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a b s t r a c t

In this paper we consider the critical exponent problem for the semilinear wave equation
with space–timedependent damping.When the damping is effective, it is expected that the
critical exponent agrees with that of only the space dependent coefficient case. We shall
prove that there exists a unique global solution for small data if the power of nonlinearity
is larger than the expected exponent. Moreover, we do not assume that the data are
compactly supported. However, it is still open whether there exists a blow-up solution if
the power of nonlinearity is smaller than the expected exponent.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

We consider the Cauchy problem for the semilinear damped wave equation
utt −1u + a(x)b(t)ut = f (u), (t, x) ∈ (0,∞)× Rn,
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn,

(1.1)

where the coefficients of damping are

a(x) = a0⟨x⟩−α, b(t) = (1 + t)−β , with a0 > 0, α, β ≥ 0, α + β < 1,

where ⟨x⟩ = (1+ |x|2)1/2. Here u is a real-valued unknown function and (u0, u1) is in H1(Rn)× L2(Rn). We note that u0 and
u1 need not be compactly supported. The nonlinear term f (u) is given by

f (u) = ±|u|p or |u|p−1u

and the power p satisfies

1 < p ≤
n

n − 2
(n ≥ 3), 1 < p < ∞ (n = 1, 2).

Our aim is to determine the critical exponent pc , which is a number defined by the following property:
If pc < p, all small data solutions of (1.1) are global; if 1 < p ≤ pc , the time-local solution cannot be extended time-

globally for some data.
It is expected that the critical exponent of (1.1) is given by

pc = 1 +
2

n − α
.
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In this paper we shall prove the existence of global solutions with small data when p > 1 + 2/(n − α). However, it is still
open whether there exists a blow-up solution when 1 < p ≤ 1 + 2/(n − α).

When the damping term is missing and f (u) = |u|p, that is
utt −1u = |u|p, (t, x) ∈ (0,∞)× Rn,
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn,

(1.2)

it is well known that the critical exponent pw(n) is the positive root of (n−1)p2 − (n+1)p−2 = 0 for n ≥ 2 (pw(1) = ∞).
This is the famous Strauss conjecture and the proof was completed by the effort of many mathematicians (see [1–10]).

For the linear wave equation with a damping term
utt −1u + c(t, x)ut = 0, (t, x) ∈ (0,∞)× Rn,
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn,

(1.3)

there are many results about the asymptotic behavior of the solution. When c(t, x) = c0 > 0 and (u0, u1) ∈ (H1
∩ L1) ×

(L2 ∩ L1), Matsumura [11] showed that the energy of solutions decays at the same rate as the corresponding heat equation.
When the space dimension is 3, using the exact expression of the solution, Nishihara [12] discovered that the solution of
(1.3) with c(t, x) = 1 is expressed asymptotically by

u(t, x) ∼ v(t, x)+ e−t/2w(t, x),

where v(t, x) is the solution of the corresponding heat equation
vt −1v = 0, (t, x) ∈ (0,∞)× R3,

v(0, x) = u0(x)+ u1(x), x ∈ R3

andw(t, x) is the solution of the free wave equation
wtt −1w = 0, (t, x) ∈ (0,∞)× R3,

w(0, x) = u0(x), wt(0, x) = u1(x), ∈ R3.

These results indicate a diffusive structure of damped wave equations. On the other hand, Mochizuki [13] showed that if
0 ≤ c(t, x) ≤ C(1+|x|)−1−δ , where δ > 0, then the energy of solutions of (1.3) does not decay to 0 for nonzero data and the
solution is asymptotically free. We can interpret this result as (1.3) loses its ‘‘parabolicity’’ and recover its ‘‘hyperbolicity’’.
Wirth [14,15] treated the time-dependent damping case, that is c(t, x) = b(t) in (1.3). By the Fourier transform method,
he got several sharp Lp − Lq estimates of the solution and showed that there exists a diffusive structure for general b(t)
including b(t) = b0(1+t)−β(−1 < β < 1). Todorova and Yordanov [16] considered the case c(t, x) = a(x) = a0⟨x⟩−α with
α ∈ [0, 1) and Kenigson and Kenigson [17] considered space–time dependent coefficient case c(t, x) = a(x)b(t), a(x) =

a0⟨x⟩−α, b(t) = (1+t)−β , (0 ≤ α+β < 1). They established the energy decay estimate that also implies diffusive structure
even in the decaying coefficient cases. From these results, the decay rate −1 of the coefficient of the damping term is the
threshold of parabolicity. This is the reasonwhywe assume α+β < 1 for (1.1). Wemention that recently, Ikehata et al. [18]
treated the case c(t, x) = a0⟨x⟩−1 and obtained almost optimal decay estimates.

There are also many results for the semilinear damped wave equation with absorbing semilinear term:
utt −1u + a(x)b(t)ut + |u|p−1u = 0, (t, x) ∈ (0,∞)× Rn,
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn.

(1.4)

It is well known that there exists a unique global solution even for large initial data. When a(x)b(t) = 1, that is the constant
coefficient case, Kawashima et al. [19], Karch [20], Hayashi et al. [21], Ikehata et al. [22] and Nishihara [23] showed the global
existence of solutions and that their asymptotic profile is given by a constant multiple of the Gauss kernel for 1 + 2/n < p
and n ≤ 4. For 1 < p ≤ 1 + 2/n, Nishihara and Zhao [24], Ikehata et al. [22], Nishihara [23] proved that the decay rate of
the solution agrees with that of a self-similar solution of the corresponding heat equation. Hayashi et al. [25–27,21] proved
the large time asymptotic formulas in terms of the weighted Sobolev spaces. These results indicate the critical exponent for
(1.4) with a(x)b(t) = 1 is given by pc = 1 +

2
n . In this case the critical exponent means the turning point of the asymptotic

behavior of the solution. When b(t) = 1, a(x) = ⟨x⟩−α(0 ≤ α < 1), namely space-dependent damping case, Nishihara [28]
established decay estimates of solutions and conjectured the critical exponent is given by pc = 1 + 2/(n − α). When
a(x) = 1, b(t) = (1 + t)−β(−1 < β < 1), Nishihara and Zhai [29] proved decay estimates of solutions and conjectured
the critical exponent is pc = 1 + 2/n. Finally in the case a(x) = ⟨x⟩−α, b(t) = (1 + t)−β(0 ≤ α + β < 1), Lin et al. [30,31]
showed decay estimates of the solution and conjectured the critical exponent is pc = 1 + 2/(n − α). They used a weighted
energy method, which was originally developed by Todorova and Yordanov [32,33]. In this paper we shall essentially use
the techniques and methods that they used.

Li and Zhou [34] considered the semilinear damped wave equation

utt −1u + ut = |u|p. (1.5)
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They proved that if n ≤ 2, 1 < p ≤ 1 +
2
n and the data are positive on average, then the local solution of (1.5) must blow

up in a finite time. Todorova and Yordanov [32,33] developed a weighted energy method using the function which has the
form e2ψ and determined that the critical exponent of (1.5) is

pc = 1 +
2
n
,

which is well known as Fujita’s critical exponent for the heat equation ut − 1u = up (see [35]). More precisely, they
proved small data global existence in the case p > 1 + 2/n and blow-up for all solutions of (1.5) with positive on average
data in the case 1 < p < 1 + 2/n. Later on Zhang [36] showed that the critical exponent p = 1 + 2/n belongs to the
blow-up region. Wemention that Todorova and Yordanov [32,33] assumed data have compact support and essentially used
this property. However, Ikehata and Tanizawa [37] removed this assumption. Ikehata et al. [38] investigated the space-
dependent coefficient case:

utt −1u + a(x)ut = |u|p, (1.6)

where

a(x) ∼ a0⟨x⟩−α, |x| → ∞, radially symmetric and 0 ≤ α < 1.

They proved that the critical exponent of (1.5) is given by

pc = 1 +
2

n − α

by using a refined multiplier method. Their method also depends on the finite propagation speed property. Recently,
Nishihara [39] and Lin et al. [31] considered the semilinear wave equation with time-dependent damping

utt −1u + b(t)ut = |u|p, (1.7)

where

b(t) = b0(1 + t)−β , β ∈ (−1, 1).

They proved that the critical exponent of (1.7) is

pc = 1 +
2
n
.

This shows that, roughly speaking, time-dependent coefficients of damping term do not influence the critical exponent.
Therefore we expect that the critical exponent of the semilinear wave equation (1.1) is

pc = 1 +
2

n − α
.

To state our results, we introduce an auxiliary function

ψ(t, x) := A
⟨x⟩2−α

(1 + t)1+β
(1.8)

with

A =
(1 + β)a0

(2 − α)2(2 + δ)
, δ > 0. (1.9)

This type of weight function was first introduced by Ikehata and Tanizawa [37]. We have the following result:

Theorem 1.1. If

p > 1 +
2

n − α
,

then there exists a small positive number δ0 > 0 such that for any 0 < δ ≤ δ0 the following holds: If

I20 :=


Rn

e2ψ(0,x)(u2
1 + |∇u0|

2
+ |u0|

2)dx

is sufficiently small, then there exists a unique solution u ∈ C([0,∞);H1(Rn)) ∩ C1([0,∞); L2(Rn)) to (1.1) satisfying
Rn

e2ψ(t,x)|u(t, x)|2dx ≤ Cδ(1 + t)−(1+β)
n−2α
2−α +ε, (1.10)

Rn
e2ψ(t,x)(|ut(t, x)|2 + |∇u(t, x)|2)dx ≤ Cδ(1 + t)−(1+β)(

n−α
2−α+1)+ε,
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where

ε = ε(δ) :=
3(1 + β)(n − α)

2(2 − α)(2 + δ)
δ (1.11)

and Cδ is a constant depending on δ.

Remark 1.2. When 1 < p ≤ 1 + 2/(n − α), it is expected that no matter how small the data are, if the data have some
shape, then the corresponding local solution blows up in finite time. However, we have no result.

Remark 1.3. We do not assume that the data are compactly supported. Hence our result is an extension of the results of
Ikehata et al. [38] to noncompactly supported data cases. However, we prove only the case a(x) = a0⟨x⟩−α .

As a consequence of the main theorem, we have an exponential decay estimate outside a parabolic region.

Corollary 1.4. If

p > 1 +
2

n − α
,

then there exists a small positive number δ0 > 0 such that for any 0 < δ ≤ δ0 the following holds: Take ρ and µ so small that

0 < ρ < 1 − α − β, and 0 < µ < 2A,

and put

Ωρ(t) := {x ∈ Rn
; ⟨x⟩2−α ≥ (1 + t)1+β+ρ

}.

Then, for the global solution u in Theorem 1.1, we have the following estimate
Ωρ (t)

(u2
t + |∇u|2 + u2)dx ≤ Cδ,ρ,µ(1 + t)−

(1+β)(n−2α)
2−α +εe−(2A−µ)(1+t)ρ , (1.12)

here ε is defined by (1.11) and Cδ,ρ,µ is a constant depending on δ, ρ and µ.

Namely, the decay rate of solution in the region Ωρ(t) is exponential. We note that the support of u(t) and the region
Ωρ(t) can intersect even if the data are compactly supported. This phenomenon was first discovered by Todorova and
Yordanov [33]. We can interpret this result as follows: The support of the solution is strongly suppressed by damping, so
that the solution is concentrated in the parabolic region much smaller than the light cone.

2. Proof of Theorem 1.1

In this section we prove our main result. At first we prepare some notation and terminology. We put

∥f ∥Lp(Rn) :=


Rn

|f (x)|pdx
1/p

, ∥u∥ := ∥u∥L2(Rn).

By H1(Rn)we denote the usual Sobolev space. For an interval I and a Banach space X , we define C r(I; X) as the Banach space
whose element is an r-times continuously differentiable mapping from I to X with respect to the topology in X . The letter C
indicates the generic constant, which may change from one line to the next line.

To prove Theorem 1.1, we use a weighted energy method which was originally developed by Todorova and Yordanov
[32,33]. We first describe the local existence:

Proposition 2.1. For any δ > 0, there exists Tm ∈ (0,+∞] depending on I20 such that the Cauchy problem (1.1) has a unique
solution u ∈ C([0, Tm);H1(Rn)) ∩ C1([0, Tm); L2(Rn)), and if Tm < +∞ then we have

lim inf
t→Tm


Rn

eψ(t,x)(u2
t + |∇u|2 + u2)dx = +∞.

We can prove this proposition by standard arguments (see [37]). We prove an a priori estimate for the following functional:

M(t) := sup
0≤τ<t


(1 + τ)B+1−ε


Rn

e2ψ (u2
t + |∇u|2)dx + (1 + τ)B−ε


Rn

e2ψa(x)b(t)u2dx

, (2.1)

where

B :=
(1 + β)(n − α)

2 − α
+ β
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and ε is given by (1.11). From (1.8), (1.9), it is easy to see that

−ψt =
1 + β

1 + t
ψ, (2.2)

∇ψ = A
(2 − α)⟨x⟩−αx
(1 + t)1+β

, (2.3)

1ψ = A(2 − α)(n − α)
⟨x⟩−α

(1 + t)1+β
+ A(2 − α)α

⟨x⟩−2−α

(1 + t)1+β

≥
(1 + β)(n − α)

(2 − α)(2 + δ)

a(x)b(t)
1 + t

=:


(1 + β)(n − α)

2(2 − α)
− δ1


a(x)b(t)
1 + t

. (2.4)

Here and after, δi(i = 1, 2, . . .) is a positive constant depending only on δ such that

δi → 0+ as δ → 0+.

We also have

(−ψt)a(x)b(t) = Aa0(1 + β)
⟨x⟩2−2α

(1 + t)2+2β

≥
a0(1 + β)

(2 − α)2A
A2(2 − α)2

⟨x⟩−2α
|x|2

(1 + t)2+2β

= (2 + δ)|∇ψ |
2. (2.5)

By multiplying (1.1) by e2ψut , it follows that

∂

∂t


e2ψ

2
(u2

t + |∇u|2)


− ∇ · (e2ψut∇u)+ e2ψ

a(x)b(t)−

|∇ψ |
2

−ψt
− ψt


u2
t +

e2ψ

−ψt
|ψt∇u − ut∇ψ |

2  
T1

=
∂

∂t


e2ψF(u)


+ 2e2ψ (−ψt)F(u), (2.6)

where F is the primitive of f satisfying F(0) = 0, namely F ′(u) = f (u). Using the Schwarz inequality and (2.5), we can
calculate

T1 =
e2ψ

−ψt
(ψ2

t |∇u|2 − 2ψtut∇u · ∇ψ + u2
t |∇ψ |

2)

≥
e2ψ

−ψt


1
5
ψ2

t |∇u|2 −
1
4
u2
t |∇ψ |

2


≥ e2ψ

1
5
(−ψt)|∇u|2 −

a(x)b(t)
4(2 + δ)

u2
t


.

From this and (2.5), we obtain

∂

∂t


e2ψ

2
(u2

t + |∇u|2)


− ∇ · (e2ψut∇u)+ e2ψ


1
4
a(x)b(t)− ψt


u2
t +

−ψt

5
|∇u|2


≤
∂

∂t


e2ψF(u)


+ 2e2ψ (−ψt)F(u). (2.7)

By multiplying (2.7) by (t0 + t)B+1−ε , here t0 ≥ 1 is determined later, it follows that

∂

∂t


(t0 + t)B+1−ε e

2ψ

2
(u2

t + |∇u|2)


− (B + 1 − ε)(t0 + t)B−ε
e2ψ

2
(u2

t + |∇u|2)

− ∇ · ((t0 + t)B+1−εe2ψut∇u)+ e2ψ (t0 + t)B+1−ε


1
4
a(x)b(t)− ψt


u2
t +

−ψt

5
|∇u|2


≤
∂

∂t


(t0 + t)B+1−εe2ψF(u)


− (B + 1 − ε)(t0 + t)B−εe2ψF(u)+ 2(t0 + t)B+1−εe2ψ (−ψt)F(u). (2.8)
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We put

E(t) :=


Rn

e2ψ (u2
t + |∇u|2)dx, Eψ (t) :=


Rn

e2ψ (−ψt)(u2
t + |∇u|2)dx,

J(t; g) :=


Rn

e2ψgdx, Jψ (t; g) :=


Rn

e2ψ (−ψt)gdx.

Integrating (2.8) over the whole space, we have

1
2

d
dt


(t0 + t)B+1−εE(t)


−

1
2
(B + 1 − ε)(t0 + t)B−εE(t)

+
1
4
(t0 + t)B+1−εJ(t, a(x)b(t)u2

t )+
1
5
(t0 + t)B+1−εEψ (t)

≤
d
dt


(t0 + t)B+1−ε


e2ψF(u)dx


+ C(t0 + t)B+1−εJψ (t; |u|p+1)+ C(t0 + t)B−εJ(t; |u|p+1). (2.9)

Therefore, we integrate (2.9) on the interval [0, t] and obtain the estimate for (t0 + t)B+1−εE(t), which is the first term of
M(t):

(t0 + t)B+1−εE(t)− C
 t

0
(t0 + τ)B−εE(τ )dτ +

 t

0
(t0 + τ)B+1−εJ(τ ; a(x)b(t)u2

t )+ (t0 + τ)B+1−εEψ (τ )dτ

≤ CI20 + C(t0 + t)B+1−εJ(t; |u|p+1)+ C
 t

0
(t0 + τ)B+1−εJψ (τ ; |u|p+1)dτ

+ C
 t

0
(t0 + t)B−εJ(τ ; |u|p+1)dτ . (2.10)

In order to complete the a priori estimate, however, we have to manage the second term of the inequality above whose sign
is negative, andwe also have to estimate the second term ofM(t). The following argument, which is littlemore complicated,
can settle both these problems.

At first, we multiply (1.1) by e2ψu and have

∂

∂t


e2ψ


uut +

a(x)b(t)
2

u2


− ∇ · (e2ψu∇u)

+ e2ψ

|∇u|2 +


−ψt +

β

2(1 + t)


a(x)b(t)u2

+ 2u∇ψ · ∇u  
T2

−2ψtuut − u2
t


= e2ψuf (u). (2.11)

We calculate

e2ψT2 = 4e2ψu∇ψ · ∇u − 2e2ψu∇ψ · ∇u
= 4e2ψu∇ψ · ∇u − ∇ · (e2ψu2

∇ψ)+ 2e2ψu2
|∇ψ |

2
+ e2ψ (1ψ)u2

and by (2.4) we can rewrite (2.11) to

∂

∂t


e2ψ


uut +

a(x)b(t)
2

u2


− ∇ · (e2ψ (u∇u + u2
∇ψ))

+ e2ψ


|∇u|2 + 4u∇u · ∇ψ + ((−ψt)a(x)b(t)+ 2|∇ψ |
2)u2  

T3

+ (B − 2δ1)
a(x)b(t)
2(1 + t)

u2
− 2ψtuut − u2

t


≤ e2ψuf (u). (2.12)

It follows from (2.5) that

T3 = |∇u|2 + 4u∇u · ∇ψ +


1 −

δ

3


(−ψt)a(x)b(t)+ 2|∇ψ |

2

u2

+
δ

3
(−ψt)a(x)b(t)u2

≥ |∇u|2 + 4u∇u · ∇ψ +


4 +

δ

3
−
δ2

3


|∇ψ |

2u2
+
δ

3
(−ψt)a(x)b(t)u2
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=


1 −

4
4 + δ2


|∇u|2 + δ2|∇ψ |

2u2
+

 2
√
4 + δ2

∇u +


4 + δ2u∇ψ

2 +
δ

3
(−ψt)a(x)b(t)u2

≥ δ3(|∇u|2 + |∇ψ |
2u2)+

δ

3
(−ψt)a(x)b(t)u2,

where

δ2 :=
δ

6
−
δ2

6
, δ3 := min


1 −

4
4 + δ2

, δ2


.

Thus, we obtain
∂

∂t


e2ψ


uut +

a(x)b(t)
2

u2


− ∇ · (e2ψ (u∇u + u2
∇ψ))+ e2ψδ3|∇u|2

+ e2ψ

δ3|∇ψ |

2
+
δ

3
(−ψt)a(x)b(t)+ (B − 2δ1)

a(x)b(t)
2(1 + t)


u2

+ e2ψ (−2ψtuut − u2
t )

≤ e2ψuf (u). (2.13)

Following Nishihara [30], related to the size of 1 + |x|2 and the size of (1 + t)2, we divide the space Rn into two different
zonesΩ(t; K , t0) andΩc(t; K , t0), where

Ω = Ω(t; K , t0) := {x ∈ Rn
; (t0 + t)2 ≥ K + |x|2},

andΩc
= Ωc(t; K , t0) := Rn

\ Ω(t; K , t0) with K ≥ 1 determined later. Since a(x)b(t) ≥ a0(t + t0)−(α+β) in the domain
Ω , we multiply (2.7) by (t0 + t)α+β and obtain

∂

∂t


e2ψ

2
(t0 + t)α+β(u2

t + |∇u|2)


− ∇ · (e2ψ (t0 + t)α+βut∇u)+ e2ψ


a0
4

−
α + β

2(t0 + t)1−α−β


+ (t0 + t)α+β(−ψt)


u2
t + e2ψ


−ψt

5
(t0 + t)α+β

−
α + β

2(t0 + t)1−α−β


|∇u|2

≤
∂

∂t
[(t0 + t)α+βe2ψF(u)] −

α + β

(t0 + t)1−α−β
e2ψF(u)+ 2(t0 + t)α+βe2ψ (−ψt)F(u). (2.14)

Let ν be a small positive number depending on δ, which will be chosen later. By (2.14) + ν(2.13), we have

∂

∂t


e2ψ


(t0 + t)α+β

2
u2
t + νuut +

νa(x)b(t)
2

u2
+
(t0 + t)α+β

2
|∇u|2


− ∇ · (e2ψ (t0 + t)α+βut∇u

+ νe2ψ (u∇u + u2
∇ψ))+ e2ψ


a0
4

−
α + β

2(t0 + t)1−α−β
− ν


+ (t0 + t)α+β(−ψt)


u2
t

+ e2ψ

νδ3 −

α + β

2(t0 + t)1−α−β
+

−ψt

5
(t0 + t)α+β


|∇u|2

+ e2ψν

δ3|∇ψ |

2
+
δ

3
(−ψt)a(x)b(t)+ (B − 2δ1)

a(x)b(t)
2(1 + t)


u2

+ 2νe2ψ (−ψt)uut

≤
∂

∂t
[(t0 + t)α+βe2ψF(u)] −

α + β

(t0 + t)1−α−β
e2ψF(u)+ 2(t0 + t)α+βe2ψ (−ψt)F(u)+ νe2ψuf (u). (2.15)

By the Schwarz inequality, the last term of the left hand side in the above inequality can be estimated as

|2ν(−ψt)uut | ≤
νδ

3
(−ψt)a(x)b(t)u2

+
3ν
a0δ

(−ψt)(t0 + t)α+βu2
t .

Thus, we have

∂

∂t


e2ψ


(t0 + t)α+β

2
u2
t + νuut +

νa(x)b(t)
2

u2
+
(t0 + t)α+β

2
|∇u|2


− ∇ · (e2ψ (t0 + t)α+βut∇u

+ νe2ψ (u∇u + u2
∇ψ))+ e2ψ


a0
4

−
α + β

2(t0 + t)1−α−β
− ν


+


1 −

3ν
a0δ


(t0 + t)α+β(−ψt)


u2
t

+ e2ψ

νδ3 −

α + β

2(t0 + t)1−α−β
+

−ψt

5
(t0 + t)α+β


|∇u|2 + e2ψ


ν


δ3|∇ψ |

2
+ (B − 2δ1)

a(x)b(t)
2(1 + t)


u2

≤
∂

∂t
[(t0 + t)α+βe2ψF(u)] −

α + β

(t0 + t)1−α−β
e2ψF(u)+ 2(t0 + t)α+βe2ψ (−ψt)F(u)+ νe2ψuf (u). (2.16)
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Now we choose the parameters ν and t0 such that

a0
4

−
α + β

2(t0 + t)1−α−β
− ν ≥ c0, 1 −

3ν
a0δ

≥ c0,

νδ3 −
α + β

2(t0 + t)1−α−β
≥ c0, νδ3 ≥ c0,

1
5

≥ c0,

hold for some constant c0 > 0. This is possible because we first determine ν sufficiently small depending on δ and then we
choose t0 sufficiently large depending on ν. Therefore, integrating (2.16) onΩ , we obtain the following energy inequality:

d
dt

Eψ (t;Ω(t; K , t0))− N1(t)− M1(t)+ Hψ (t;Ω(t; K , t0)) ≤ P1, (2.17)

where

Eψ (t;Ω) = Eψ (t;Ω(t; K , t0))

:=


Ω

e2ψ

(t0 + t)α+β

2
u2
t + νuut +

νa(x)b(t)
2

u2
+
(t0 + t)α+β

2
|∇u|2


dx,

N1(t) :=


Sn−1

e2ψ

(t0 + t)α+β

2
u2
t + νuut +

νa(x)b(t)
2

u2
+
(t0 + t)α+β

2
|∇u|2


|x|=

√
(t0+t)2−K

× [(t0 + t)2 − K ]
(n−1)/2dθ ·

d
dt


(t0 + t)2 − K ,

M1(t) :=


∂Ω

(e2ψ (t0 + t)α+βut∇u + νe2ψ (u∇u + u2
∇ψ)) · n⃗dS,

Hψ (t;Ω) = Hψ (t;Ω(t; K , t0))

:= c0


Ω

e2ψ (1 + (t0 + t)α+β(−ψt))(u2
t + |∇u|2)dx + ν(B − 2δ1)


Ω

e2ψa(x)b(t)
2(1 + t)

u2dx,

P1 :=
d
dt


(t0 + t)α+β


Ω

e2ψF(u)dx


−


Sn−1

(t0 + t)α+βe2ψF(u)

|x|=

√
(t0+t)2−K

× [(t0 + t)2 − K ]
(n−1)/2dθ ·

d
dt


(t0 + t)2 − K + C


Ω

e2ψ (1 + (t0 + t)α+β(−ψt))|u|p+1dx.

Here n⃗ denotes the unit outer normal vector of ∂Ω . We note that by ν ≤ a0/4 and

|νuut | ≤
νa(x)b(t)

4
u2

+
ν(t0 + t)α+β

a0
u2
t ,

it follows that

c

Ω

e2ψ (t0 + t)α+β(u2
t + |∇u|2)dx + c


Ω

e2ψa(x)b(t)u2dx ≤ Eψ (t;Ω(t; K , t0))

≤ C

Ω

e2ψ (t0 + t)α+β(u2
t + |∇u|2)dx

+ C

Ω

e2ψa(x)b(t)u2dx

for some constants c > 0 and C > 0.
Next, we derive an energy inequality in the domainΩc . We use the notation

⟨x⟩K := (K + |x|2)1/2.

Since a(x)b(t) ≥ a0⟨x⟩
−(α+β)

K inΩc(t, ; K , t0), we multiply (2.7) by ⟨x⟩α+β

K and obtain

∂

∂t


e2ψ

2
⟨x⟩α+β

K (u2
t + |∇u|2)


− ∇ · (e2ψ ⟨x⟩α+β

K ut∇u)+ e2ψ
a0
4

+ (−ψt)⟨x⟩
α+β

K


u2
t

+
1
5
e2ψ (−ψt)⟨x⟩

α+β

K |∇u|2 + (α + β)e2ψ ⟨x⟩α+β−2
K x · ut∇u

≤
∂

∂t
[e2ψ ⟨x⟩α+β

K F(u)] + 2e2ψ ⟨x⟩α+β

K (−ψt)F(u). (2.18)
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By (2.18) + ν̂ × (2.13), here ν̂ is a small positive parameter determined later, it follows that

∂

∂t


e2ψ


⟨x⟩α+β

K

2
u2
t + ν̂uut +

ν̂a(x)b(t)
2

u2
+

⟨x⟩α+β

K

2
|∇u|2


− ∇ · (e2ψ ⟨x⟩α+β

K ut∇u

+ ν̂e2ψ (u∇u + u2
∇ψ))+ e2ψ

a0
4

− ν̂ + (−ψt)⟨x⟩
α+β

K


u2
t + e2ψ


ν̂δ3 +

−ψt

5
⟨x⟩α+β

K


|∇u|2

+ e2ψ

ν̂


δ3|∇ψ |

2
+
δ

3
(−ψt)a(x)b(t)+ (B − 2δ1)

a(x)b(t)
2(1 + t)


u2

+ e2ψ [(α + β)⟨x⟩α+β−2
K x · ut∇u − 2ν̂ψtuut  

T4

]

≤
∂

∂t


e2ψ ⟨x⟩α+β

K F(u)


+ 2e2ψ ⟨x⟩α+β

K (−ψt)F(u)+ ν̂e2ψuf (u). (2.19)

The terms T4 can be estimated as

|(α + β)⟨x⟩α+β−2
K x · ut∇u| ≤

ν̂δ3

2
|∇u|2 +

(α + β)2

2ν̂δ3K 2(1−α−β)
u2
t ,

|2ν̂(−ψt)uut | ≤
ν̂δ

3
(−ψt)a(x)b(t)u2

+
3ν̂
a0δ

(−ψt)⟨x⟩
α+β

K u2
t .

From this we can rewrite (2.19) as

∂

∂t


e2ψ


⟨x⟩α+β

K

2
u2
t + ν̂uut +

ν̂a(x)b(t)
2

u2
+

⟨x⟩α+β

K

2
|∇u|2


− ∇ · (e2ψ ⟨x⟩α+β

K ut∇u

+ ν̂e2ψ (u∇u + u2
∇ψ))+ e2ψ


a0
4

− ν̂ −
(α + β)2

2ν̂δ3K 2(1−α−β)


+


1 −

3ν̂
a0δ


(−ψt)⟨x⟩

α+β

K


u2
t

+ e2ψ

ν̂δ3

2
+

−ψt

5
⟨x⟩α+β

K


|∇u|2 + e2ψ


ν̂


δ3|∇ψ |

2
+ (B − 2δ1)

a(x)b(t)
2(1 + t)


u2

≤
∂

∂t


e2ψ ⟨x⟩α+β

K F(u)


+ 2e2ψ ⟨x⟩α+β

K (−ψt)F(u)+ ν̂e2ψuf (u). (2.20)

Now we choose the parameters ν̂ and K in the same manner as before. Indeed taking ν̂ sufficiently small depending on δ
and then choosing K sufficiently large depending on ν̂, we can obtain

a0
4

− ν̂ −
(α + β)2

2ν̂δ3K 2(1−α−β)
≥ c1, 1 −

3ν̂
a0δ

≥ c1, νδ3 ≥ c1,
1
5

≥ c1

for some constant c1 > 0. Consequently, By integrating (2.20) onΩc , the energy inequality onΩc follows:

d
dt

Eψ (t;Ωc(t; K , t0))+ N2(t)+ M2(t)+ Hψ (t;Ωc(t; K , t0)) ≤ P2, (2.21)

where

Eψ (t;Ωc) = Eψ (t;Ωc(t; K , t0))

:=


Ωc

e2ψ


⟨x⟩α+β

K

2
u2
t + ν̂uut +

ν̂a(x)b(t)
2

u2
+

⟨x⟩α+β

K

2
|∇u|2


dx,

N2(t) :=


Sn−1

e2ψ


⟨x⟩α+β

K

2
u2
t + ν̂uut +

ν̂a(x)b(t)
2

u2
+

⟨x⟩α+β

K

2
|∇u|2


|x|=

√
(t0+t)2−K

× [(t0 + t)2 − K ]
(n−1)/2dθ ·

d
dt


(t0 + t)2 − K ,

M2(t) :=


∂Ωc
(e2ψ ⟨x⟩α+β

K ut∇u + ν̂e2ψ (u∇u + u2
∇ψ)) · n⃗dS,

Hψ (t;Ωc) = Hψ (t;Ωc(t; K , t0))

:= c1


Ω

e2ψ (1 + ⟨x⟩α+β

K (−ψt))(u2
t + |∇u|2)dx + ν̂(B − 2δ1)


Ωc

e2ψa(x)b(t)
2(1 + t)

u2dx,



Y. Wakasugi / J. Math. Anal. Appl. 393 (2012) 66–79 75

P2 :=
d
dt


Ωc

e2ψ ⟨x⟩α+β

K F(u)dx


+


Sn−1

⟨x⟩α+β

K e2ψF(u)

|x|=

√
(t0+t)2−K

× [(t0 + t)2 − K ]
(n−1)/2dθ ·

d
dt


(t0 + t)2 − K + C


Ωc

e2ψ (1 + ⟨x⟩α+β

K (−ψt))|u|p+1dx.

In a similar way as for the case inΩ , we note that

c

Ωc

e2ψ (t0 + t)α+β(u2
t + |∇u|2)dx + c


Ωc

e2ψa(x)b(t)u2dx ≤ Eψ (t;Ωc(t; K , t0))

≤ C

Ωc

e2ψ (t0 + t)α+β(u2
t + |∇u|2)dx + C


Ωc

e2ψa(x)b(t)u2dx

for some constants c > 0 and C > 0.
We add the energy inequalities onΩ andΩc . We note that replacing ν and ν̂ by ν0 := min{ν, ν̂}, we can still have the

inequalities (2.17) and (2.21), provided that we retake t0 and K larger.
By ((2.17) + (2.21))× (t0 + t)B−ε , we have

d
dt

[(t0 + t)B−ε(Eψ (t;Ω)+ Eψ (t;Ωc))]

− (B − ε)(t0 + t)B−1−ε(Eψ (t;Ω)+ Eψ (t;Ωc))  
T5

+ (t0 + t)B−ε(Hψ (t;Ω)+ Hψ (t;Ωc))  
T6

≤ (t0 + t)B−ε(P1 + P2), (2.22)

here we note that

N1(t) = N2(t), M1(t) = M2(t)

on ∂Ω . Since

|ν0uut | ≤
ν0δ4

2
a(x)b(t)u2

+
ν0

2δ4a0
(t0 + t)α+βu2

t

onΩ and

|ν0uut | ≤
ν0δ4

2
a(x)b(t)u2

+
ν0

2δ4a0
⟨x⟩α+β

K u2
t

onΩc , we have

− T5 + T6 ≥ (t0 + t)B−εI1 + (t0 + t)B−εI2, (2.23)

where

I1 :=


Ω

e2ψ

c0
2
(1 + (t0 + t)α+β(−ψt))−

B − ε

2(t0 + t)


1 +

2ν0
δ4a0


(t0 + t)α+β


u2
t

+ e2ψ

c0
2
(1 + (t0 + t)α+β(−ψt))−

B − ε

2(t0 + t)
(t0 + t)α+β


|∇u|2dx

+


Ωc

e2ψ

c1
2
(1 + ⟨x⟩α+β

K (−ψt))−
B − ε

2(t0 + t)


1 +

2ν0
δ4a0


⟨x⟩α+β

K


u2
t

+ e2ψ

c1
2
(1 + ⟨x⟩α+β

K (−ψt))−
B − ε

2(t0 + t)
⟨x⟩α+β

K


|∇u|2dx

=: I11 + I12,

I2 := ν0(B − 2δ1 − (1 + δ4)(B − ε))


Ω

+


Ωc


e2ψ

a(x)b(t)
2(1 + t)

u2dx +
c2
2


Rn

e2ψ (u2
t + |∇u|2)dx,

where c2 := min(c0, c1). Recall the definition of ε and δ1 (i.e. (1.11) and (2.4)). A simple calculation shows ε = 3δ1. Choosing
δ4 sufficiently small depending on ε, we have

(t0 + t)B−εI2 ≥ c3(t0 + t)B−1−ε

Rn

e2ψa(x)b(t)u2dx +
c2
2
(t0 + t)B−εE(t)

for some constant c3 > 0. Next, we prove that I1 ≥ 0. By noting that α + β < 1, it is easy to see that I11 ≥ 0 if we retake t0
larger depending on c0, ν0 and δ4. To estimate I12, we further divide the regionΩc into

Ωc(t; K , t0) = (Ωc(t; K , t0) ∩ΣL) ∪ (Ωc(t; K , t0) ∩Σ c
L ),
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where

ΣL := {x ∈ Rn
; ⟨x⟩2−α ≤ L(1 + t)1+β}, Σ c

L := Rn
\ΣL

with L ≫ 1 determined later. First, since K + |x|2 ≤ K(1 + |x|2) ≤ KL2/(2−α)(1 + t)2(1+β)/(2−α) onΩc
∩ΣL, we have

c1
2
(1 + ⟨x⟩α+β

K (−ψt))−
B − ε

2(t0 + t)


1 +

2ν0
δ4a0


⟨x⟩α+β

K

≥
c1
2

−
B − ε

2(t0 + t)


1 +

2ν0
δ4a0


K (α+β)/2L(α+β)/(2−α)(1 + t)

(1+β)(α+β)
2−α .

We note that −1 +
(1+β)(α+β)

2−α < 0 by α + β < 1. Thus, we obtain

c1
2

−
B − ε

2(t0 + t)


1 +

2ν0
δ4a0


K (α+β)/2L(α+β)/(2−α)(1 + t)

(1+β)(α+β)
2−α ≥ 0

for large t0 depending on L and K . Secondly, onΩc
∩Σ c

L , we have

c1
2
(1 + ⟨x⟩α+β

K (−ψt))−
B − ε

2(t0 + t)


1 +

2ν0
δ4a0


⟨x⟩α+β

K

≥


c1
2
(1 + β)

⟨x⟩2−α

(1 + t)2+β
−

B − ε

2(t0 + t)


1 +

2ν0
δ4a0


⟨x⟩α+β

K

≥


c1
2
(1 + β)

L
1 + t

−
B − ε

2(t0 + t)


1 +

2ν0
δ4a0


⟨x⟩α+β

K .

Therefore one can obtain I12 ≥ 0, provided that L ≥
B−ε

c1(1+β)
(1+

2ν0
δ4a0

). Consequently, we have I1 ≥ 0. By (2.23) and what we
mentioned above, it follows that

−T5 + T6 ≥ c3(t0 + t)B−1−ε

Rn

e2ψa(x)b(t)u2dx +
c2
2
(t0 + t)B−εE(t).

Therefore, we have

d
dt

[(t0 + t)B−ε(Eψ (t;Ωc)+ Eψ (t;Ωc))] +
c2
2
(t0 + t)B−εE(t)+ c3(t0 + t)B−1−εJ(t; a(x)b(t)u2)

≤ (t0 + t)B−ε(P1 + P2). (2.24)

Integrating (2.24) on the interval [0, t], one can obtain the energy inequality on the whole space:

(t0 + t)B−ε(Eψ (t;Ω)+ Eψ (t;Ωc))+
c2
2

 t

0
(t0 + τ)B−εE(τ )dτ + c3

 t

0
(t0 + τ)B−1−εJ(τ ; a(x)b(τ )u2)dτ

≤ CI20 +

 t

0
(t0 + τ)B−ε(P1 + P2)dτ . (2.25)

By (2.25) + µ× (2.10), here µ is a small positive parameter determined later, it follows that

(t0 + t)B−εEψ (t;Ω)+ (t0 + t)B−εEψ (t;Ωc)+

 t

0

c2
2
(t0 + τ)B−εE(τ )− µC(t0 + τ)B−εE(τ )dτ

+ c3

 t

0
(t0 + τ)B−1−εJ(τ ; a(x)b(τ )u2)dτ + µ(t0 + t)B+1−εE(t)

+µ

 t

0
(t0 + τ)B+1−εJ(τ ; a(x)b(τ )u2

t )+ (t0 + τ)B+1−εEψ (τ )dτ

≤ CI20 + P + C(t0 + t)B+1−εJ(t; |u|p+1)+ C
 t

0
(t0 + τ)B+1−εJψ (τ ; |u|p+1)dτ

+ C
 t

0
(t0 + τ)B−εJ(τ ; |u|p+1)dτ , (2.26)

where

P =

 t

0
(t0 + τ)B−ε(P1 + P2)dτ .
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Now we choose µ sufficiently small; then we can rewrite (2.26) as

(t0 + t)B+1−εE(t)+ (t0 + t)B−εJ(t; a(x)b(t)u2) ≤ CI20 + P + C(t0 + t)B+1−εJ(t; |u|p+1)

+ C
 t

0
(t0 + τ)B+1−εJψ (τ ; |u|p+1)dτ

+ C
 t

0
(t0 + τ)B−εJ(τ ; |u|p+1)dτ . (2.27)

We shall estimate the right hand side of (2.27). We need the following lemma.

Lemma 2.2 (Gagliardo–Nirenberg). Let p, q, r(1 ≤ p, q, r ≤ ∞) and σ ∈ [0, 1] satisfy

1
p

= σ


1
r

−
1
n


+ (1 − σ)

1
q

except for p = ∞ or r = n when n ≥ 2. Then for some constant C = C(p, q, r, n) > 0, the inequality

∥h∥Lp ≤ C∥h∥1−σ
Lq ∥∇h∥σLr , for any h ∈ C1

0 (R
n)

holds.

We first estimate (t0 + t)B+1−εJ(t; |u|p+1). From the above lemma, we have

J(t; |u|p+1) ≤ C


Rn
e

4
p+1ψu2dx

(1−σ)(p+1)/2

×


Rn

e
4

p+1ψ |∇ψ |
2u2dx +


Rn

e
4

p+1ψ |∇u|2dx
σ(p+1)/2

(2.28)

with σ =
n(p−1)
2(p+1) . Since

e
4

p+1ψu2
= (e2ψa(x)b(t)u2)a(x)−1b(t)−1e


4

p+1 −2

ψ

≤ C(e2ψa(x)b(t)u2)


⟨x⟩2−α

(1 + t)1+β

 α
2−α

e


4
p+1 −2


ψ


× (1 + t)β+(1+β)α/(2−α)

≤ C(1 + t)β+(1+β)α/(2−α)e2ψa(x)b(t)u2

and

e
4

(p+1)ψ |∇ψ |
2u2

≤ C
⟨x⟩2−2α

(1 + t)2+2β
e

1
2


4

p+1 −2

ψe

1
2


4

p+1 −2

ψe2ψu2

≤ Ce
1
2


4

p+1 −2

ψe2ψ

 ⟨x⟩2−α

(1 + t)1+β

 2−2α
2−α

e
1
2


4

p+1 −2

ψ

× (1 + t)−2(1+β)+(1+β)(2−2α)/(2−α)u2

≤ C(1 + t)−2(1+β)/(2−α)e
1
2


4

p+1 −2

ψe2ψu2

≤ C(1 + t)−2(1+β)/(2−α)(1 + t)β+(1+β)α/(2−α)e2ψa(x)b(t)u2,

we can estimate (2.28) as

J(t; |u|p+1) ≤ C(1 + t)[β+(1+β)α/(2−α)](1−σ)(p+1)/2J(t; a(x)b(t)u2)(1−σ)(p+1)/2

× [(1 + t)−1J(t; a(x)b(t)u2)+ E(t)]σ(p+1)/2

and hence

(t0 + t)B+1−εJ(t; |u|p+1) ≤ C

(t0 + t)γ1M(t)(p+1)/2

+ (t0 + t)γ2M(t)(p+1)/2 ,
where

γ1 = B + 1 − ε +


β + (1 + β)

α

2 − α


1 − σ

2
(p + 1)−

σ

2
(p + 1)− (B − ε)

p + 1
2

,

γ2 = B + 1 − ε +


β + (1 + β)

α

2 − α


1 − σ

2
(p + 1)− (B − ε)

1 − σ

2
(p + 1)− (B + 1 − ε)

σ

2
(p + 1).

By a simple calculation it follows that if

p > 1 +
2

n − α
,
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then by taking ε sufficiently small (i.e. δ sufficiently small) both γ1 and γ2 are negative. We note that

Jψ (t; |u|p+1) =


Rn

e2ψ (−ψt)|u|p+1dx

≤
C

1 + t


Rn

e(2+ρ)ψ |u|p+1dx,

where ρ is a sufficiently small positive number. Therefore, we can estimate the terms t

0
(t0 + τ)B+1−εJψ (τ ; |u|p+1)dτ and

 t

0
(t0 + τ)B−εJ(τ ; |u|p+1)dτ

in the same manner as before. Noting that

P1 + P2 =
d
dt


(t0 + t)α+β


Ω

e2ψF(u)dx +


Ωc

e2ψ ⟨x⟩α+β

K F(u)dx


+ C

Ω

e2ψ (1 + (t0 + t)α+β(−ψt))|u|p+1dx + C

Ωc

e2ψ (1 + ⟨x⟩α+β

K (−ψt))|u|p+1dx,

we have

P =

 t

0
(t0 + τ)B−ε(P1 + P2)dτ

≤ CI20 + C(t0 + t)B−ε

Ω

e2ψ (t0 + t)α+βF(u)dx + C(t0 + t)B−ε

Ωc

e2ψ ⟨x⟩α+β

K F(u)dx

+ C
 t

0
(t0 + τ)B−1−ε


Ω

e2ψ (t0 + τ)α+βF(u)dxdτ + C
 t

0
(t0 + τ)B−1−ε


Ωc

e2ψ ⟨x⟩α+β

K F(u)dxdτ

+ C
 t

0
(t0 + τ)B−ε


Ω

e2ψ (1 + (t0 + τ)α+β(−ψt))|u|p+1dxdτ

+ C
 t

0
(t0 + τ)B−ε


Ωc

e2ψ (1 + ⟨x⟩α+β

K (−ψt))|u|p+1dxdτ .

We calculate

e2ψ ⟨x⟩α+β

K = e
2A ⟨x⟩2−α

(1+t)1+β ⟨x⟩α+β

K

≤ Ce
2A ⟨x⟩2−α

(1+t)1+β


⟨x⟩2−α

(1 + t)1+β

 α+β
2−α

(1 + t)
(α+β)(1+β)

2−α

≤ Ce(2+ρ)ψ (1 + t)
(α+β)(1+β)

2−α

for small ρ > 0. Noting that (α+β)(1+β)
2−α < 1 and taking ρ sufficiently small, we can estimate the terms P in the samemanner

as estimating (t0 + t)B+1−εJ(t; |u|p+1). Consequently, we have a priori estimate forM(t):

M(t) ≤ CI20 + CM(t)(p+1)/2.

This shows that the local solution of (1.1) can be extended globally. We note that

e2ψa(x)b(t) ≥ c(1 + t)−(1+β)
α

2−α−β

with some constant c > 0. Then we have
Rn

e2ψa(x)b(t)u2dx ≥ c(1 + t)−(1+β)
α

2−α−β


Rn

u2dx. (2.29)

This implies the decay estimate of global solution (1.10) and completes the proof of Theorem 1.1.

Proof of Corollary 1.4. In a similar way to derive (2.29), we have
Rn

e2ψa(x)b(t)u2dx ≥ c(1 + t)−(1+β)
α

2−α−β


Rn

e
(2A−µ)

⟨x⟩2−α

(1+t)β u2dx.

By noting that

⟨x⟩2−α

(1 + t)1+β
≥ (1 + t)ρ
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onΩρ(t) and Theorem 1.1, it follows that

(1 + t)−(1+β)
α

2−α−β


Ωρ (t)

e(2A−µ)(1+t)ρ (u2
t + |∇u|2 + u2)dx

≤ C(1 + t)−(1+β)
α

2−α−β


Ωρ (t)

e
(2A−µ)

⟨x⟩2−α

(1+t)β (u2
t + |∇u|2 + u2)dx

≤ C

Rn

e2ψ (u2
t + |∇u|2 + a(x)b(t)u2)dx

≤ C(1 + t)−B+ε.

Thus, we obtain
Ωρ (t)

(u2
t + |∇u|2 + u2)dx ≤ C(1 + t)−

(1+β)(n−2α)
2−α +εe−(2A−µ)(1+t)ρ .

This proves Corollary 1.4. �
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