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Abstract

In this paper, an almost free damping vibration equation is discussed by means of N-fractional calculus.
Let ’∈˝◦ = {’; 0 �= |’�|¡∞; �∈R}. We focus on the following type of equation:

’m+� + ’1+(�=m) · a+ ’ · b= 0;

where m is an integer and ab �= 0; a2¡ 4b; a¿ 0; ’=’(t); |�|¡ 1; �; t ∈R. In the case of m= 2 and |�|�1,
we call this equation as an almost free damping vibration equation. So the solutions are investigated to be
given using N-fractional calculus in the case of m= 2. Furthermore, we illustrate the shapes of the solution
according to the vibration of �. c© 2001 Elsevier Science B.V. All rights reserved
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1. De�nition of N-fractional calculus

Nishimoto de<nes the fractional calculus as follows [1]:
Let C = {C−; C+}; D= {D−; D+}; where C− is a curve along the cut joining two points z and

−∞+i Im(z); C+ is a curve along the cut joining two points z and ∞+i Im(z) and D− is a domain
surrounded by C−, and D+ is a domain surrounded by C+. Let us de<ne the fractional calculus
operator (N-fractional operator) N� as follows:

N� =
�(�+ 1)

2�i

∫
C

(·) d�
(�− z)�+1 (� �∈ Z−) (1)

0377-0427/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved
PII: S 0377-0427(01)00563-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82283755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


234 T. Miyakoda / Journal of Computational and Applied Mathematics 144 (2002) 233–240

with

N−m = lim
�→−mN

� (m∈Z+): (2)

And let f=f(z) be a regular function in D, then the fractional di;erintegration of an arbitrary order
� for f(z) is de<ned as follows:

f�(z) =
�(�+ 1)

2�i

∫
C

f(�)
(�− z)�+1 d�; (3)

(f)−m = lim
�→−m (f)� (m∈Z+); (4)

where

−�6 arg(�− z)6 � for C−;

06 arg(�− z)6 2� for C+;

� �= z; z ∈C; �∈R;

�; Gamma function:

(f)� is called the fractional derivatives of order � with respect to z when �¿ 0 or the fractional
integrals of order −� when �¡ 0 if |(f)�|¡∞.

The binary operation ◦ is de<ned as

N� ◦ N�f=N�N�f=N�(N�f) (�; �∈R) (5)

and it was proved that

N�(N�f) =N�+�f (�; �∈R): (6)

Then the set

{N�}= {N�|�∈R} (7)

is an Abelian product group which has the inverse transform operator (N�)−1 =N−� to the fractional
operator N�, for the function f such that f∈F= {f; 0 �= |f�|¡∞; �∈R}.

The following results (principal value) for the exponential functions [1,2] are useful in the latter.
(1) (eax)� = a�eax;
(2) (e−ax)� = e−i��a�e−ax for a �= 0:

2. An almost free damping vibration equation

From the point of view of fractional calculus, we have an interest in the vibration of the oscillation
di;erential equation having a damping term. The natural generation of equation is done by replacing
the ordinary derivatives with fractional ones which include a slight vibration of �.
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Let us consider the following equation:

’2+� + ’1+(�=2) · a+ ’ · b= 0; (8)

where ’∈{’; 0 �= |’�|¡∞; �∈R}. Furthermore, if we set

ab �= 0; a2¡ 4b; a¿ 0;

’=’(t); |�|¡ 2; �; t ∈R;
then the above equation becomes similar to the oscillation model’s equation in the case with the
damping term ’1 ·a; with no forcing term. So we call this equation an almost free damping vibration
equation when 0 �= ��1 [4].

In order to consider the particular solution, we put

’= e�t : (9)

Operating N 2+� on both sides of (9), we have

’2+� = �2+�e�t (10)

and operating N 1+(�=2) on both sides of (9), we have

’1+(�=2) = �1+(�=2)e�t : (11)

We substitute relations (9) and (10) into Eq. (8), and obtain

�2+� + �1+(�=2)a+ b= 0: (12)

Furthermore, putting

�1+(�=2) = �; (13)

we have the following quadratic equation

�2 + �a+ b= 0: (14)

By solving this equation, we get the following results from (14).

�= − (a=2) + i!= rei�; (15)

�= − (a=2) − i!= re−i�; (16)

where

r cos �= − a=2; r sin �=!; (17)

(4b− a2)=4 =!2: (18)

By choosing the principal value for the calculations we <nd the value of � for |�|¡ 2 as follows:

�= �2=(2+�) = (rei�)
∑∞

k=0(−�=2)k ; (19)

�= �2=(2+�) = (re−i�)
∑∞

k=0(−�=2)k : (20)
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Then, we have the solution:

’= e(rei�)
∑∞
k=0(−�=2)k t ; (21)

’= e(re−i�)
∑∞
k=0(−�=2)k t : (22)

We can easily rewrite the solutions as

’= eGt[cosHt + i sinHt] ≡ ’(�)
(1); (23)

’= eGt[cosHt − i sinHt] ≡ ’(�)
(2); (24)

where

G=G(r; �; �) = rS(�) cos �S(�); (25)

H =H (r; �; �) = rS(�) sin �S(�); (26)

S(�) =
∞∑
k=0

(
− �

2

)k
:

When |�|�1; we can write

S(�) ≈ 1 − �
2
:

Also, we can further rewrite the solutions as follows:

’  ePt[cosQt + i sinQt] ≡ ’(1); (27)

’  ePt[cosQt − i sinQt] ≡ ’(2); (28)

where

P=P(r; �; �) = r1−(�=2) cos �{1 − (�=2)}; (29)

Q=Q(r; �; �) = r1−(�=2) sin �{1 − (�=2)}: (30)

3. The general solutions of almost free damping vibration equations

Similar to the case of the particular solution, setting

’= e�t ;

we have

�= �2=(2+�) =

{
(rei�)2=(2+�);

(re−i�)2=(2+�):

Here, �∈R; �1+(�=2) = �; and r and � are the same as (17) and (18).
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Now this � can be written by

(rei�)2=(2+�) = r2=(2+�)(ei�ei2n�)2=(2+�) (n∈Z+
0 )

= r2=(2+�){cosP(n) + i sin P(n)}; (31)

where

P(n) =P(n; �; �) =
2(�+ 2n�)

2 + �
: (32)

Therefore, as one solution, we have

’= e(rei�)2=(2+�)t

= exp{r2=(2+�)(cosP(n) + i sin P(n))t} ≡ ’(1)|(n): (33)

In the same way, for another solution, we have

(re−i�)2=(2+�) = r2=(2+�){cosQ(n) + i sinQ(n)}; (34)

Q(n) =Q(n; �; �) =
2(−�+ 2n�)

2 + �
: (35)

Therefore, we can get

’= e(re−i�)2=(2+�)t

= exp{r2=(2+�)(cosQ(n) + i sinQ(n))t} ≡ ’(2)|(n): (36)

Then putting

’(1) =
s∑
n=0

an · ’(1)|(n); (37)

’(2) =
s∑
n=0

bn · ’(2)|(n); (38)

we can get the general solution for �∈R as follows:

’=’(1) + ’(2) =
s∑
n=0

{an · ’(1)|(n) + bn · ’(2)|(n)}; (39)

where an; bn is an arbitrary constant and s is <nite [in<nite] when � is the rational [irrational] number.
When we put

P(n) =P(n; �; �) = (�+ 2n�)S(�); (40)

Q(n) =Q(n; �; �) = (−�+ 2n�)S(�); (41)

S(�) =
2

2 + �
; (42)
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we can get the general solution according to the case of � by rewriting s(�) as follows [4]:
(i) For �∈R

S(�) =
2

(2 + �)
:

(ii) For |�|¡ 2

S(�) =
∞∑
k=0

(
− �

2

)k
:

(iii) For |�|�1

S(�) ≈ 1 − �
2
;

we have the “almost general solution” in this case.

4. Behavior of solutions for �

(I) For �= 0 we have the following two particular solutions

’(1)|(0) = e−(a=2)t{cos!t + i sin!t}

= e−(a=2)t

{
cos

√
4b− a2

2
t + i sin

√
4b− a2

2
t

}
; (43)

’(2)|(0) = e−(a=2)t{cos!t − i sin!t}

= e−(a=2)t

{
cos

√
4b− a2

2
t − i sin

√
4b− a2

2
t

}
: (44)

The equation for a= b= 1; which is

’2+� + ’1+(�=2) + ’= 0; (45)

has particular solutions written by

’|�(1) = eGt{cosHt + i sinHt}; (46)

’|�(2) = eGt{cosHt − i sinHt}; (47)

where

G=G(r; �; �) = rS(�) cos � S(�); (48)

H =H (r; �; �) = rS(�) sin � S(�); (49)

S(�) =
∞∑
k=0

(
− �

2

)k
; (50)

r cos �= − 1
2
; r sin �=

√
3

2
: (51)
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And then under the same condition, the ordinary di;erential equation for �= 0 is written by

’′′ + ’′ + ’= 0 (52)

which has the following solutions:

’(1) = e−(1=2)t

{
cos

√
3

2
t + i sin

√
3

2
t

}
; (53)

’(2) = e−(1=2)t

{
cos

√
3

2
t − i sin

√
3

2
t

}
: (54)

(II) For ��1; S(�) becomes

S(�) ≈ 1 − �
2
: (55)

Then (46) and (47) can be written as

’|�(1) ≈ exp
{
r(1−�=2)

{
cos �

(
1 − �

2

)}
t
}

×cos
{
r(1−�=2) sin �

(
1 − �

2

)}
t + i sin

{
r(1−�=2) sin �

(
1 − �

2

)}
t; (56)

’|�(2) ≈ exp
{
r(1−�=2)

{
cos �

(
1 − �

2

)}
t
}

×
{

cos
{
r(1−�=2)

{
sin �

(
1 − �

2

)}
t
}
− i sin

{
r(1−�=2)

{
sin �

(
1 − �

2

)}
t
}}

: (57)

From these equations, we can get the relation

Re(’|�(1)) = Re(’|�(2))

= exp
{
r(1−�=2)

{
cos �

(
1 − �

2

)}
t
}

cos
{
r(1−�=2) sin �

(
1 − �

2

)}
t; (58)

where Re(C) denotes the real part of complex number C.
On the other hand, from (53) and (54) we can observe the relation

Re(’|(1)) = Re(’|(2)) = e−(1=2)t cos

√
3

2
t: (59)

According to these relations, we can easily <nd that

lim
�→0

Re(’|�(1)) = Re(’|(1)): (60)

The graph of Eq. (59) illustrates a damping vibration which is a simple harmonic oscillation
cos

√
3=2t with an amplitude e−(1=2)t . Therefore, the graph of Eq. (58) should be similar to the graph

of (59) as |�| → 0.
We illustrate the graphs of real part of equations for (59) and the same for (58) with �= 0:1; 0:2; 0:5.

Fig. 1 is for (59) and Fig. 2 is for (58).
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Fig. 1. Real part of ’|(1) and ’|(2).

Fig. 2. Real part of ’|�(1) and ’|�(2) for �= 0:1; 0:2; 0:5.
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