On an almost free damping vibration equation using N -fractional calculus

T. Miyakoda
Department of Applied Physics, Graduated School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan

Received 7 January 2001; received in revised form 15 May 2001

Abstract

In this paper, an almost free damping vibration equation is discussed by means of N -fractional calculus. Let $\varphi \in \wp^{\circ}=\left\{\varphi, 0 \neq\left|\varphi_{\nu}\right|<\infty, v \in \mathbb{R}\right\}$. We focus on the following type of equation: $$
\varphi_{m+\varepsilon}+\varphi_{1+(\varepsilon / m)} \cdot a+\varphi \cdot b=0,
$$ where m is an integer and $a b \neq 0, a^{2}<4 b, a>0, \varphi=\varphi(t),|\varepsilon|<1, \varepsilon, t \in \mathbb{R}$. In the case of $m=2$ and $|\varepsilon| \ll 1$, we call this equation as an almost free damping vibration equation. So the solutions are investigated to be given using N -fractional calculus in the case of $m=2$. Furthermore, we illustrate the shapes of the solution according to the vibration of ε. (c) 2001 Elsevier Science B.V. All rights reserved

Keywords: Differential equation; Almost damping vibration; Fractional calculus

1. Definition of N-fractional calculus

Nishimoto defines the fractional calculus as follows [1]:
Let $C=\left\{C_{-}, C_{+}\right\}, D=\left\{D_{-}, D_{+}\right\}$, where C_{-}is a curve along the cut joining two points z and $-\infty+\mathrm{i} \operatorname{Im}(z), C_{+}$is a curve along the cut joining two points z and $\infty+\mathrm{i} \operatorname{Im}(z)$ and D_{-}is a domain surrounded by C_{-}, and D_{+}is a domain surrounded by C_{+}. Let us define the fractional calculus operator (N -fractional operator) N^{v} as follows:

$$
\begin{equation*}
N^{v}=\frac{\Gamma(v+1)}{2 \pi \mathrm{i}} \int_{C} \frac{(\cdot) \mathrm{d} \zeta}{(\zeta-z)^{v+1}} \quad\left(v \notin \mathbb{Z}^{-}\right) \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
N^{-m}=\lim _{v \rightarrow-m} N^{v} \quad\left(m \in \mathbb{Z}^{+}\right) \tag{2}
\end{equation*}
$$

And let $f=f(z)$ be a regular function in D, then the fractional differintegration of an arbitrary order v for $f(z)$ is defined as follows:

$$
\begin{align*}
& f_{v}(z)=\frac{\Gamma(v+1)}{2 \pi \mathrm{i}} \int_{C} \frac{f(\zeta)}{(\zeta-z)^{v+1}} \mathrm{~d} \zeta, \tag{3}\\
& (f)_{-m}=\lim _{v \rightarrow-m}(f)_{v} \quad\left(m \in \mathbb{Z}^{+}\right) \tag{4}
\end{align*}
$$

where

$$
\begin{aligned}
& -\pi \leqslant \arg (\zeta-z) \leqslant \pi \quad \text { for } C_{-} \\
& 0 \leqslant \arg (\zeta-z) \leqslant 2 \pi \quad \text { for } C_{+} \\
& \zeta \neq z, \quad z \in \mathbb{C}, \quad v \in \mathbb{R} \\
& \Gamma, \quad \text { Gamma function }
\end{aligned}
$$

$(f)_{v}$ is called the fractional derivatives of order v with respect to z when $v>0$ or the fractional integrals of order $-v$ when $v<0$ if $\left|(f)_{v}\right|<\infty$.

The binary operation \circ is defined as

$$
\begin{equation*}
N^{\beta} \circ N^{\alpha} f=N^{\beta} N^{\alpha} f=N^{\beta}\left(N^{\alpha} f\right) \quad(\alpha, \beta \in \mathbb{R}) \tag{5}
\end{equation*}
$$

and it was proved that

$$
\begin{equation*}
N^{\beta}\left(N^{\alpha} f\right)=N^{\beta+\alpha} f \quad(\alpha, \beta \in \mathbb{R}) \tag{6}
\end{equation*}
$$

Then the set

$$
\begin{equation*}
\left\{N^{v}\right\}=\left\{N^{v} \mid \nu \in \mathbb{R}\right\} \tag{7}
\end{equation*}
$$

is an Abelian product group which has the inverse transform operator $\left(N^{v}\right)^{-1}=N^{-v}$ to the fractional operator N^{v}, for the function f such that $f \in \mathbf{F}=\left\{f ; 0 \neq\left|f_{v}\right|<\infty, v \in \mathbb{R}\right\}$.

The following results (principal value) for the exponential functions [1,2] are useful in the latter.
(1) $\left(\mathrm{e}^{a x}\right)_{v}=a^{v} \mathrm{e}^{a x}$,
(2) $\quad\left(\mathrm{e}^{-a x}\right)_{v}=\mathrm{e}^{-\mathrm{i} \pi v} a^{v} \mathrm{e}^{-a x} \quad$ for $a \neq 0$.

2. An almost free damping vibration equation

From the point of view of fractional calculus, we have an interest in the vibration of the oscillation differential equation having a damping term. The natural generation of equation is done by replacing the ordinary derivatives with fractional ones which include a slight vibration of ε.

Let us consider the following equation:

$$
\begin{equation*}
\varphi_{2+\varepsilon}+\varphi_{1+(\varepsilon / 2)} \cdot a+\varphi \cdot b=0 \tag{8}
\end{equation*}
$$

where $\varphi \in\left\{\varphi, 0 \neq\left|\varphi_{v}\right|<\infty, v \in \mathbb{R}\right\}$. Furthermore, if we set

$$
\begin{aligned}
& a b \neq 0, \quad a^{2}<4 b, \quad a>0, \\
& \varphi=\varphi(t), \quad|\varepsilon|<2, \quad \varepsilon, t \in \mathbb{R},
\end{aligned}
$$

then the above equation becomes similar to the oscillation model's equation in the case with the damping term $\varphi_{1} \cdot a$, with no forcing term. So we call this equation an almost free damping vibration equation when $0 \neq \varepsilon \ll 1$ [4].

In order to consider the particular solution, we put

$$
\begin{equation*}
\varphi=\mathrm{e}^{\lambda t} . \tag{9}
\end{equation*}
$$

Operating $N^{2+\varepsilon}$ on both sides of (9), we have

$$
\begin{equation*}
\varphi_{2+\varepsilon}=\lambda^{2+\varepsilon} \mathrm{e}^{\lambda t} \tag{10}
\end{equation*}
$$

and operating $N^{1+(\varepsilon / 2)}$ on both sides of (9), we have

$$
\begin{equation*}
\varphi_{1+(\varepsilon / 2)}=\lambda^{1+(\varepsilon / 2)} \mathrm{e}^{\lambda t} . \tag{11}
\end{equation*}
$$

We substitute relations (9) and (10) into Eq. (8), and obtain

$$
\begin{equation*}
\lambda^{2+\varepsilon}+\lambda^{1+(\varepsilon / 2)} a+b=0 . \tag{12}
\end{equation*}
$$

Furthermore, putting

$$
\begin{equation*}
\lambda^{1+(\varepsilon / 2)}=\delta \tag{13}
\end{equation*}
$$

we have the following quadratic equation

$$
\begin{equation*}
\delta^{2}+\delta a+b=0 \tag{14}
\end{equation*}
$$

By solving this equation, we get the following results from (14).

$$
\begin{align*}
& \delta=-(a / 2)+\mathrm{i} \omega=r \mathrm{e}^{\mathrm{i} \theta} \tag{15}\\
& \delta=-(a / 2)-\mathrm{i} \omega=r \mathrm{e}^{-\mathrm{i} \theta}, \tag{16}
\end{align*}
$$

where

$$
\begin{align*}
& r \cos \theta=-a / 2, \quad r \sin \theta=\omega, \tag{17}\\
& \left(4 b-a^{2}\right) / 4=\omega^{2} . \tag{18}
\end{align*}
$$

By choosing the principal value for the calculations we find the value of λ for $|\varepsilon|<2$ as follows:

$$
\begin{align*}
& \lambda=\delta^{2 /(2+\varepsilon)}=\left(r \mathrm{e}^{\mathrm{i} \theta}\right)^{\sum_{k=0}^{\infty}(-\varepsilon / 2)^{k}} \tag{19}\\
& \lambda=\delta^{2 /(2+\varepsilon)}=\left(r \mathrm{e}^{-\mathrm{i} \theta}\right)^{\sum_{k=0}^{\infty}(-\varepsilon / 2)^{k}} . \tag{20}
\end{align*}
$$

Then, we have the solution:

$$
\begin{align*}
& \varphi=\mathrm{e}^{\left(r \mathrm{e}^{\mathrm{i} \theta}\right)^{\sum_{k=0}^{\infty}(-\varepsilon / 2)^{k}} t} \tag{21}\\
& \varphi=\mathrm{e}^{\left(r \mathrm{e}^{-\mathrm{i} \theta}\right)^{\sum_{k=0}^{\infty}(-\varepsilon \varepsilon /)^{k}} t} . \tag{22}
\end{align*}
$$

We can easily rewrite the solutions as

$$
\begin{align*}
& \varphi=\mathrm{e}^{G t}[\cos H t+\mathrm{i} \sin H t] \equiv \varphi_{(1)}^{(\varepsilon)}, \tag{23}\\
& \varphi=\mathrm{e}^{G t}[\cos H t-\mathrm{i} \sin H t] \equiv \varphi_{(2)}^{(\varepsilon)} \tag{24}
\end{align*}
$$

where

$$
\begin{align*}
& G=G(r, \theta, \varepsilon)=r^{S(\varepsilon)} \cos \theta S(\varepsilon), \tag{25}\\
& H=H(r, \theta, \varepsilon)=r^{S(\varepsilon)} \sin \theta S(\varepsilon), \tag{26}\\
& S(\varepsilon)=\sum_{k=0}^{\infty}\left(-\frac{\varepsilon}{2}\right)^{k}
\end{align*}
$$

When $|\varepsilon| \ll 1$, we can write

$$
S(\varepsilon) \approx 1-\frac{\varepsilon}{2} .
$$

Also, we can further rewrite the solutions as follows:

$$
\begin{align*}
& \varphi \simeq \mathrm{e}^{P t}[\cos Q t+\mathrm{i} \sin Q t] \equiv \varphi_{(1)}, \tag{27}\\
& \varphi \simeq \mathrm{e}^{P t}[\cos Q t-\mathrm{i} \sin Q t] \equiv \varphi_{(2)} \tag{28}
\end{align*}
$$

where

$$
\begin{align*}
& P=P(r, \theta, \varepsilon)=r^{1-(\varepsilon / 2)} \cos \theta\{1-(\varepsilon / 2)\}, \tag{29}\\
& Q=Q(r, \theta, \varepsilon)=r^{1-(\varepsilon / 2)} \sin \theta\{1-(\varepsilon / 2)\} . \tag{30}
\end{align*}
$$

3. The general solutions of almost free damping vibration equations

Similar to the case of the particular solution, setting

$$
\varphi=\mathrm{e}^{\lambda t},
$$

we have

$$
\lambda=\delta^{2 /(2+\varepsilon)}=\left\{\begin{array}{l}
\left(r \mathrm{e}^{\mathrm{i} \theta}\right)^{2 /(2+\varepsilon)}, \\
\left(r \mathrm{e}^{-\mathrm{i} \theta}\right)^{2 /(2+\varepsilon)}
\end{array}\right.
$$

Here, $\varepsilon \in \mathbb{R}, \lambda^{1+(\varepsilon / 2)}=\delta$, and r and θ are the same as (17) and (18).

Now this λ can be written by

$$
\begin{align*}
\left(r \mathrm{e}^{\mathrm{i} \theta}\right)^{2 /(2+\varepsilon)} & =r^{2 /(2+\varepsilon)}\left(\mathrm{e}^{\mathrm{i} \theta} \mathrm{e}^{\mathrm{i} 2 n \pi}\right)^{2 /(2+\varepsilon)} \quad\left(n \in \mathbb{Z}_{0}^{+}\right) \\
& =r^{2 /(2+\varepsilon)}\{\cos P(n)+\mathrm{i} \sin P(n)\}, \tag{31}
\end{align*}
$$

where

$$
\begin{equation*}
P(n)=P(n, \theta, \varepsilon)=\frac{2(\theta+2 n \pi)}{2+\varepsilon} \tag{32}
\end{equation*}
$$

Therefore, as one solution, we have

$$
\begin{align*}
\varphi & =\mathrm{e}^{\left(r \mathrm{e}^{\mathrm{i} \theta}\right)^{2 /(2+\varepsilon)} t} \\
& =\left.\exp \left\{r^{2 /(2+\varepsilon)}(\cos P(n)+\mathrm{i} \sin P(n)) t\right\} \equiv \varphi_{(1)}\right|_{(n)} . \tag{33}
\end{align*}
$$

In the same way, for another solution, we have

$$
\begin{align*}
& \left(r \mathrm{e}^{-\mathrm{i} \theta}\right)^{2 /(2+\varepsilon)}=r^{2 /(2+\varepsilon)}\{\cos Q(n)+\mathrm{i} \sin Q(n)\}, \tag{34}\\
& Q(n)=Q(n, \theta, \varepsilon)=\frac{2(-\theta+2 n \pi)}{2+\varepsilon} . \tag{35}
\end{align*}
$$

Therefore, we can get

$$
\begin{align*}
\varphi & =\mathrm{e}^{\left(r \mathrm{e}^{-\mathrm{i} \theta}\right)^{2 /(2+\varepsilon)} t} \\
& =\left.\exp \left\{r^{2 /(2+\varepsilon)}(\cos Q(n)+\mathrm{i} \sin Q(n)) t\right\} \equiv \varphi_{(2)}\right|_{(n)} . \tag{36}
\end{align*}
$$

Then putting

$$
\begin{align*}
& \varphi_{(1)}=\left.\sum_{n=0}^{s} a_{n} \cdot \varphi_{(1)}\right|_{(n)}, \tag{37}\\
& \varphi_{(2)}=\left.\sum_{n=0}^{s} b_{n} \cdot \varphi_{(2)}\right|_{(n)}, \tag{38}
\end{align*}
$$

we can get the general solution for $\varepsilon \in \mathbb{R}$ as follows:

$$
\begin{equation*}
\varphi=\varphi_{(1)}+\varphi_{(2)}=\sum_{n=0}^{s}\left\{\left.a_{n} \cdot \varphi_{(1)}\right|_{(n)}+\left.b_{n} \cdot \varphi_{(2)}\right|_{(n)}\right\}, \tag{39}
\end{equation*}
$$

where a_{n}, b_{n} is an arbitrary constant and s is finite [infinite] when ε is the rational [irrational] number.
When we put

$$
\begin{align*}
& P(n)=P(n, \theta, \varepsilon)=(\theta+2 n \pi) S(\varepsilon), \tag{40}\\
& Q(n)=Q(n, \theta, \varepsilon)=(-\theta+2 n \pi) S(\varepsilon), \tag{41}\\
& S(\varepsilon)=\frac{2}{2+\varepsilon}, \tag{42}
\end{align*}
$$

we can get the general solution according to the case of ε by rewriting $s(\varepsilon)$ as follows [4]:
(i) For $\varepsilon \in \mathbb{R}$

$$
S(\varepsilon)=\frac{2}{(2+\varepsilon)}
$$

(ii) For $|\varepsilon|<2$

$$
S(\varepsilon)=\sum_{k=0}^{\infty}\left(-\frac{\varepsilon}{2}\right)^{k}
$$

(iii) For $|\varepsilon| \ll 1$

$$
S(\varepsilon) \approx 1-\frac{\varepsilon}{2}
$$

we have the "almost general solution" in this case.

4. Behavior of solutions for ε

(I) For $\varepsilon=0$ we have the following two particular solutions

$$
\begin{align*}
\left.\varphi_{(1)}\right|_{(0)} & =\mathrm{e}^{-(a / 2) t}\{\cos \omega t+\mathrm{i} \sin \omega t\} \\
& =\mathrm{e}^{-(a / 2) t}\left\{\cos \frac{\sqrt{4 b-a^{2}}}{2} t+\mathrm{i} \sin \frac{\sqrt{4 b-a^{2}}}{2} t\right\}, \tag{43}\\
\varphi_{(2)} \mid(0) & =\mathrm{e}^{-(a / 2) t}\{\cos \omega t-\mathrm{i} \sin \omega t\} \\
& =\mathrm{e}^{-(a / 2) t}\left\{\cos \frac{\sqrt{4 b-a^{2}}}{2} t-\mathrm{i} \sin \frac{\sqrt{4 b-a^{2}}}{2} t\right\} . \tag{44}
\end{align*}
$$

The equation for $a=b=1$, which is

$$
\begin{equation*}
\varphi_{2+\varepsilon}+\varphi_{1+(\varepsilon / 2)}+\varphi=0, \tag{45}
\end{equation*}
$$

has particular solutions written by

$$
\begin{align*}
& \left.\varphi\right|_{(1)} ^{\varepsilon}=\mathrm{e}^{G t}\{\cos H t+\mathrm{i} \sin H t\}, \tag{46}\\
& \left.\varphi\right|_{(2)} ^{\varepsilon}=\mathrm{e}^{G t}\{\cos H t-\mathrm{i} \sin H t\}, \tag{47}
\end{align*}
$$

where

$$
\begin{align*}
& G=G(r, \theta, \varepsilon)=r^{S(\varepsilon)} \cos \theta S(\varepsilon), \tag{48}\\
& H=H(r, \theta, \varepsilon)=r^{S(\varepsilon)} \sin \theta S(\varepsilon), \tag{49}\\
& S(\varepsilon)=\sum_{k=0}^{\infty}\left(-\frac{\varepsilon}{2}\right)^{k}, \tag{50}\\
& r \cos \theta=-\frac{1}{2}, \quad r \sin \theta=\frac{\sqrt{3}}{2} . \tag{51}
\end{align*}
$$

And then under the same condition, the ordinary differential equation for $\varepsilon=0$ is written by

$$
\begin{equation*}
\varphi^{\prime \prime}+\varphi^{\prime}+\varphi=0 \tag{52}
\end{equation*}
$$

which has the following solutions:

$$
\begin{align*}
& \varphi_{(1)}=\mathrm{e}^{-(1 / 2) t}\left\{\cos \frac{\sqrt{3}}{2} t+\mathrm{i} \sin \frac{\sqrt{3}}{2} t\right\}, \tag{53}\\
& \varphi_{(2)}=\mathrm{e}^{-(1 / 2) t}\left\{\cos \frac{\sqrt{3}}{2} t-\mathrm{i} \sin \frac{\sqrt{3}}{2} t\right\} . \tag{54}
\end{align*}
$$

(II) For $\varepsilon \ll 1, S(\varepsilon)$ becomes

$$
\begin{equation*}
S(\varepsilon) \approx 1-\frac{\varepsilon}{2} . \tag{55}
\end{equation*}
$$

Then (46) and (47) can be written as

$$
\begin{align*}
\left.\varphi\right|_{(1)} ^{\varepsilon} \approx & \exp \left\{r^{(1-\varepsilon / 2)}\left\{\cos \theta\left(1-\frac{\varepsilon}{2}\right)\right\} t\right\} \\
& \times \cos \left\{r^{(1-\varepsilon / 2)} \sin \theta\left(1-\frac{\varepsilon}{2}\right)\right\} t+\mathrm{i} \sin \left\{r^{(1-\varepsilon / 2)} \sin \theta\left(1-\frac{\varepsilon}{2}\right)\right\} t, \tag{56}\\
\left.\varphi\right|_{(2)} ^{\varepsilon} \approx & \exp \left\{r^{(1-\varepsilon / 2)}\left\{\cos \theta\left(1-\frac{\varepsilon}{2}\right)\right\} t\right\} \\
& \times\left\{\cos \left\{r^{(1-\varepsilon / 2)}\left\{\sin \theta\left(1-\frac{\varepsilon}{2}\right)\right\} t\right\}-\mathrm{i} \sin \left\{r^{(1-\varepsilon / 2)}\left\{\sin \theta\left(1-\frac{\varepsilon}{2}\right)\right\} t\right\}\right\} . \tag{57}
\end{align*}
$$

From these equations, we can get the relation

$$
\begin{align*}
\operatorname{Re}\left(\left.\varphi\right|_{(1)} ^{\varepsilon}\right) & =\operatorname{Re}\left(\left.\varphi\right|_{(2)} ^{\varepsilon}\right) \\
& =\exp \left\{r^{(1-\varepsilon / 2)}\left\{\cos \theta\left(1-\frac{\varepsilon}{2}\right)\right\} t\right\} \cos \left\{r^{(1-\varepsilon / 2)} \sin \theta\left(1-\frac{\varepsilon}{2}\right)\right\} t, \tag{58}
\end{align*}
$$

where $\operatorname{Re}(C)$ denotes the real part of complex number C.
On the other hand, from (53) and (54) we can observe the relation

$$
\begin{equation*}
\operatorname{Re}\left(\left.\varphi\right|_{(1)}\right)=\operatorname{Re}\left(\left.\varphi\right|_{(2)}\right)=\mathrm{e}^{-(1 / 2) t} \cos \frac{\sqrt{3}}{2} t \tag{59}
\end{equation*}
$$

According to these relations, we can easily find that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \operatorname{Re}\left(\left.\varphi\right|_{(1)} ^{\varepsilon}\right)=\operatorname{Re}\left(\left.\varphi\right|_{(1)}\right) . \tag{60}
\end{equation*}
$$

The graph of Eq. (59) illustrates a damping vibration which is a simple harmonic oscillation $\cos \sqrt{3} / 2 t$ with an amplitude $\mathrm{e}^{-(1 / 2) t}$. Therefore, the graph of Eq. (58) should be similar to the graph of (59) as $|\varepsilon| \rightarrow 0$.

We illustrate the graphs of real part of equations for (59) and the same for (58) with $\varepsilon=0.1,0.2,0.5$. Fig. 1 is for (59) and Fig. 2 is for (58).

Fig. 1. Real part of $\left.\varphi\right|_{(1)}$ and $\left.\varphi\right|_{(2) \text {. }}$.

Fig. 2. Real part of $\left.\varphi\right|_{(1)} ^{\varepsilon}$ and $\left.\varphi\right|_{(2)} ^{\varepsilon}$ for $\varepsilon=0.1,0.2,0.5$.

5. Uncited Reference

[3]

Acknowledgements

The author would like to thank Prof K. Nishimoto (Chair of JFC) for his valuable help and advice. This work is supported by the Grant-in-Aid of Ministry of Education, Science and Culture of Japan.

References

[1] K. Nishimoto, Fractional Calculus, Vol. 1 (1984), Vol. 2 (1987), Vol. 3 (1989), Vol. 4 (1991), Vol. 5 (1996), Descartes Press, Koriyama, Japan.
[2] T. Miyakoda, K. Nishimoto, N-method to fractional differential equations, J. Fractional Calculus 15 (1999) 7-12.
[3] T. Miyakoda, Application of fractional calculus to numerical computations, Proceeding of RIMS, Kyoto University, Vol. 1145, 2000, pp. 130-134.
[4] T. Miyakoda, K. Nishimoto, N-method to an almost free damping vibration equations, J. Fractional Calculus 18 (2000) 93-101.

