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Abstract

In this paper, an almost free damping vibration equation is discussed by means of N-fractional calculus.
Let p€ p° ={¢,0# |p,| < co,veR}. We focus on the following type of equation:

Pmte T Pl4(e/m) * QA + - b:Oa

where m is an integer and ab #0, a* < 4b,a >0, ¢ =¢(2), |¢| < 1, &t €R. In the case of m=2 and |¢| <1,
we call this equation as an almost free damping vibration equation. So the solutions are investigated to be
given using N-fractional calculus in the case of m =2. Furthermore, we illustrate the shapes of the solution
according to the vibration of ¢. (© 2001 Elsevier Science B.V. All rights reserved
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1. Definition of N-fractional calculus

Nishimoto defines the fractional calculus as follows [1]:

Let C={C_,C.}, D={D_,D,}, where C_ is a curve along the cut joining two points z and
—oo+1ilm(z), C, is a curve along the cut joining two points z and co+ilm(z) and D_ is a domain
surrounded by C_, and D, is a domain surrounded by C,. Let us define the fractional calculus
operator (N-fractional operator) N’ as follows:
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with

N™"= lim N* (meZ"). (2)

v——m

And let /= f(z) be a regular function in D, then the fractional differintegration of an arbitrary order
v for f(z) is defined as follows:

rev+1) ACS,

PO= "0 ety ®
(F)ow=lim () (meZ*) @)
where

—n<arg({—z)<n for C_,
0 <arg({—z)<2n forC,,
(#z, zeC, veR,

I', Gamma function.

(f)y is called the fractional derivatives of order v with respect to z when v > 0 or the fractional
integrals of order —v when v < 0 if |(f),] < oo.
The binary operation o is defined as

NP oN*f=NPN"f=NI(N"f) (0, BER) (5)
and it was proved that

NUN*f)=NPPf (o, BER). (6)
Then the set

{N"}={N"veR} (7)

is an Abelian product group which has the inverse transform operator (N*)~! =N~ to the fractional
operator N, for the function f such that f € F={f;0+#|f,| < oo,vE R}.
The following results (principal value) for the exponential functions [1,2] are useful in the latter.
(1) (") =a'e",
2) (e7%), =e ™g"e™* for a#£0.

2. An almost free damping vibration equation
From the point of view of fractional calculus, we have an interest in the vibration of the oscillation

differential equation having a damping term. The natural generation of equation is done by replacing
the ordinary derivatives with fractional ones which include a slight vibration of e.
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Let us consider the following equation:

240+ Qri)-a+ @ -b=0,
where ¢ € {¢,0+# |@p,| < co,v € R}. Furthermore, if we set
ab#0, a* <4b, a >0,

p=0(t), le| <2, eteR,
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(&)

then the above equation becomes similar to the oscillation model’s equation in the case with the
damping term ¢, -a, with no forcing term. So we call this equation an almost free damping vibration

equation when 0#e<1 [4].
In order to consider the particular solution, we put
p=c".
Operating N>*¢ on both sides of (9), we have

I i2+selt

and operating N'*(#2) on both sides of (9), we have
Pr+(e2) = AHERH,

We substitute relations (9) and (10) into Eq. (8), and obtain
PR e 1 p =0

Furthermore, putting
A1) — s,

we have the following quadratic equation

5 +da+b=0.

By solving this equation, we get the following results from (14).

d0=—(a/2)+iw=re",

0=—(a/2) —iw=re 1,
where

rcos0=—aj/2, rsinl=uw,

(4b — a*)/4 =’

9)

(10)

(1)

(12)

(13)

(14)

(15)

(16)

(17)
(18)

By choosing the principal value for the calculations we find the value of A for |¢| < 2 as follows:

)= 52/(24»8) — (reié) )Z ;:io(—g/Z)k,

S = 522t _ (re*ig)z ,‘20(73/2)"‘

(19)

(20)
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Then, we have the solution:

. oo .10k
i0 )Ek:()(—"’/z) ¢

Q= elre , (21)

o= e(,.e—i())z;?io(*ﬂﬂ)kt. (22)
We can easily rewrite the solutions as

¢ =e%[cos Ht + isin Hf] = ¢}, (23)

¢ =e""[cos Ht — isin Ht] = (pE‘;')), (24)
where

G=G(r,0,6)=r"® cos 0S(¢), (25)

H=H(r,0,¢)=r"®sin 0S(e), (26)

s@=Y(-5) -

©=2_ (-3
k=0
When |¢| <1, we can write
€
Se)~1—=.
(&)~ 12

Also, we can further rewrite the solutions as follows:

¢ ~ e""[cos Ot + isin Ot] = 1), (27)

@ ~ e"[cos Ot — isin O] = @), (28)
where

P=P(r,0,e)=r""? cos 0{1 — (¢/2)}, (29)

0=0(r,0,6)=r"""sin0{1 — (¢/2)}. (30)

3. The general solutions of almost free damping vibration equations

Similar to the case of the particular solution, setting
o= e/lt

we have

o { i0)2/(2-+2)
A=0"1) = ’

(re
(re—i0)2/(2+8).

Here, e € R, 21*(#2) =5, and r and 0 are the same as (17) and (18).
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Now this A can be written by

(reig)z/(2+g) _ r2/(2+£)(eit‘?ei2mz )2/(2+s) (}’l c Z(J)r)
=¥+ fcos P(n) + isin P(n)},
where
2(0 + 2nm)
P =P(n0,e)=——M—~.
(ﬂ) (na ’ 8) 2 + ¢

Therefore, as one solution, we have

i0Y2/(24e)4

o= e(re
= exp{r¥@*9(cos P(n) + isin P(n))t} = oy lony-
In the same way, for another solution, we have

(re 1)@+ — 212 feos O(n) 4 isin Q(n)},

2(—0 +2
O(n) = 0(n, 0,2) = (218”)

Therefore, we can get

—i0\2/(2+e)

o= e(re
=exp{r¥"(cos O(n) + isin O(n))t} = @@)|n)-

Then putting

N
Py = Z an = (1)l (n)s
n=0

s
P2 =Y bu- 0|,
n=0
we can get the general solution for ¢ € R as follows:

o=0m+00)=>_{an omlm +br- 0)lm}
n=0
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€19)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

where a,, b, is an arbitrary constant and s is finite [infinite] when ¢ is the rational [irrational] number.

When we put
P(n)=P(n,0,e)=(0+ 2nm)S(e),

O(n)=0(n,0,e) =(—0+ 2nm)S(e),

2

S(S):2+8

b

(40)

(41)

(42)
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we can get the general solution according to the case of ¢ by rewriting s(¢) as follows [4]:
(1) For eeR

S@=G 1y
(ii) For |e| <2
e k
-5 ()
k=0
(iii) For |e| <1
Se) ~1-2,

2
we have the “almost general solution” in this case.

4. Behavior of solutions for ¢

(I) For e=0 we have the following two particular solutions

ooy =" {cos ot + isin wt}

Vab — @ Vab — &
—e @ ) oo Y2 T in Y2 O , (43)
2 2
?2)l0y=e"“?"{cos wt — isin wt}
Jab — a2 N7V )
=e @2 { cos ﬂt —isin gt ) (44)
2 2
The equation for a =b =1, which is
P24c + Pro(e2) + @ =0, (45)
has particular solutions written by
qo]fl):eG’{cosHl + isin Ht}, (46)
@l = e%{cos Ht — isin Ht}, (47)
where
G=G(r,0,6)=r"® cos05(¢), (48)
H=H(r,0,¢e)=r""sin05(e), (49)
s =Y (-3) - (50)
k=0

1
rcos@z—i, rsin9:73. (51)
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And then under the same condition, the ordinary differential equation for e=0 is written by

(,0"+(p/+§0=0 (52)
which has the following solutions:

3 .. V3

qo(l):e_(l/z)’ {cos {H—lsm \gt} , (53)
3 3

pay=e VP { cos £t —isin £t ) (54)
2 2

(I) For e<1, S(¢) becomes
S(e)~1— % (55)

Then (46) and (47) can be written as
@l(1y = exp {r(l’g/z) {cosG (1 -

)}

X COS {r(l_g/z) sin 0 (1 - %) }t isin {r(l_s/z) sin 0 (1 - E) } t, (56)
s i e (1 2]

@iz = exp {r cos 5

X {cos {r(l_g/z) {sin@ (1 — g) t} —isin {r(l_g/z) {sin@ (1 — %) } t}} (57)

From these equations, we can get the relation

Re((P‘fn):Re((P‘fz))

=exp {r(lfs/z) {cos@ (1 — g) } t} cos {r(lﬂ/z) sin 6 (1 — g) } t, (58)

where Re(C) denotes the real part of complex number C.
On the other hand, from (53) and (54) we can observe the relation

3
Re(¢|(1)) =Re(@]2) =e? cos \2[1. (59)
According to these relations, we can easily find that
lim Re(¢[;1)) =Re(@}1))- (60)

The graph of Eq. (59) illustrates a damping vibration which is a simple harmonic oscillation
cos v/3/2¢ with an amplitude e~(!/2". Therefore, the graph of Eq. (58) should be similar to the graph
of (59) as |¢| — 0.

We illustrate the graphs of real part of equations for (59) and the same for (58) with ¢=0.1,0.2,0.5.
Fig. 1 is for (59) and Fig. 2 is for (58).
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Fig. 2. Real part of ¢l;) and @|(;, for 6=0.1,0.2,0.5.
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