold of parabolicity. This is the reason why we assume « + 8 < 1for (1.1). We mention that recently, Ikehata et al. [ 18]
treated the case c(t, x) = ao(x)~' and obtained almost optimal decay estimates.
There are also many results for the semilinear damped wave equation with absorbing semilinear term:

U — Au+ax)b®u, + [uP~lu=0, (t,x) e (0,00) x R", (1.4)
u(0, x) = ug(x), u;(0,x) =u;(x), xe€R". ’

It is well known that there exists a unique global solution even for large initial data. When a(x)b(t) = 1, that is the constant
coefficient case, Kawashima et al. [ 19], Karch [20], Hayashi et al. [21], Ikehata et al. [22] and Nishihara [23] showed the global
existence of solutions and that their asymptotic profile is given by a constant multiple of the Gauss kernel for 1 +2/n < p
andn < 4.For 1 < p < 1+ 2/n, Nishihara and Zhao [24], Ikehata et al. [22], Nishihara [23] proved that the decay rate of
the solution agrees with that of a self-similar solution of the corresponding heat equation. Hayashi et al. [25-27,21] proved
the large time asymptotic formulas in terms of the weighted Sobolev spaces. These results indicate the critical exponent for
(1.4) with a(x)b(t) = 1is givenbyp. = 1+ % In this case the critical exponent means the turning point of the asymptotic
behavior of the solution. When b(t) = 1, a(x) = (x)7“(0 < a < 1), namely space-dependent damping case, Nishihara [28]
established decay estimates of solutions and conjectured the critical exponent is given by p. = 1+ 2/(n — o). When
a(x) = 1,b(t) = (1 +1t)"P(=1 < B < 1), Nishihara and Zhai [29] proved decay estimates of solutions and conjectured
the critical exponent is p. = 14 2/n. Finally in the case a(x) = (x)™®, b(t) = (1+t)#(0 < o + B < 1), Linet al. [30,31]
showed decay estimates of the solution and conjectured the critical exponent is p. = 14 2/(n — «). They used a weighted
energy method, which was originally developed by Todorova and Yordanov [32,33]. In this paper we shall essentially use
the techniques and methods that they used.
Li and Zhou [34] considered the semilinear damped wave equation

U — Au~+u = ulP. (1.5)
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They proved thatifn < 2,1 <p <1+ % and the data are positive on average, then the local solution of (1.5) must blow
up in a finite time. Todorova and Yordanov [32,33] developed a weighted energy method using the function which has the
form e*¥ and determined that the critical exponent of (1.5) is

2
pC:]+7v
n

which is well known as Fujita’s critical exponent for the heat equation u; — Au = uP (see [35]). More precisely, they
proved small data global existence in the case p > 1+ 2/n and blow-up for all solutions of (1.5) with positive on average
data in the case 1 < p < 14 2/n. Later on Zhang [36] showed that the critical exponent p = 1 + 2/n belongs to the
blow-up region. We mention that Todorova and Yordanov [32,33] assumed data have compact support and essentially used
this property. However, Ikehata and Tanizawa [37] removed this assumption. Ikehata et al. [38] investigated the space-
dependent coefficient case:

Uy — Au+au = [ul?, (1.6)
where
a(x) ~ ap{x)™%, |x| = oo, radially symmetricand 0 < o < 1.

They proved that the critical exponent of (1.5) is given by

pc:]+
n—o

by using a refined multiplier method. Their method also depends on the finite propagation speed property. Recently,
Nishihara [39] and Lin et al. [31] considered the semilinear wave equation with time-dependent damping

Uy — Au+b(t)u, = [uf, (1.7)
where
b(t) = bo(1+ )%, Be(—1,1).
They proved that the critical exponent of (1.7) is
2
pe=1+-.
n

This shows that, roughly speaking, time-dependent coefficients of damping term do not influence the critical exponent.
Therefore we expect that the critical exponent of the semilinear wave equation (1.1) is

pe=1+

n—o
To state our results, we introduce an auxiliary function

Y(t, x) = Aﬂ (1.8)

| 1+0)+F
with
(1 +Ba
Q2—-a)2R2+8)’

This type of weight function was first introduced by Ikehata and Tanizawa [37]. We have the following result:

5> 0. (1.9)

Theorem 1.1. If

2
p>1+ ,
n—o

then there exists a small positive number §o > 0 such that for any 0 < § < &g the following holds: If
I§ = / eV 0N Wd + |Vug|* + Jup|*)dx
RTI
is sufficiently small, then there exists a unique solution u € C([0, c0); H'(R")) N C'([0, co); L*(R™)) to (1.1) satisfying

/ eV It ) Pdx < C(1+ 1)~ (1.10)
Rl‘l

/ VN (|uy (6, 0) 2 + [Vu(t, x)[P)dx < Cs(1 + )" TG FDFe,
Rn
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where

_ 30+ B —a)
T 22 —-a)2+49)

and Cs is a constant depending on §.

e =¢(8) (1.11)

Remark 1.2. When 1 < p < 1+ 2/(n — w), it is expected that no matter how small the data are, if the data have some
shape, then the corresponding local solution blows up in finite time. However, we have no result.

Remark 1.3. We do not assume that the data are compactly supported. Hence our result is an extension of the results of
Ikehata et al. [38] to noncompactly supported data cases. However, we prove only the case a(x) = ag(x) “.

As a consequence of the main theorem, we have an exponential decay estimate outside a parabolic region.

Corollary 1.4. If

2
p>1+ s
n—au

then there exists a small positive number &g > 0 such that for any 0 < § < §q the following holds: Take p and u so small that
O<p<l—a—p, and 0 < pu < ?2A,

and put
2,(1) = {x e R ()77 = (14 10)! 7y,

Then, for the global solution u in Theorem 1.1, we have the following estimate
(1+8)(1—20)
4 [Vl +12)dx < Gy (14 0) 2 Hem @A’ (1.12)
(uf + |Vul> + u*)dx < Cs (14 1)
2p(t)

here ¢ is defined by (1.11) and Cs , ,, is a constant depending on §, p and u.

Namely, the decay rate of solution in the region §2,(t) is exponential. We note that the support of u(t) and the region
£2,(t) can intersect even if the data are compactly supported. This phenomenon was first discovered by Todorova and
Yordanov [33]. We can interpret this result as follows: The support of the solution is strongly suppressed by damping, so
that the solution is concentrated in the parabolic region much smaller than the light cone.

2. Proof of Theorem 1.1

In this section we prove our main result. At first we prepare some notation and terminology. We put

1/p
If llp ey = ([ lf(X)Ide) , llull == llull 2 gn).-
RTI

By H!(R") we denote the usual Sobolev space. For an interval I and a Banach space X, we define C" (I; X) as the Banach space
whose element is an r-times continuously differentiable mapping from I to X with respect to the topology in X. The letter C
indicates the generic constant, which may change from one line to the next line.

To prove Theorem 1.1, we use a weighted energy method which was originally developed by Todorova and Yordanov
[32,33]. We first describe the local existence:

Proposition 2.1. For any § > O, there exists T, € (0, +o¢] depending on 13 such that the Cauchy problem (1.1) has a unique
solution u € C([0, T,); H'(R™) N C1([0, Tr); L>(RM)), and if T,, < oo then we have

liminff eV Y W + | Vul* + u*)dx = +-o0.
Rﬂ

t—=Tm

We can prove this proposition by standard arguments (see [37]). We prove an a priori estimate for the following functional:
M(t) == sup {(1 T / eV + |VuP)dx + (1 + 1)5° / ez‘/’a(x)b(t)uzdx} , (2.1)
0<t<t R" R"
where

_+pm-o
2—«a

B: B
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and ¢ is given by (1.11). From (1.8), (1.9), it is easy to see that

1+
_wt - 1+tW7
@ —a)x) T
Vi =4 (140148 7
AY = A(Z—a)(n—a)L—l—A(Z—a)aﬂ
(14 )1+p (14 )1+p
(14 B8)(n—a) a@)b(t)
T R2-w)24+8) 1+t
. ((1 +B)(n—a) _s > a(x)b(t)
- 22 — @) L R

Here and after, §;(i=1, 2, ..
8 — 0t ass — 0.

We also have
b 4 ) <x>2—2a
(—¥)a@)b(t) = Aap(1 + ﬂ)m

ap(1+ B)

> A2 - a)
(2—a)A

Q2+ 8)IVy P

By multiplying (1.1) by e*¥u,, it follows that

(x) 7> |xJ?
(] + t)2+2/3

[Vy|?

9 [e¥ 2 2 24 2y
o [2(ut + |Vul )] V- (e¥uVu) +e <G(X)b(f) _—

= ;t [V Fw)] + 2¢* (—y)F (u),

where F is the primitive of f satisfying F(0) = 0, namely F'(u) = f(u).

calculate

e 2 2 2
71# WHVul® =2y Vu - Vi +ug [V |©)
— WYt
i

1 2 2 1 2 2
= (ngm ~ VY] )
2 (%(—wmvmz _ 4b©) uz) .

42468) "
From this and (2.5

T

=

> e

), we obtain
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.) is a positive constant depending only on § such that

(2.2)
(2.3)
(2.4)
(2.5)
eV
- 1//t> U — ¥ Vu — UtVI/f|2
T
(2.6)

Using the Schwarz inequality and (2.5), we can

d [e? 2 2 2 2 1 2 wt
P T(ut + | Vul®) | — V- (Vu,Vu) + ¥ Za(x)b(t) — Y Jul+ |Vul?
B]
=3 [e?VFw)] + 2¢* (—y)F (u). (2.7)
By multiplying (2.7) by (to + t)8¥17¢, here t; > 1is determined later, it follows that
9 I I
P |:(f0 + t)BH_ET(Uf + |VU|2)i| —B+1—-¢)(to+ f)B_ET(Uf + |Vul®)
1
—V - ((tg + PP u, Vu) + 2V (1o + )51 ° {(Za(x)b(t) - Iﬂt> u + wt [Vu| }
B]
<3 [(to+ 0P * eV Fu)] — B4+ 1— &) (to + P Fe*VF(u) + 2(to + )*T'?e* (—yr)F (). (2.8)
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We put
E(t) = / eV (Wl + |VulP)dx,  Ey(t) = / e (=) (uE + |Vul*)dx,
R" R"
Jt:g) = / elgdx,  Jy(t;g) = / eV (=) gdx.
R" R"
Integrating (2.8) over the whole space, we have
1d 1
=— [t +OP'FE@] = =(B+1— &) (to + )P °E(t)
2 dt 2
1 1
+ 50+ O™ ab©OU) + 2t + 0 Ey (O

< % [(to +0)Fe / ezw(umx] +Cto + 01Ty (6 [Pt + Cto + 0P (6 [ulP ™). (2.9)

Therefore, we integrate (2.9) on the interval [0, t] and obtain the estimate for (t; + t)5*1=?E(t), which is the first term of
M(t):

t t
(to+ O)PE(t) — C / (to + T)P*E(r)dt + / (to + TP (r; a@)b(t)uf) + (to + )P FE, (1)dT
0 0
t
< Qg + Clto + 0P (&5 uPty + € / (to + TPy (z; [ulPyde
0

t
+Cf (to + 0P °J (z; JuP*Mdr. (2.10)
0

In order to complete the a priori estimate, however, we have to manage the second term of the inequality above whose sign
is negative, and we also have to estimate the second term of M (t). The following argument, which is little more complicated,
can settle both these problems.

At first, we multiply (1.1) by e*¥ u and have

3 [ez‘” (uut N a(x)zb(t) uz)] _ V- (& uVu)

ot
p
2y 2 _ 2 . _ _ 12
+e [Vul|* + ( v + 20+ t)) aX)b(t)u” 4+ 2uVyr - Vu =29 uuy — ug
Ty
= eV uf (u). (2.11)

We calculate
VT, = 4V uvy - Vu — 2e*¥uvVy - Vu
= 4> uVy - Vu — V- (2 EV) + 2 0P VY2 + eV (Aay)u?
and by (2.4) we can rewrite (2.11) to

% [ew (”“t + (J(X)zb(t)”z)] — V(@ @V + 1BV Y))

+e?? { IVul? + 4uVu - Vi + (=¢0)a®b(t) + 2|V [u?

T3

b
(21?1():?) W — 29 uu, — uf} < euf (). (2.12)

It follows from (2.5) that

+ (B —281)

Ty = |Vul? +4uVu - Vy + {(1 - g) (—=yDaX)b(t) + 2|v¢|2} v+ g(—wt)a(x)b(t)uz

2

2 8 8 2.2 8 2
S VUl + 4uVu- Vi + <4+ - 3) IV P + S (—gab(ou
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4 2 2 (S
=(1-—— Vu2-|—6V Zuz—}—‘ Vu+ /4 + 5uV + —(— axbtu2
( 4+52)' 2+ 81V T VU VAT BUVY| 4 S (—abo

2 2,2y, 9 2
= 8(IVul” + VY |u”) + g(—lﬁt)a(?‘)b(f)u ,

where
8 b _ ¢ ) in| 1 4 8
==, =min| 1— , .
76 6 } 4+5, "

Thus, we obtain

% [ew (””f * a(X)zb(t) ”2” — V(@ @V + 12V ) + €2V 8Vl

a(x)b(t)
21+ ¢)
< euf (u). (2.13)

Following Nishihara [30], related to the size of 1 + |x|* and the size of (1 + t)?, we divide the space R" into two different
zones 2(t; K, tp) and 2°(t; K, ty), where

2 =80 K, tp) :={x €R" (tog +)® > K + |x%},

and 2¢ = Q°(t; K, to) := R"\ 2(t; K, ty) with K > 1 determined later. Since a(x)b(t) > ao(t + to)~“*# in the domain
£2, we multiply (2.7) by (to + t)**# and obtain

+e* (83|V1ﬁ|2 - %(—wf)aoob(t) + (B —28y) ) u® + e (—2¢uu, — uf)

9 [e
— [e (to + )P + |Vu|2)] — V- (ty + )" Pu,Vu) + eV [(

e o ath
at [ 2

4 2ty +t)iep
_ +B
fo 4 )08 (— 2 20 Y to 4 £)2HP _ o Vul?
+ (to + ) wt)}ut e | o+ 0 = o IVl
_atB
(to+ D)7
Let v be a small positive number depending on §, which will be chosen later. By (2.14) 4+ v(2.13), we have

9 to + t)oth b(t to + t)«th
= |:ez¢ (“’%)uf +vu + Va(Xz) ( )uz " (to +2) |Vu|2)]

< %[(m + )PV F(u)] — eVF() +2(to + 0P (—y)F ). (2.14)

— V- (ty+ ) Pu,Vu

o  a+p

2 \v4 2V 2y —
+ve¥ wVu+ u'Vy)) + e [(4 TOETIEE

v) + (to + r)“+ﬂ(—wt)] Th

+e¥ |:u83 - ﬁ + _;ﬁf (to + t)0t+f3:| |Vu|2
a(x)b(t)

2(1+1)

+e*y [53|V1//|2 + g(—wr)a(x)b(t) + (B —281) } u? + 2ve?V (—yro)u,

_e+h
(to +0)-F
By the Schwarz inequality, the last term of the left hand side in the above inequality can be estimated as

< %[(to + 0PV F(u)] — eV F(u) + 2(to + )P’ (=) F (1) + ve* uf (u). (2.15)
vé 5 3v wth. 2
20 (=youul = - (=yoabOw + 00—8<—1/ft)(r0 + )" Pul,

Thus, we have
3 |:621// ((fo + t)a+ﬁ ) va(x)b(t) 2 n (to + t)01+/3

o 5 uf + vuu, + 5 5 |Vu|2>] — V(@ (ty+ ) Pu,Vu

20 2 2y | (G0 o+ p _ . 37” atB_ 2
+ve?¥ WVu +u*Vy)) +e [(4 PTC == v>+(1 " (to + O (=) |y

2 I o B Y I 2, oo ADONT
te [WSB 2t 1 )P + z (to + £) ]Ivu| +e |:v (53|v¢| + (B 251)2(]+t) u
]
=< &[(to-i't)“—#ﬂez‘/ff'(u)]— ﬁewl:(u)+2(t0+t)"+’3e2"’(—wr)F(u)+ve2‘/’uf(u). (2.16)
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Now we choose the parameters v and t, such that

a 3v
l_i_vZCo’ 1_72("0’
4 2ty +t)t-oe-8 agd
o+ B 1
vy — —————— >, Vi3 > (o, - > (o,
3 2o+ 0P = 0 3= Co 5= 0

73

hold for some constant ¢, > 0. This is possible because we first determine v sufficiently small depending on § and then we
choose tj sufficiently large depending on v. Therefore, integrating (2.16) on £2, we obtain the following energy inequality:

d-
—Ey (t; 2(t; K, to)) — N1(t) — My(t) + Hy (t; $2(t; K, to)) < Py,

dt
where
Ey(t; 2) = Ey(t: 2(t; K, t))
to + £)* A a(x)b(t to + t)*Th
= /ez‘/’ uuf—i—vuuﬁ— va) ()uz—i- (fo+5) [Vul? | dx,
Q2 2 2 2
to + t)*tP b(t to + t)oth

Ni(t) = / e (guf + vuu; + ra@)b( )u2 + (to+0) |Vu|2>

1 2 2 2 Ixl=+/(t+0)2—K

d
X1ty + 07 = KI""V2d0 - /(0o + 02 K,

Mi(t) == / @ (to + O PuVu + ve? (WVu + v Vy)) - nds,
82

Hy (t; 2) = Hy(t; £2(t; K, to))

2
= ¢ / V(1 + (to + O (—y) (U} + [Vul*)dx + v(B — 257) / LGN
Q o 2(1+1)

Py = 4 [(t0+t)°‘+’3 / ez"’F(u)dx:| - / (to + )P F(u)
dt Q sn—1

[xI=A/ (to+1)2—K

d
x [(to +£)* — K1 P/%dp - a\/(to +0)2 - K+ c/ e (1 + (to + P (=) |ulP*dx.
2

Here 7i denotes the unit outer normal vector of 3£2. We note that by v < ay/4 and

va(x)b(t) 24 v(ty + )« th 2

vuus| <
| [| = 4 ao to

it follows that

IA

cLez‘”(to—i—t)"‘”(uf—{—|Vu|2)dx+c/;zez‘”a(x)b(t)uzdx Ey(t; 2(t; K, o))

IA

c/ e?V (to + )* P (u? + |Vul?)dx
2

+C / e a(x)b(t)utdx
o)

for some constants ¢ > 0 and C > 0.
Next, we derive an energy inequality in the domain §2¢. We use the notation

(x)i = (K + x>
Since a(x)b(t) > ao(x);(“Jr’g) in 2°¢(t, ; K, tp), we multiply (2.7) by (x)fﬁﬂ and obtain
d [ aip, - 2 20 a+B 2y (G0 atp 2
3 7(")1( Uy +1Vul?) | = V- (e {x) "uVu) +e <Z + (=) {X) )Ut
1 _
+ e (Y W IV + @+ Bt (i u

916 (=P E )] + 262 (9P (— g F ().

<
— ot

(2.17)

(2.18)
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By (2.18) + v x (2.13), here v is a small positive parameter determined later, it follows that

5 a+B A b(t a+p
at {ew <<x>§u? +bun + 2P0 2 Wi gy} v @2 s va

at 2 2

+ 0¥ (UVu + 12Vy)) + €2V [GZ“’“ VoW |ut + e [v53+ Ve >°‘ﬂ Vu?

+ew[ (63|w/|2+ (—Y0)a(b(t) + (B —251)35?—1;(?))}”2

+e [l + B0y P2 x - uVu — 20yuu,]

Ty

< o [ 00 RW] 4 260 (05 (R + b ul . (2.19)

The terms T4 can be estimated as
(@ +B)?
2%3 K2(i—a—p) 't

120 (=r)uu| < *( Yoa)b(ou? +7( YOt

Do
(o + B2 2% u V) < 5|Vu|2+

From this we can rewrite (2.19) as

9 a+p A b(t a+p
|:e2¢<<x>1< 4 b+ 29000 o W O N O e

ot 2 2 2
2
+ 06 WV + V) + [(“; . %) + (1 - —) AL >"‘*‘3]
2 [ D83 | =V arp 20 a(x)b(t)) R
e [2 + 2w }|Vu| e [ (83|w| + B2 30 ) |
< % [e”(x);“’F(u)] + 262 (0% (g F(u) + De? uf (u). (2.20)

Now we choose the parameters v and K in the same manner as before. Indeed taking v sufficiently small depending on §
and then choosing K sufficiently large depending on », we can obtain

a R a + B)? 3v
0 V= /\( ﬂ) > Cq, 1-— > C1, V83ZC17
4 2\)83K2(1—‘1_ﬂ) 005

for some constant ¢; > 0. Consequently, By integrating (2.20) on £2¢, the energy inequality on §2¢ follows:

>0

(S, WISSY

d_—
EEW(t; Q°(t; K, tg)) + Na(t) + Ma(t) + Hy (t; 2°(t; K, to)) < Py, (2.21)

where
Ey(t; 29 = Ey(t; 29 K, to))

a+p A a+p
b(t
= / e’V <<x>’2< u? + duu, + va@blt) + W |Vu|2> dx
QC

2 2
a+p A a+p
R va(x)b(t X
Na(t) = / e << >2 uf + duu; + (2) ©2 4 W |Vu|2>
Sl’l

2
x [(to + t)? — K] D/24g - \/(t0+t)2

My(t) == / @ ()% uVu + De?V (uVu + 12 V) - idS,
902°¢

[xI=+/ (to+)>—K

Hy(t; 2°) = Hy(t; 2°(; K, t))
2y
= o [ @A+ WE yE + Vufde-+ 006 - 20) erawbe 5
2

o 2(141)

)
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d
P, = — [ / e2W<x>;+ﬂF(u)dx] + / )P eV F(u)
dt [ Jae st xi=v/ o+ 2K

d
x [(to + £)? = K] D/24g &‘/(t‘) +6)2—K+ c/ e (1 4+ ()P (=) |uPHdx.
QC

In a similar way as for the case in §2, we note that
c/ eV (ty + £)* P (u? + |Vul*)dx + c/ eV a(x)b(t)uPdx < Ey (t; 2°(t; K, to))
fold fold

< c/ eV (to + £)* P (u? + |Vul*)dx + c/ e ax)b(t)u*dx
¢ Q¢

for some constants ¢ > 0 and C > 0.
We add the energy inequalities on §2 and £2°. We note that replacing v and ¥ by vy := min{v, D}, we can still have the
inequalities (2.17) and (2.21), provided that we retake to and K larger.
By ((2.17) + (2.21)) x (to + )¢, we have
d B—e T c
E[(to + O (Ey (85 £2) + Ey (85 £2°)]
— (B—e)(to + )" (Ey (t; 2) + Ey (£ 29)) + (to + )° 7 (Hy (¢; 2) + Hy (t; 29))
Ts Ts

< (to+ ¥ (Py + Po), (2.22)

here we note that
Ni(t) = Na(t), My (t) = My (t)

on d52. Since

Vo
(to + t)*Pu?

)
voute| < “22 a(ob(t)u? +
2 284(10

on £2 and

Vody 2 Vo atp 2
voully| < ——a(x)b(t)u —(x u
[vouu;| < ) (*)b(t) +284a0(>,< "

on £2¢, we have

—Ts +Ts > (to + P71 + (to + )P Ly, (2.23)

where

L = / ez“'{%(w(twt)”*ﬂ(—wt))— 1+ﬁ> (to+t>“+f‘}u?
2

Z(to + t) < 84(10

[ wb gy B oy ) gy
+e {2(1+(fo+t) (=) 2(t0+t)(t0+t) }IVUIdX

2w [ G wtp vy B—E 2vo ) atsl 2
+/me {2(1+<X>K (=v) 26t 0) <1+84a0)(x>,< }ut
2y | & wtp_uyy_ BTE atp 2
+e {2(1+(X)K (=v0) 2(t0+t)<x>" }IVUI dx
= I + Iy,

b
I = vo(B — 281 — (14 8) (B — ©)) ( [+] ) @ S 2 [ vl vuiax

where ¢, := min(cp, c;). Recall the definition of ¢ and §; (i.e.(1.11) and (2.4)). A simple calculation shows ¢ = 34;. Choosing
84 sufficiently small depending on ¢, we have

(to+ )P > c3(tp + )P 71°° / e*’ a(x)b(t)u’dx + Cz—z(to + )P °E(0)

Rn
for some constant c; > 0. Next, we prove that Iy > 0. By noting that « 4+ 8 < 1, it is easy to see that I;; > 0 if we retake tg
larger depending on cg, vy and &4. To estimate I, we further divide the region £2¢ into

Q°(t K, to) = (2°(t; K, to) N X)) U (2°(t; K, to) N X)),
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where
D o=xeR; X7 <L+, I =R"\X

with L > 1 determined later. First, since K + |x|? < K(1 + |x|?) < KL% @=®) (1 4 t)20+P/C=®) on 2° N X}, we have

a awrp oy B¢ 2V0 ) yots
o (1 Wi (=Y = S <1+84a0)<><>,<

S0 Be (1 200 parprzperpie-aq 4 p SR
2 Z(to + t) 8400

We note that —1 + w < 0by o 4+ B < 1. Thus, we obtain

o _ B-e (/2w KeAB2p@th)/C-a) (1 4 1y THE S
2 2ty+1t) 3400

for large to depending on L and K. Secondly, on £2° N X, we have
C1

“1 at+p _ B—e¢ 2& a+p
2 (1 + (X>K ( Wt)) 2([’0 + l') <] + 8400) (X)K

2—a _
z{‘;—l(wﬁ) W Boe <1+ﬂ>}<x>fé*’3

A+02F 2t +1) 8440
C1 L B—¢ 2\)0 a+p
>{2a+p)————(1+ = .
—{2( AT 2(to+t)< +54ao>}(X)K

Therefore one can obtain I;; > 0, provided that L > le%ﬁ) a+ 5%00). Consequently, we have I; > 0. By (2.23) and what we
mentioned above, it follows that

C

—Ts + Tg > c5(to + t)B‘H/ e ax)b(t)utdx + E(to + B E().

R
Therefore, we have

d B¢ 7 N c G B¢ B—1-¢ 2
a[(to + )" (Ey (t; 2°) + Ey (t; 2°)] + E(fo + )" TE(t) +c3(to + 1) J(t; a(x)b(t)u”)

< (tp+ 5P + Py). (2.24)

Integrating (2.24) on the interval [0, t], one can obtain the energy inequality on the whole space:

t t
(to + )P~ (Ey (t; 2) + Ey (¢ 96))+% / (to + T)PFE(T)dT +¢3 f (to + P78 (; a@)b(v)uP)dr
0 0

t
<@+ / (to + 7P (P + P)dr. (2.25)
0

By (2.25) + 1 x (2.10), here w is a small positive parameter determined later, it follows that

(to + )" Ey (t: 2) + (to + 0)*°Ey, (t; 2°) + /0 t %(fo + )P E() — uC(to + ©)*°E(v)de
+c3 /0 t(fo + 0Pt a@b(D)u?)dr + u(te 4+ ) E()
+u /Ot(to + O (15 a@)b()uy) + (to + )P TEE, (v)dT
< Qg +P+Clto+ 0Pt [uf*!) + € /Ot(to + 0y (o P de

t
e / (fo + 1P (x; [ulPde, (2.26)
0

where

t
p= / (to + T)87¢ (P + Py)dr.
0
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Now we choose u sufficiently small; then we can rewrite (2.26) as

(to + OPTTPE(0) + (to + D)P7FJ (65 a@)b(O)u?) < CI5 + P + C(to + 0P8¢5 [ulP™)

t
+ cf (to + )4, (x; [ufPTde
0

t
+ c/ (to + )P (z; [ufPtdr. (2.27)
0
We shall estimate the right hand side of (2.27). We need the following lemma.

Lemma 2.2 (Gagliardo-Nirenberg). Let p,q,r(1 < p,q,r < oo) and o € [0, 1] satisfy

1 1 1 1
,:0<,_,>+(1_0),
p ron q

except for p = oo or r = n when n > 2. Then for some constant C = C(p, q, r, n) > 0, the inequality
Ikl < Cllhllj "I VA, forany h € Cj(R")
holds.

We first estimate (to + £)5+17¢J(t; |u/P*1). From the above lemma, we have

. (1-0)(p+1)/2 . . (p+1)/2
J@t; [Pt < C(/ em'/’uzdx) x (f em'”|vw|2u2dx+/ em'/'|Vu|2dx> (2.28)
R R R

n(p—1
2(p+1)°

witho = Since

errVy? = (ezwa(x)b(t)uz)a(x)—lb(t)—le(%’z)"’
(x)27@ =3 (i—z)uf _
2y 2 pH1 B+(1+B)a/(2—a)
Ce*Vax)b(t)u) |:<(1 n t)1+ﬂ> e\prt X (14+1)
C(1 4 ) FIHAC=0 2V q(x)b(t)u?

IA

IA

and
(x>272a

SN
T+
|

N}
<
o
SN
—
=
+‘.:=.
N}
S—"
<
[g+]
N
<
=
N}

R4 2.2
e TV |“u” < C(1+t)2+2/36

2—2a
2—«a T=a
< Ce%(z%ﬂ)*//ezx// L 2 e%(ﬁ—Z)w x (14 t)—2(l+ﬂ)+(l+ﬁ)(2—2a)/(2—a)u2
= (1 + t)1+ﬂ
<Cc(1+ t)—2(1+/3)/(2—06)82 P+ o2V 2
<Cc1+ t)—2<1+ﬂ)/(2_a)(1 + t)ﬁ+(1+ﬁ)a/(2—a)e21//a(x)b(t)u2!
we can estimate (2.28) as
J(t; |u|P+1) <C(1+ t)[ﬂ+(1+ﬁ)a/(2—a)l(1—rr)(p+1)/21(t; a(x)b(t)UZ)(1—o)(p+])/2
x [(1+ 67V (t; a@)b(t)u?) + E(t)]° P/

and hence
(b0 + O u*h) < C (6 +OMMOPV + (o + MO PD?)
where
o 1—o0 o p+1
V= B+1—8+|:,3+(1+,3)mi| T(P‘Fl)—E(P‘Fl)—(B—S)Tv
o 1-o0 1—-o0 o
Yy = B+1—8+|:/3+(1+,3)1| ——@+1) - B—¢) p+1)—B+1—-e)=(p+1).
22—« 2 2 2

By a simple calculation it follows that if

2
p>1+ ,
n—o
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then by taking ¢ sufficiently small (i.e. § sufficiently small) both y4 and y, are negative. We note that

Ju (€ Py = / & (=) ulPdx
Rn

C
< / e(2+p)1//|u|p+ldx’
1 +t R"

where p is a sufficiently small positive number. Therefore, we can estimate the terms

t t
/ (to + )"y (z; [ulPHdr  and f (to + )P °J (z; ulPTdr
0 0

in the same manner as before. Noting that
d
Prtp= |:(t0 +t)°‘+’3[ ez‘”F(u)dx+/ eV (x )‘HﬁF(u)dx}
2 ¢

+C f e (1+ (to + O (—ye)luPHdx + € / e (1+ (i =y lul*dx,
2 Qc
we have

t
P = / (to + 0P (Py + Py)dr
0

< CI3+C(tg + t)P~* /

e* (to + )T PF(u)dx + C(to + t)5~¢ /
2

e ()PF (u)dx
QC

t t
+c/ (t0+r)3—‘—8/ eV (to + 7)*PF (u)dxdt +cf (to+r)3—1-8/ e ()P F (u)dxdr
0 2 0 ¢
t
+C / (t + 7P f &V (1 + (to + D (— ) ulP* dde
0 7

t
C / (to+17)* f e’ (1+ )5 (=) [ulPHdxde.
0 ¢

We calculate
<>2 o
e ()2 = e 0P (x )z“’

K
« B atp
Ce (fﬁfw L e (A4t )(a+ﬂ)(1+ﬁ)
(1+t)t+p

(a+ﬁ)(1+ﬂ)

IA

IA

Ce(2+/7)‘//(] +1t)

for small p > 0. Noting that w < 1and taking p sufficiently small, we can estimate the terms P in the same manner

as estimating (ty + £)B*1=¢J(t; |u[P*1). Consequently, we have a priori estimate for M (t):

M(t) < CIZ + CM(t)PTV/2,
This shows that the local solution of (1.1) can be extended globally. We note that

eV a(b(t) > c(1+ )" Pz F
with some constant ¢ > 0. Then we have

/ e ax)b(t)utdx > c(1+ t)f(Hﬁ)ﬁ’ﬁ / u?dx.

R" R"
This implies the decay estimate of global solution (1.10) and completes the proof of Theorem 1.1.
Proof of Corollary 1.4. In a similar way to derive (2.29), we have
N w2

/ eV ax)b(t)utdx > c(1+ t) 1P —F / (2A~p1) (1+t)f’ dx.
Rn

R"

By noting that

<X>2—ot

v = Y

(2.29)
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on £2,(t) and Theorem 1.1, it follows that

(146" HP=F f ePAWATO" (2 4 |Vul? + u?)dx
2,(t)
<Cc(1+ t)‘“*f”ﬁ—f’/ A @2 + [Vul? + u?)dx
£2,(t)

< cf eV (u? + |Vul® + a(x)b(t)u®)dx
Rn

< C(+t)7BFe,

Thus, we obtain
(+p)(n—20)
f W + |Vul +ud)dx < C(1+ )" 2-a Tt A-mH0”,
2,(t)

This proves Corollary 1.4. O
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