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a b s t r a c t

In this paper we discuss multiperiod portfolio selection problems related to a specific
provisioning problem. Our results are an extension of Dhaene et al. (2005) [14], where
optimal constant mix investment strategies are obtained in a provisioning and savings
context, using an analytical approach based on the concept of comonotonicity. We derive
convex bounds that can be used to estimate the provision to be set up at a specified time in
future, to ensure that, after having paid all liabilities up to that moment, all liabilities from
that moment on can be fulfilled, with a high probability.
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1. Introduction

In this paper we discuss multiperiod portfolio selection problems related to a specific provisioning problem. Our results
are an extension of [1], where optimal constantmix investment strategies are obtained in a provisioning and savings context,
using an analytical approach based on the concept of comonotonicity. In this analytical framework,we derive convex bounds
that can be used to estimate the provision to be set up at a specified time t in future, to ensure that, after having paid all
liabilities up to time t , all liabilities from t on can be fulfilled, with a high probability.

We explain how this additional provision can be used to estimate the influence of a temporary change in market
parameters. We see how an insurer can get an idea howmuch a temporary ‘crisis’ will cost him, and how this will influence
his optimal investment portfolio. Also, if an insurer’s investment portfolio is not optimal, the results of this paper can be
used to check whether postponing rebalancing is acceptable, and if so, for how many years.

We apply our results to optimal portfolio selection problems, and illustrate with numerical examples.
In the following sections a brief introduction is given to respectively riskmeasures, the theory of comonotonicity, convex

bounds of random variables and the framework of optimal portfolio selection in a lognormal setting. Next the general
provisioning problem is discussed, and applied to optimal portfolio selection.

1.1. Risk measures and comonotonicity

A risk measure is defined as amapping from a set of random variables, representing the risks at hand, to the real numbers.
In other words, a risk measure summarizes the distribution function of a random variable in one single real number. The
common notation for a risk measure associated with a random variable X is ρ[X]. A risk measure ρ quantifies the riskiness
of X: the larger the ρ[X], the more ‘dangerous’ the risk X .
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Throughout this paper we assume that we are working with (conditioning) random variables such that all (conditional)
expectations that are used are well defined and finite.

In this paper themain focuswill be on the quantile riskmeasure, or Value-at-Risk (VaR). The VaR at level pwill be denoted
by Qp(X) or VaRp(X), and is defined as:

Qp(X) = VaRp(X) = F−1
X (p) = inf{x ∈ R | FX (x) ≥ p}, p ∈ (0, 1), (1)

with FX (x) = Pr (X ≤ x). By convention, we take inf∅ = +∞.
Value-at-Risk measures the worst expected loss under normal market conditions over a specific time interval. It can be

used to determine how much can be lost with a given probability over a predetermined time horizon.
Other well-known risk measures are, for example, Tail Value-at-Risk (TVaR), Conditional Tail Expectation (CTE) and

Expected Shortfall (ESF). More information on risk measures can be found e.g. in [2] or [1].
A randomvector X = (X1, X2, . . . , Xn) is said to be comonotonic if the individual variables Xi are non-decreasing functions

(or all are non-increasing functions) of the same random variable:

X d
=(g1(Z), g2(Z), . . . , gn(Z)) (2)

for some common random variable Z and non-decreasing (or non-increasing) functions gi. Intuitively, comonotonicity
corresponds to an extreme form of positive dependency between the individual variables: increasing the outcome of Z
will lead to a simultaneous increase in the different outcomes of gi(Z).

Comonotonicity of X can also be characterized by

X d
=(F−1

X1
(U), F−1

X2
(U), . . . , F−1

Xn (U)), (3)

with U uniformly distributed on the unit interval.
A sum of random variables is called a comonotonic sum if its components form a comonotonic vector.
Formore characterizations and an overviewof the theory of comonotonicity and itsmany applications in actuarial science

and finance we refer to [3–5].
The following result of the comonotonic dependency structure will be crucial in our setting.

Theorem 1 (Additivity of Quantile Risk Measure for Sums of Comonotonic Risks). If the random vector (X1, X2, . . . , Xn) is
comonotonic, we have that

Qp


n−

i=1

Xi


=

n−
i=1

Qp(Xi), (4)

for all p ∈ (0, 1).

This additivity property holds in general for all distortion riskmeasures, such as Tail Value-at-Risk and Expected Shortfall. In
case the variables Xi are continuous, the same property holds for the Conditional Tail Expectation. A proof of this theorem
and more information about the relationship between risk measures and comonotonicity can be found in [6].

1.2. Convex order bounds for sums of random variables

An extensive introduction to ordering of (distributions of) random variables, including actuarial applications, can be
found in [1]. We recall the definition of stop-loss order and convex order.

Definition 1 (Stop-Loss Order). A random variable X is said to precede a random variable Y in stop-loss order if X has lower
stop-loss premiums than Y :

E[(X − d)+] ≤ E[(Y − d)+], (5)

for all d ∈ (−∞, +∞). We denote this as X ≤sl Y .

Definition 2 (Convex Order). A random variable X is said to precede a random variable Y in convex order if X ≤sl Y and
E[X] = E[Y ]. We denote this as X ≤cx Y .

Recall that convex order does not imply first order stochastic dominance, which means that X ≤cx Y does not necessarily
imply that the distribution functions of X and Y , or, equivalently, their quantiles, are ordered. However, it can easily be seen
that convex order does imply that the quantiles are ordered from a certain probability level on: if X ≤cx Y , there exists a
p ∈ (0, 1) such that Qq[X] ≤ Qq[Y ] for all p ≤ q ≤ 1. Since in the context of optimal portfolio selection problems we
will typically be interested in quantiles in the tail, we can say that the convex upper and lower bounds as defined below
respectively overestimate and underestimate the risk. The high accuracy of the convex lower bounds (9), (25) and (27)
implies, however, that this underestimation is negligible in our case.
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In this paper we will encounter random variables of the form

S =

n−
i=1

αieZi (6)

where αi are deterministic constants, and Zi are linear combinations of the components of a multivariate normal random
vector (Y1, Y2, . . . , Yn): suppose Zi =

∑n
j=1 λijYj for i = 1, . . . , n.

The random variable S in (6) is a sum of dependent lognormal random variables. As it is impossible to determine the
distribution function of such a sum analytically, we use approximations. Several approximation techniques have been
proposed throughout the literature; see e.g. [7–10]. In this paper we will use convex upper and lower bounds based on
comonotonicity; see e.g. [11,3,4]. See also [12] or [13] for a comparison of some of the approximation techniques.

The approximations of [11] are based on the following result.

Theorem 2 (Convex Bounds for Sums of Random Variables). For any random vector (X1, X1, . . . , Xn) and any random variable
Λ, we have that

S l =

n−
i=1

E[Xi|Λ] ≤cx S =

n−
i=1

Xi ≤cx

n−
i=1

F−1
Xi

(U) = Sc, (7)

with U a uniformly distributed random variable on the unit interval.

A proof of this theorem can be found in [11]. As can be seen from (3), the sum Sc is comonotonic. The special case (6) where
S is a sum of dependent lognormal random variables is discussed in detail in [3,4]. Expressions for Sc and S l are derived in
case the cash-flows αi are positive. The comonotonic upper bound Sc is given by

Sc =

n−
i=1

αieE[Zi]+σZiΦ
−1(U). (8)

For the lower bound approximation, the conditioning variable Λ is typically chosen as a linear combination of the variables
Yi. Assume that Λ =

∑n
j=1 βjYj. In this case the lower bound S l can be written as:

S l =

n−
i=1

αie
E[Zi]+

1
2 (1−r2i )σ 2

Zi
+riσZiΦ

−1(U)
, (9)

where ri is the correlation between Zi and Λ. If all coefficients ri are positive, each of the terms in the sum in (9) is an
increasing function of U , which means that S l is a comonotonic sum. In this case, we call S l the comonotonic lower bound.

If all Yi are i.i.d., the correlation coefficients are given by

ri =

n∑
j=1

λijβj
n∑

j=1
λ2
ij


n∑

j=1
β2
j

, i = 1, . . . , n. (10)

Maximizing the variance of S l leads, as explained in [14], to the optimal Λ, which is given by

Λ =

n−
i=1

αie
E[Zi]+

1
2 σ 2

Zi Zi. (11)

In [15] conditions are derived for the lower bound to be comonotonic in case the cash-flows αi have changing signs.
As can be seen from Theorem 1, a crucial advantage of the comonotonic bounds is the additivity property, which makes

it straightforward to apply risk measures such as quantiles (VaR), TVaR and CTE to Sc and S l, and hence to determine their
distribution function. In [14] expressions are given for the most commonly used risk measures associated with (8) and (9).

1.3. Optimal portfolio selection in a lognormal framework

Throughout this paper we assume the classical continuous-time framework of [16], also known as the Black and
Scholes [17] setting. See e.g. [18] for more details on this Black and Scholes setting. We use the same notations and
terminology as in [14].

Assume that there are t risky assets or asset classes available in which we can invest. In our examples we assume that
there is no risk-free asset class available. The return of the risky assets is modeled by a multivariate geometric Brownian
motion: investing an amount of 1 at time k−1 in risky asset s grows to eY

s
k at time k. For a fixed asset s, the random variables
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Y s
k are assumed i.i.d., normally distributed with mean µs −

1
2σ

2
s and variance σ 2

s . This means that the return of an asset is
not influenced by its return in the past. However, within any year, the returns of the different assets are correlated. We have
that:

Cov[Y s1
k , Y s2

l ] =


0 k ≠ l
σs1s2 k = l. (12)

The drift vector and the variance–covariance matrix of the risky assets are denoted as µT
= (µ1, . . . , µt) and Σ ,

respectively.
We restrict to constant mix strategies: the fractions invested in the different assets remain constant over time, due to

continuous rebalancing. A justification of the use of constant mix investment strategies as an approximation for the more
realistic class of strategieswhere periodic rebalancing is performed can be found in [19].We also refer to the aforementioned
paper for some references on the optimality of constant mix strategies.

A vector describing the portfolio process is denoted as π T
= (π1, . . . , πt), where πi is the proportion invested in risky

asset i, with
∑t

i=1 πi = 1. Although our results also hold in the general case, we assume that short-selling is not allowed,
which means that 0 ≤ πi ≤ 1 for all i. The drift and volatility corresponding to an investment portfolio π are written as
µ(π) and σ 2(π), and are given by:

µ(π) = π Tµ and σ 2(π) = π T
· Σ · π. (13)

The normality assumption for modeling (log) returns on investment has been questioned in the financial literature for the
short-term setting (e.g. daily returns—see [20]). However, as both the time period and the investment horizon that we
consider throughout this thesis are typically long, the use of a Gaussian model for the stochastic returns can be justified by
Central Limit Theorem arguments. Empirical evidence justifying the normality assumption is provided in e.g. [21]. In this
paper, four well-known stock market indices in US dollars are investigated, covering all major stock markets in industrial as
well as emerging countries. Studying the period 1997–1999, the authors conclude that weekly (and longer period) returns
can be considered as normal and independent. Other references where empirical evidence can be found are [22,23].

The yearly returns Yi(π) of an investment portfolio π are independent and normally distributed random variables, with
expected value E[Yi(π)] = µ(π) −

1
2σ

2(π) and variance Var[Yi(π)] = σ 2(π).
When no confusion is possible, we omit the dependence on the investment portfolioπ in the notations. Hence, the yearly

returns are modeled by the i.i.d., normally distributed random variables Yi, with mean µ −
1
2σ

2 and standard deviation σ .

2. Generalized provisioning problem

In this section we discuss the main topic of this paper. We want to determine (an estimate of) the provision to be set
up at certain time in future, to ensure that, after having paid the first liabilities, all liabilities from then on can be fulfilled
with a high probability. First a general description of the problem is given, followed by the derivation of a solution based on
convex order comonotonic bounds. Next the problem is applied to optimal portfolio selection, and illustratedwith numerical
examples. In the final part of this section some practical interpretations of this provision are described and illustrated.

2.1. Problem description

Consider a series of deterministic liabilities αi due at time i, for i = 1, . . . , n, with αi ≥ 0 for all i. Suppose we have an
initial capital K0 > 0 available at time 0. Assume that during the first m years, with 0 < m < n, an investment strategy
π1 is followed where the return in year i is described by the random variable Yi(π1), with E[Yi(π1)] = µ(π1) −

1
2σ

2(π1)

and Var[Yi(π1)] = σ 2(π1). The random variables Yi(π1) are iid and normally distributed, for i = 1, . . . ,m. After m years,
a different investment strategy is followed, with return in year j equal to Yj(π2). The random variables Yj(π2) are iid and
normally distributed, with E[Yj(π2)] = µ(π2)−

1
2σ

2(π2) and Var[Yj(π2)] = σ 2(π2). We assume that the random variables
Yi(π1) and Yj(π2) are independent for all i and j.

We want to determine (an estimate of) the provision to be set up at time m, with 0 < m < n, to ensure that, after
having paid the first m liabilities, all future liabilities can be fulfilled, incorporating a certain ruin probability ϵ. We denote
this additional reserve at timem by Km. Formally, we want to determine Km such that:

Pr

K0e

m∑
i=1

Yi(π1)

−

m−
i=1

αie

m∑
j=i+1

Yj(π1)

+ Km ≥

n−m−
i=1

αm+ie
−

i∑
j=1

Yj(π2)

 ≥ (1 − ϵ), (14)

for some small ϵ. In other words, the reserve Km is equal to the following quantile:

Km = Q1−ϵ

n−m−
i=1

αt+ie
−

i∑
j=1

Yj(π2)

− K0e

m∑
i=1

Yi(π1)

+

m−
i=1

αie

m∑
j=i+1

Yj(π1)

 . (15)
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Note that Km is not necessarily positive. A negative Km means that the investor can withdraw an amount −Km from the
account at time m, and still fulfill future liabilities, incorporating a ruin probability ϵ. If Km = 0, no additional reserve is
needed at timem, but at the same time nothing can be withdrawn from the account.

Note also that (14) is a long-term survival probability, over thewhole investment period of n years. For example, a survival
probability of 85% over a period of 30 years corresponds to a yearly survival probability of approximately 99.46%, since
0.85 ≈ (0.9946)30.

In the following section expressions are derived for respectively the convex upper bound and lower bound
approximation.

2.2. Derivation of convex bounds

Within the quantile function in (15)we have sums of dependent lognormal random variables. As explained in Section 1.2,
it is impossible to determine the distribution function of these sums exactly. Therefore we derive analytical approximations,
based on the concept of comonotonicity, which are easy to compute. The results in this section are a generalization of [14].

The bounds derived in [14] cannot be applied directly to compute (15), as the terms within the quantile have different
signs. Also, Theorem 1 from [15] cannot be applied here, since the conditions of the theorem are not necessarily satisfied.
Therefore we have to use a different approach to determine a value for the reserve Km.

Denote Z =
∑m

i=1 Yi(π1). Applying the law of total probability, conditioning on Z , the left-hand side of inequality (14)
becomes:∫

∞

−∞

Pr

 m−
i=1

αie

m∑
j=i+1

Yj(π1)|Z=z
+

n−m−
i=1

αm+ie
−

i∑
j=1

Yj(π2)

≤ K0ez + Km

 1
σZ

φ


z − µZ

σZ


dz, (16)

with µZ = E[Z] = mµ(π1) and σZ =
√
mσ(π1).

Denoting S(z) = S1(z) + S2, with S1(z) =
∑m

i=1 αie
∑m

j=i+1 Yj(π1)|Z=z , and S2 =
∑n−m

i=1 αm+ie
−
∑i

j=1 Yj(π2), we can rewrite
(16) as∫

∞

−∞

Pr[S(z) ≤ K0ez]
1
σZ

φ


z − µZ

σZ


dz. (17)

To approximate the distribution function of S(z), we can use its comonotonic upper bound Sc(z) or lower bound S l(z), as
defined by (8) and (9). Important is that here it is possible to apply the results from Dhaene et al. [14], because all terms in
S(z) are of the same sign.

2.2.1. Upper bound approximation
To compute the probability within integral (16), we can approximate S(z) by its comonotonic upper bound Sc(z) as

follows:

S(z) ≤cx Sc(z) = Sc1(z) + Sc2 =

m−
i=1

αiF−1

e

m∑
j=i+1

Yj(π1)|Z=z
(U) +

n−m−
i=1

αm+iF−1

e
−

i∑
j=1

Yj(π2)

(U), (18)

with U uniformly distributed on the unit interval.
As shown in [4], the random variables

∑m
j=i+1 Yj(π1)|Z = z are normally distributed for any z. It can easily be seen that

its expected value and variance are given by:

E


m−

j=i+1

Yj(π1)|Z = z


=

m − i
m

z and Var


m−

j=i+1

Yj(π1)|Z = z


=

i(m − i)
m

σ 2(π1). (19)

Using (8) and (19), Sc1(z) can be rewritten as:

Sc1(z) =

m−
i=1

αi exp


m − i
m

z +


i(m − i)

m
σ(π1)Φ

−1(U)


. (20)

We also have an expression for Sc2:

Sc2 =

n−m−
i=1

αm+i exp


−i


µ(π2) −
1
2
σ 2(π2)


+

√
iσ(π2)Φ

−1(U)


. (21)
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Hence, using the additivity property (see Theorem 1), we can compute the quantiles of Sc(z) as:

Q1−p[Sc(z)] =

m−
i=1

αi exp


m − i
m

z −


i(m − i)

m
σ(π1)Φ

−1(p)



+

n−m−
i=1

αm+i exp


−i


µ(π2) −
1
2
σ 2(π2)


−

√
iσ(π2)Φ

−1(p)


. (22)

This result can be used to determine the distribution function of Sc(z), which can then be used to approximate integral (16).

2.2.2. Lower bound approximation
We can also approximate S(z) using convex lower bounds. We have that

S1(z) ≥cx S l1(z) = E[S1(z)|Λ1(z)]. (23)

Using (11) and (19) we get:

Λ1(z) =

m−
i=1

αie
m−i
m z+ 1

2
i(m−i)

m σ 2(π1)


m−

j=i+1

Yj(π1)|Z = z


. (24)

Using (9) and (19), we can write the lower bound S l1 as:

S l1(z) =

m−
i=1

αi exp


m − i
m

z +
1
2
(1 − r2i )

i(m − i)
m

σ 2(π1) + ri


i(m − i)

m
σ(π1)Φ

−1(U1)


, (25)

with U1 uniformly distributed on the unit interval. The correlation coefficients ri can be determined using (10). Using the
additivity property explained in Theorem 1, the quantiles of S l1(z) can be determined as:

Q1−p[S l1(z)] =

m−
i=1

αi exp


m − i
m

z +
1
2
(1 − r2i )

i(m − i)
m

σ 2(π1) − ri


i(m − i)

m
σ(π1)Φ

−1(p)


. (26)

S2 can be approximated by a convex lower bound S l2 in a similar way:

S2 ≥cx S l2 = E[S2|Λ2]. (27)

The conditioning variable Λ2 is given by

Λ2 =

n−m−
i=1

αm+ie−iµ(π2)+
1
2 iσ

2(π2)


−

i−
j=1

Yj(π2)


. (28)

Using (9) we get the following expression for S l2:

S l2 =

n−m−
i=1

αm+i exp


−iµ(π2) +


1 −

1
2
(r ′

i )
2

iσ 2(π2) + r ′

i

√
iσ(π2)Φ

−1(U2)


, (29)

with U2 uniformly distributed on the unit interval. The correlation coefficients r ′

i can be determined using (10). Using the
additivity property, the quantiles of S l2 can be determined using:

Q1−p[S l2] =

n−m−
i=1

αm+i exp


−iµ(π2) +


1 −

1
2
(r ′

i )
2

iσ 2(π2) − r ′

i

√
iσ(π2)Φ

−1(p)


. (30)

We approximate S(z) = S1(z)+ S2 by the sum S l(z) = S l1(z)+ S l2. The approximation S l(z) is a convex lower bound for S(z),
since convex order is closed under convolution for independent risks (see e.g. [1]). The quantiles of S l(z) can be computed
by adding (26) and (30). This allows us to compute the distribution function of S l(z), and hence to approximate integral (16).
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Fig. 1. Comparison of upper bound (dashed line) and lower bound (dotted line) to simulated results (solid line), µ(π1) = µ(π2) = 0.05 and
σ(π1) = σ(π2) = 0.1.

Fig. 2. Comparison of upper bound (dashed line) and lower bound (dotted line) to simulated results (solid line),µ(π1) = 0.05,σ(π1) = 0.1,µ(π2) = 0.02
and σ(π2) = 0.01.

2.3. Numerical illustration

Assume that n = 30, αi = 10 for i = 1, . . . , 30, K0 = 200 and m = 5. Furthermore, assume as a first example
µX = µY = 0.05 and σX = σY = 0.1. Using this setting we can compute the probability of shortfall

Pr

K0e

m∑
i=1

Yi(π1)

−

m−
i=1

αie

m∑
j=i+1

Yj(π1)

+ Km ≤

n−m−
i=1

αm+ie
−

i∑
j=1

Yj(π2)

 (31)

for a range of reserves Km. In Fig. 1 our lower and upper bound approximations are compared to simulated results. We
observe that both approximations perform very well, especially the lower bound. The figure also illustrates the intuitive
fact that increasing the additional reserve Km decreases the probability of shortfall. As a second example, suppose a more
conservative strategy is followed after 5 years. More precisely, assume that µ(π1) = 0.05, σ(π1) = 0.1, µ(π2) = 0.02 and
σ(π2) = 0.01. Computing the probability of shortfall (31) for different reserves Km leads to Fig. 2. In this second example
we see that our approximations are even closer to the simulated results, as it is almost not possible to distinguish the lines.
Detailed numerical results of these examples can be found in Tables 5 and 6 in the Appendix.

2.4. Application to optimal portfolio selection

We can easily use our results in an optimal portfolio selection setting. In this section, we describe two possible
optimization problems. For example, suppose we have an initial capital K0 available at time 0, and suppose we know that
we will add an extra capital Km at time m. Suppose also that the investment strategy followed during the first m years is
fixed, and is given by π1. In this case we can optimize the investment strategy to be followed from year m on. The optimal
portfolio is the one leading to a maximal survival probability p∗:

p∗
= max

π
Pr

K0e

m∑
i=1

Yi(π1)

−

m−
i=1

αie

m∑
j=i+1

Yj(π1)

+ Km ≥

n−m−
i=1

αm+ie
−

i∑
j=1

Yj(π)

 . (32)

As a second and perhaps more relevant optimization, suppose we have given an initial capital K0 and a desired level of ruin
probability ϵ. Suppose again that the investment strategy followed during the first m years is fixed, and is given by π1. We
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Table 1
Minimal reserves K ∗

5 and optimal strategies for given certainty levels ϵ.

ϵ

0.15 0.10 0.05 0.01

π∗

1 53.54% 60.78% 68.54% 76.74%
π∗

2 46.46% 39.22% 31.46% 23.26%
µ(π∗) 7.86% 7.57% 7.26% 6.93%
σ(π∗) 12.84% 12.09% 11.39% 10.78%
K ∗

5 30.74 46.65 70.78 119.94

can then optimize the investment strategy to be followed from year m on, by looking for the portfolio leading to a minimal
additional reserve K ∗

m at timem:

K ∗

m = min
π

Q1−ϵ

K0e

m∑
i=1

Yi(π1)

−

m−
i=1

αie

m∑
j=i+1

Yj(π1)

−

n−m−
i=1

αm+ie
−

i∑
j=1

Yj(π)

 . (33)

We refer to Section 2.5.2 for a possible practical application of these optimal portfolio selection problems. In the following
paragraph, we illustrate optimization problem (33) numerically.

2.4.1. Numerical illustration
Assume that n = 20, and αi = 10 for i = 1, . . . , 20. Suppose we have two risky asset classes available in which we can

invest,with drift vectorµT
= (0.06, 0.10), standard deviationsσ T

= (0.10, 0.20) and correlationρ1,2 = 0.50. Furthermore,
take K0 = 150 and suppose during the first 5 years the investment strategy π1 = (0.75, 0.25) is followed, with parameters
µ(π1) = 0.07 and σ(π1) = 0.15. In this paragraph, we use the lower bound approximation as defined in Section 2.2.2
to determine the optimal investment strategy π∗, leading to a minimal reserve K ∗

m, as described by (33). As illustrated in
Section 2.3, this lower bound approximation is in general significantly more accurate than the upper bound.

Assuming that m = 5, the results of our optimization for different values of ϵ are given in Table 1. These results show
that increasing the certainty level leads to a more conservative optimal strategy, and a higher required additional reserve
K ∗

5 at time 5. For example, if from year 5 on the strategy (0.6061, 0.3939) is followed, and if an amount of 46.65 is put on the
account at time 5, there is 90% certainty that all liabilities can be paid. Following any other investment strategy, or adding
less than 46.65 at time 5, would lead to a survival probability of less than 90%.

2.5. Interpretations of additional reserve

In this section we give interpretations for the reserve Km, illustrated with numerical examples. Throughout this section,
we use the comonotonic lower bound approximations derived in the previous sections to solve the optimization problems.

2.5.1. Effect of a temporary change in market parameters
Estimating the additional reserve Km can be useful to quantify the effect of temporary changes in themarket parameters.

Suppose an insurance company has determined its investment portfolio using long-term estimates for the parameters
describing the financial market. To estimate the influence of a temporary change in market parameters, assume that during
the firstm years the market behaves differently, with different parameters µ and σ .

If we assume a temporary improvement of market conditions (asset classes with higher drifts and/or lower variances),
the reserve Km as defined by (15) can be interpreted as the amount of money that will be available on the account at timem
due to these favorable short-term market conditions (assuming that we use the same ruin probability ε).

Similarly, if we would assume temporary adverse market conditions, the reserve Km is an estimate of the amount of
money the insurer will have to put on the account at timem in order to recover from this short-term ‘‘crisis’’.

Also, the insurer can see how these temporary (un)favorable parameters change its optimal investment strategy:
assuming that the market behaves unusually well (bad) during the first years, how will the optimal investment strategy
look like afterward. For a given reserve Km (e.g. Km = 0), the influence of (un)favorable temporary market conditions on the
ruin probability ε can also be investigated.

Example. Take K0 = 175, n = 30, and αi = 10 for i = 1, . . . , 30, and assume that we have the 2 asset classes as in
Section 2.4.1. Maximizing the survival probability, which is the probability of being able to pay all the liabilities, leads to
an optimal investment strategy π = (0.5804, 0.4196), with µ(π) = 0.0768, σ(π) = 0.1236 and corresponding maximal
survival probability 85%. Note that this is a survival probability over thewhole investment period of 30 years, corresponding
to a yearly survival probability of approximately 99.46%. Assume that the insurer invests according to this optimal strategy.
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Table 2
Reserve Km at timem in the case of (un)favorable short-term market conditions.

m 2 3 4 5 10 15

2 ∗ σ 28.68 39.53 49.17 58.02 96.29 132.04
µ − 2% 7.07 11.00 14.89 18.73 37.75 57.27
µ − 1% 3.66 5.99 8.31 10.61 21.96 33.66
µ + 1% −3.34 −4.45 −5.60 −6.83 −14.95 −27.30
µ + 2% −6.94 −9.89 −12.96 −16.20 −36.50 −66.41
0.5 ∗ σ −5.68 −8.06 −10.38 −12.69 −24.53 −38.58

Table 3
Survival probability in the case of (un)favorable short-term market conditions (Km = 0).

m 2 3 4 5 10 15

2 ∗ σ 74.6% 71.3% 68.8% 66.8% 60.4% 56.7%
µ − 2% 82.1% 80.5% 78.9% 77.4% 71.5% 67.6%
µ − 1% 83.6% 82.7% 81.8% 81.1% 78.2% 76.5%
µ + 1% 86.2% 86.6% 86.9% 87.1% 88.4% 89.5%
µ + 2% 87.4% 88.2% 88.9% 89.6% 92.0% 93.5%
0.5 ∗ σ 88.4% 89.8% 91.0% 92.0% 95.8% 97.7%

Table 4
Minimal reserves K ∗

m and optimal strategies for different values ofm.

m
2 3 4 5 10

π∗

1 52.26% 50.75% 49.25% 48.24% 45.23%
π∗

2 47.74% 49.25% 50.75% 51.76% 54.77%
µ(π∗) 7.91% 7.97% 8.03% 8.07% 8.19%
σ(π∗) 12.98% 13.14% 13.31% 13.43% 13.78%
K ∗
m 3.59 5.38 6.94 8.35 13.90

Suppose the insurerwants to check the influence of unusual short-termmarket conditions. In Table 2, additional reserves
Km are given for different market assumptions, and different values ofm. In all examples, the survival probability is 85%. For
example, if every asset class has a drift 2% higher than normal for a period of 5 years, an amount of 16.20 can be withdrawn
from the account at time 5. If the standard deviations of the asset classes are double for a period of 10 years, the insurer will
have to put 96.29 on the account at time 10 in order to keep the same survival probability of 85%.

In Table 3 the influence of a change in short-term market conditions on the survival probability is illustrated. Suppose
the insurer does not want to invest extra money at time m, or Km = 0. We see from the table that the more (un)favorable
the market conditions are, and the longer these conditions last, the higher (lower) the survival probability becomes.

2.5.2. Postponing rebalancing of investment portfolio
Suppose an insurance company knows that its current investment portfolio is not optimal. Assume however that the

insurer does notwant to change to a different investment strategy immediately, but prefers towait for a period ofm years. In
this case, the reserve Km as defined by (15) can serve as an estimate of the cost of postponing the rebalancing (incorporating,
of course, a certain ruin probability). Also the influence of postponing rebalancing on the optimal investment strategy can
be investigated.

Similarly, suppose the insurer knows howmuchmoney hewill have available inm years to put on its account (e.g.Km = 0
if he does notwant to invest extramoney). In that case, the insurer candetermine the influence of postponing the rebalancing
on the ruin probability and on the optimal investment strategy. Thisway the insurer can get an idea of themaximumnumber
of yearsm for which postponing changing its investment strategy is acceptable.

Example. TakeK0 = 175, n = 30, andαi = 10 for i = 1, . . . , 30, and assume thatwe have the two asset classes as described
in Section 2.4.1. Maximizing the survival probability over the whole investment period leads to an optimal investment
strategy π = (0.5804, 0.4196), withµ(π) = 0.0768, σ(π) = 0.1236 and correspondingmaximal survival probability 85%.

Suppose the insurer has currently an investment portfolio given by (0.25, 0.75), with corresponding drift 0.09 and
standard deviation 0.1639. In other words, the insurer’s current portfolio is more risky than the optimal one. Suppose the
insurer does not want to rebalance immediately, but would like to keep its current strategy for m years. Also suppose the
insurer would still like to have a survival probability of 85%. Using (33) we can determine the optimal investment strategy
π∗, to be followed from timem on, leading to aminimal additional reserve K ∗

m. This minimal reserve will always be positive:
since the insurer does not invest optimally during the first m years, he can not reach the survival probability of 85% (which
is the maximal survival probability) without investing an extra amount of money at time m. For different values of m, the
results are given in Table 4. For example, for m = 5 we find as a result π∗

= (0.4824, 0.5176), with µ(π∗) = 0.0807 and
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Table 5
Comparison of the upper bound and lower bound to simulated results, with µ(π1) = µ(π2) = 0.05 and σ(π1) = σ(π2) = 0.1.

Km Upper bound Simulation Lower bound

−250 0.99495 0.99644 0.99589
−240 0.99319 0.99512 0.99443
−230 0.99085 0.99340 0.99248
−220 0.98776 0.99115 0.98989
−210 0.98372 0.98803 0.98647
−200 0.97846 0.98383 0.98199
−190 0.97168 0.97851 0.97615
−180 0.96301 0.97153 0.96861
−170 0.95205 0.96245 0.95897
−160 0.93832 0.95100 0.94676
−150 0.92135 0.93660 0.93147
−140 0.90063 0.91839 0.91256
−130 0.87569 0.89626 0.88947
−120 0.84614 0.86913 0.86168
−110 0.81170 0.83670 0.82879
−100 0.77227 0.79913 0.79051
−90 0.72801 0.75489 0.74680
−80 0.67930 0.70569 0.69788
−70 0.62686 0.65106 0.64431
−60 0.57165 0.59203 0.58699
−50 0.51485 0.53085 0.52714
−40 0.45780 0.46770 0.46621
−30 0.40183 0.40432 0.40581
−20 0.34822 0.34431 0.34751
−10 0.29803 0.28737 0.29276
0 0.25206 0.23562 0.24268
10 0.21083 0.18979 0.19807
20 0.17456 0.15064 0.15929
30 0.14320 0.11729 0.12636
40 0.11652 0.09065 0.09900
50 0.09413 0.06881 0.07670
60 0.07557 0.05187 0.05885
70 0.06035 0.03886 0.04476
80 0.04798 0.02886 0.03380
90 0.03801 0.02123 0.02537
100 0.03002 0.01563 0.01894
110 0.02366 0.01136 0.01409
120 0.01861 0.00830 0.01044
130 0.01462 0.00611 0.00772
140 0.01148 0.00440 0.00570
150 0.00900 0.00322 0.00420
160 0.00706 0.00231 0.00309
170 0.00554 0.00172 0.00228
180 0.00435 0.00126 0.00168
190 0.00342 0.00091 0.00124
200 0.00268 0.00066 0.00091
210 0.00211 0.00047 0.00067
220 0.00166 0.00037 0.00050
230 0.00131 0.00027 0.00037
240 0.00104 0.00020 0.00027
250 0.00082 0.00014 0.00020

σ(π∗) = 0.1343. The minimal additional reserve at time 5 amounts to K ∗

5 = 8.35. In other words, if the insurer wants to
postpone rebalancing for 5 years, and if he wants to keep the same survival probability of 85%, we estimate that he has to
invest an additional amount of 8.35 at time 5, and change to the strategy π∗. If he does not invest according to π∗, he will
have to put more than 8.35 on the account at time 5 to have a survival probability of 85%.

Note that the optimal strategies π∗ in Table 4 are more risky than the optimal strategy π above. However, it might not
be meaningful to compare these strategies as they are obtained using different optimization criteria.

From the results in Table 4 we can see that increasingm, hence delaying the moment of rebalancing, leads to an increase
in the additional reserve K ∗

m. Also we see that the optimal strategy to be followed from time m on becomes more risky for
increasing m. Our results allow us to solve several other interesting optimization problems. For example, another possible
optimization problemwould be to fix an investment portfolio for the firstm years, and to choose a value of Km (e.g. Km = 0),
and to determine the investment strategy to be followed from time m on such that the survival probability is maximized.
For Km = 0, this maximal probability would be less than 85%, unless the insurer invests according to the optimal strategy
π = (0.5804, 0.4196) as explained above.
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Table 6
Comparison of the upper bound and lower bound to simulated results, with µ(π1) = 0.05, σ(π1) = 0.1, µ(π2) = 0.02 and σ(π2) = 0.01.

Km Upper bound Simulation Lower bound

−250 0.99943 0.99947 0.99944
−240 0.99922 0.99925 0.99923
−230 0.99892 0.99897 0.99894
−220 0.99851 0.99858 0.99854
−210 0.99795 0.99807 0.99798
−200 0.99718 0.99733 0.99723
−190 0.99614 0.99631 0.99620
−180 0.99472 0.99499 0.99480
−170 0.99280 0.99312 0.99291
−160 0.99022 0.99059 0.99037
−150 0.98678 0.98724 0.98696
−140 0.98219 0.98291 0.98243
−130 0.97612 0.97684 0.97643
−120 0.96816 0.96919 0.96854
−110 0.95779 0.95924 0.95827
−100 0.94441 0.94593 0.94499
−90 0.92733 0.92900 0.92802
−80 0.90576 0.90784 0.90657
−70 0.87887 0.88127 0.87979
−60 0.84581 0.84864 0.84684
−50 0.80584 0.80854 0.80693
−40 0.75835 0.76116 0.75946
−30 0.70308 0.70566 0.70414
−20 0.64021 0.64259 0.64112
−10 0.57053 0.57252 0.57120
0 0.49554 0.49640 0.49586
10 0.41748 0.41648 0.41738
20 0.33928 0.33760 0.33870
30 0.26427 0.26126 0.26321
40 0.19581 0.19192 0.19437
50 0.13681 0.13258 0.13513
60 0.08922 0.08476 0.08749
70 0.05366 0.04952 0.05208
80 0.02934 0.02619 0.02806
90 0.01434 0.01205 0.01343
100 0.00614 0.00477 0.00559
110 0.00225 0.00155 0.00196
120 0.00069 0.00041 0.00056
130 0.00017 0.00008 0.00013
140 0.00003 0.00001 0.00002
150 0.00000 0.00000 0.00000
160 0.00000 0.00000 0.00000
170 0.00000 0.00000 0.00000

2.6. Conclusion

In this paper we discussed a general provisioning problem. We derived approximations that can be used to determine
an estimate at time 0 of the provision to be set up at a certain time in future, to ensure, after having paid the first liabilities,
that all future liabilities can be fulfilled, incorporating a specified (low) ruin probability. We derived a convex lower and an
upper bound based on comonotonicity to determine an accurate and easily computable approximation for this reserve. We
applied our results in an optimal portfolio selection framework, and illustrated it with numerical examples.

We have seen that the general provisioning problem can be useful in practice. As a first plausible interpretation, the
additional reserve can be used to quantify the effect of temporary changes in market conditions. We have seen for example
that such changes can significantly influence the long-term survival probability. Secondly, the setting discussed in this paper
can be used to see if and how long postponing rebalancing of the investment portfolio can be justified.

This paper gives an interesting extension to comonotonic approximations, and their application to optimal portfolio
selection. Future researchwould for example consist in deriving analytical expressions for other,more general riskmeasures
such as Tail Value-at-risk (TVaR) or Conditional Tail Expectation (CTE). Other future work could consist in trying to combine
the results of [24] with the results of this paper, solving more general life-cycle investment problems.
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Appendix. Numerical results

The tables in this appendix contain the numerical results of the examples of Section 2.3, comparing our lower bound
and upper bound approximations to results obtained using simulation. Table 5 contains the results of the first example,
where µ(π1) = µ(π2) = 0.05 and σ(π1) = σ(π2) = 0.1. Table 6 contains the results of the second example, where
µ(π1) = 0.05, σ(π1) = 0.1, µ(π2) = 0.02 and σ(π2) = 0.01.
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