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w xWe shall prove the conjecture of Myasnikov and Remeslennikov 4 which states
Žthat a finitely generated group is fully residually free every finite set of nontrivial

.elements has nontrivial images under some homomorphism into a free group if
and only if it is embeddable in the Lyndon’s exponential group F Zw x x, which is the

w x w xZ x -completion of the free group. Here Z x is the ring of polynomials of one
variable with integer coefficients. Historically, Lyndon’s attempts to solve Tarski’s
famous problem concerning the elementary equivalence of free groups of different
ranks led him to introduce F Zw x x.

An '-free group is a group G such that the class of '-formulas, true in G, is the
same as the class of '-formulas, true in a nonabelian free group. A finitely

w xgenerated group is '-free if and only if it is fully residually free 22 . Our result
gives an algebraic description of '-free groups.

We shall give an algorithm to represent a solution set of an arbitrary system of
equations over F as a union of finite number of irreducible components in the
Zariski topology on F n. The solution set for every system is contained in the
solution set of a finite number of systems in triangular form with quadratic words
as leading terms. The possibility of such a decomposition for a solution set was

w xconjectured by Razborov in 20 and also by Rips.

*The first author was supported by NSERC grant; the second author was supported by the
NSF Grant DMS-9103098.
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We shall give a description of systems of equations determining irreducible
w xcomponents using methods developed in 13, 19 ; it is possible to find some of these

w xmethods in 18 . We are thankful to E. Rips for attracting our attention to these
techniques. Q 1998 Academic Press

0. INTRODUCTION

w xAll the necessary definitions can be found in 9 . Nevertheless, we repeat
here most of them to make this paper self-contained.

Ž . � 4Let G be a group, F X the free group with basis X s x , x , . . . , x ,1 2 n
w x Ž . Ž .and G X s G) F X the free product of G and F X .

w xAn element s from G X is called an equation o¨er the group G. We
Ž . Ž .write this as s x , . . . , x , g , . . . , g s 1 or, simply, as s x, g s 1. A1 n 1 m

�system of equations o¨er group G is an arbitrary set of equations S s s si
< 4 Ž .1 i g I in more succinct notation: S s 1 . A solution of a system
Ž .S x , . . . , x , g , . . . , g s 1 over a group G is a tuple of elements1 n 1 m

a , . . . , a g G such that after replacement of each x by a in every1 n i i
Ž .equation s x, g s 1 one gets a trivial element in a group G. In other

words, a solution of the system S s 1 over G can be described as a
Ž .G-homomorphism i.e., a homomorphism which is identical on G

w x Ž . Ž .p : G X ª G such that f S s 1. If by V S we denote the set of allX
Ž .solutions in G of the system S s 1, then V S is called an algebraic subset

Ž . nor an affine variety in G .
w x Ž . Ž Ž .. Ž .For any S : G X we have V S s V ncl S , where ncl W is the

w xnormal closure of W in G X .
A group G is called a CSA-group if every maximal abelian subgroup M

of G is malnormal, i.e., M g l M s 1 for any g f M.
w xIt was shown in 3 that for a nonabelian CSA-group G all algebraic sets

in Gn define a topology on Gn in which they are exactly the closed sets.
Ž . Ž . Ž . Ž .One verifies that it is really a topology: V DS s FV S ; V S j V Si i i 2

Žw aa b b x . w xs V u , ¨ , u g S , ¨ g S , where a, b g G, a, b / 1, a , b g1 2
� 4 Ž . n Ž w x.1, y1 ; V 1 s 1 s G and V G X s B. The topology defined by alge-
braic sets as closed subsets is said to be a Zariski topology.

Below G is always a nonabelian group.

DEFINITION 1. Let Y : Gn. Define a set

<w xI Y s s g G X s g , . . . , g s 1 ; g , . . . , g g Y .� 4Ž . Ž . Ž .1 n 1 n

Ž .The set I Y has a description in terms of homomorphisms. Any tuple
Ž . w xg s g , . . . , g g Y defines a homomorphism p : G X ª G by the con-1 n g
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dition x ª g . Theni i

I Y s ker p .Ž . Ž .F g
ggY

Ž . w xI Y is a normal subgroup of G X , and if G is a torsion-free group
Ž . w x Ž Ž ..then I Y is an isolated normal subgroup of G X , in particular, I V S

'contains the intersection S of all normal isolated subgroups containing S.

Ž . w xDEFINITION 2. Let V S be a variety defined by S ; G X . Then
Ž Ž .. Ž .I V S is called the radical of the system S s 1 and is denoted by Rad S .

w x Ž . w x Ž .Denote G X rRad S by G , and G X rncl S by G .RŽS . S

A system S s 1 over G is called consistent if there is a G-homomor-
w x Ž .phism p : G X ª H G G such that S g ker p . Otherwise it is inconsis-

tent over G. If a system S s 1 over G is consistent then the canonical
homomorphism G ª G is monic. Therefore, for nonempty varietiesRŽS .
Ž .V S we will assume that G is a subgroup of G .RŽS .

DEFINITION 3. Let H be a group and GG be a family of groups.

Ž .1 A homomorphism of groups c : H ª G separates a nontrivial
Ž .element h g H if c h / 1;

Ž . � < 42 A family of homomorphisms C s c : H ª G G g GG is called a
Ž .separating discriminating family of homomorphisms if any nontrivial

Ž .h g H any finite number of nontrivial elements h , . . . , h g H can be1 n
separated by some c g C. In this case H is called a residually GG group
Ž .v-residually GG group or fully residually GG group .

In the case when GG consists of a single group G, which is also a
Ž .subgroup of H, and if the separating discriminating homomorphisms in c

Ž .are all G-homomorphisms, we say that H is separated discriminated by
G-homomorphisms.

Ž .A group G is called Equationally Noetherian EN if for every system S
Ž . Ž .of equations over G there is a finite subsystem S such that V S s V S .0 0

w xA free group is an EN group 8 .
A closed set in a topological space is called irreducible if it is not a union

of two proper closed subsets.

w x Ž .LEMMA 1 3 . Let G be an EN CSA-group. Then V S is irreducible if
and only if G is discriminated in G by G-homomorphisms.RŽS .

DEFINITION 4. An equation is said to be quadratic if every variable
occurs in the equation not more than twice. An equation is said to be
strictly quadratic if every variable occurs in the equation exactly twice. A
system is said to be quadratic if every variable occurs in the equations of
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Ž .the system not more than twice it may not occur at all . A system is said to
be strictly quadratic if every variable occurs in the equations of the system
exactly twice.

Let the set X consist of three types of variables: x , y , z . We call ai i i
quadratic equation standard if it has one of the following forms,

n

w xx , y s 1 n ) 0 , 1Ž . Ž .Ł i i
is1

n m
y1w xx , y z c z d s 1, 2Ž .Ł Łi i i i i

is1 is1

n
2x s 1 n ) 0 , 3Ž . Ž .Ł i

is1

n m
2 y1x z c z d s 1, 4Ž .Ł Łi i i i

is1 is1

Ž .where d, c i s 1, . . . , m are nontrivial elements in G.i

Ž .DEFINITION 5. Let G be a group, C u the centralizer of the element u
Ž . Ž . ² <w xin G. Suppose C u is abelian. Then the group C u, t s G, t ¨ , t s 1, ¨

Ž .:g C u is called a free extension of the centralizer of u.

Let A be an arbitrary associative ring with identity and G a group. Fix
an action of the ring A on G, i.e., a map G = A ª G. The result of the
action of a g A on g g G is written as g a. Consider the following axioms:

Ž . 1 0 a1 g s g, g s 1, 1 s 1;
Ž . aqb a b a b Ž a . b2 g s g ? g , g s g ;
Ž . Ž y1 .a y1 a3 h gh s h g h;
Ž . w x Ž .a a a4 g, h s 1 « gh s g h .

Ž . Ž .DEFINITION 6. Groups with A-actions satisfying axioms 1 ] 4 are
called A-groups.

In particular, an arbitrary group G is a Z-group. We now recall the
definition of A-completion.

DEFINITION 7. Let G be a group. Then an A-group G A together with a
homomorphism l: G ª G A is called a tensor A-completion of the group
G if G A satisfies the following universal property: for any A-group H and
a homomorphism w : G ª H there exists a unique A-homomorphism

A Ž .c : G ª H a homomorphism that commutes with the action of A such



IRREDUCIBLE AFFINE VARIETIES 521

that the following diagram commutes:

l A6

G G

66

w
c

H

w xBy Z x we denote as usual the ring of polynomials of one variable with
integer coefficients.

w xLEMMA 2 17 . E¨ery group obtained from a CSA group G by a sequence
of free extensions of centralizers is embeddable into GZwxx.

Below x denotes several variables.

DEFINITION 8. Let G be a group, c a tuple of elements from G,
m Ž .x , . . . , x disjoint tuples of variables. A system D S c, x , . . . , x s 11 n is1 i i m

is said to be triangular quasi-quadratic if for every i the equation
Ž .S c, x , . . . , x s 1 is quadratic in the variables from x .i i m i
Such a system is said to be nondegenerate if for each i the equation

iy1w x Ž . ŽS s 1 over G x , . . . , x rR D S with elements x considered asi iq1 m js1 j i
.variables and elements from c, x ??? x as coefficients has a solution.iq1 m

w xIn 9 the following result was proved.

THEOREM 1. If S is a nondegenerate triangular quasi-quadratic system
o¨er a fully residually free group G, then G is isomorphic to a subgroup ofRŽS .
a group obtained from G by a sequence of free extensions of centralizers and
hence a subgroup of GZw x x.

If G is fully residually free, then every finitely generated subgroup of
GZw x x is a subgroup of a group obtained from G by a finite series of free
extensions of centralizers, and hence is discriminated by G-homomor-

w xphisms 4 . This and Lemma 1 imply

COROLLARY 1. For a nondegenerate triangular quasi-quadratic system S
Ž .o¨er a fully residually free group G the solution set V S is irreducible.

Ž .THEOREM 2. For any finite system S x s 1 o¨er a free group F, one can
find effectï ely a finite family of nondegenerate triangular quasi-quadratic

Ž . Ž . Ž .systems U , . . . , U and word mappings p : V U ª V S i s 1, . . . , k1 k i F i F
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Ž . Ž .such that for e¨ery b g V S there exists i and c g V U for whichF F i
Ž .b s p c , i.e.,

V S s p V U j ??? j p V UŽ . Ž . Ž .Ž . Ž .F 1 F 1 k F k

Ž Ž ..and all sets p V U are irreducible; moreo¨er, e¨ery irreducible componenti F i
Ž . Ž Ž ..of V S can be obtained as a closure of some p V U in the ZariskiF i F i

topology.

This theorem will be proved in Sections 1]10. A system S is said to be
Ž .irreducible if the solution set V S is irreducible. The main objective in this

paper is to prove the following

Ž .THEOREM 3. For a system S s 1 o¨er a free group, V S is irreducible if
and only if F : F for a nondegenerate triangular quasi-quadraticRŽS . RŽS .1

system S .1

Sections 1]9 will be devoted to proving that for any irreducible system
S s 1 over a free group F, F : F for a nondegenerate triangularRŽS . RŽS .1

quasi-quadratic system S .1
w x ZwxxNotice that in 4 it was shown that F is fully residually free.

Theorem 3 implies

THEOREM 4. A finitely generated group is fully residually free if and only if
it is isomorphic to a subgroup of F Zwxx.

Proof. Consider a finitely generated fully residually free group G given
Ž .by generators x , . . . , x and relations s x , . . . , x , j g J. Consider S s1 n j 1 n

� Ž . 4s x , . . . , x , j g J as a system of equations over F. Then G) F s Fj 1 n S
Ž . Ž .and ncl S s Rad S , since F is fully residually free. Hence G F F isS RŽS .

Zwxxembeddable into F .

Now we can describe the algebraic structure of finitely generated
subgroups of F Zwxx in terms of free constructions.

² < t :Let H s G, t A s B be an HNN extension of G with associated
subgroups A and B. H is called a separated HNN-extension if for any
g g G, Ag l B s 1.

COROLLARY 2. E¨ery finitely generated residually free group G is a
subgroup of a direct product of finitely many fully residually free groups; hence,
G is embeddable into F Zw x x = ??? = F Zw x x.

THEOREM 5. Let V be an irreducible ¨ariety o¨er F. Then there exists a
finite system of equations S s 1 o¨er F which defines the ¨ariety V and
satisfies the Nullstellensatz.

Ž .THEOREM 6 joint with V. Remeslennikov . Let a group G be obtained
from a free group F by a series of finitely many free extensions of centralizers.
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Then e¨ery finitely generated subgroup H of G is obtained from free abelian
groups of finite rank by finitely many operations of the following type:

Ž .1 free products;
Ž .2 amalgamated products with abelian amalgamated subgroups at least

one of which is maximal abelian;
Ž .3 free extensions of centralizers;
Ž .4 separated HNN-extensions with abelian associated subgroups at least

one of which is maximal abelian.

The following four corollaries will be proved in Section 10.

COROLLARY 3. E¨ery finitely generated fully residually free group is finitely
presented.

Corollary 3 was also announced by Z. Sela.

COROLLARY 4. All finitely generated subgroups of F Zw x x, in which all
proper centralizers are cyclic, are hyperbolic.

COROLLARY 5. E¨ery finitely generated group H which is ;'-equï alent to
a nonabelian free group is torsion-free hyperbolic; moreo¨er, H can be
obtained from infinite cyclic groups by finitely many operations of the following
type:

Ž .1 free products;
Ž .2 amalgamated products with infinite cyclic amalgamated subgroups at

least one of which is maximal abelian;
Ž .3 separated HNN-extensions with infinite cyclic associated subgroups at

least one of which is maximal abelian.

w xIn 23 Remeslennikov proved that every finitely generated fully residu-
ally free group acts freely on some Z n-tree with some order for a suitable

w x Ž .natural number n. In 21 he asks Question A if such a group acts freely
on some Z n-tree with lexicographic order. Corollary 6 gives a positive
answer to his question.

COROLLARY 6. E¨ery finitely generated fully residually free group acts
freely on some Z n-tree, where Z n is a direct sum of n copies of Z with
lexicographic order.

� 4 Z k
Let U s u , . . . , u be a set of parametric words, i.e., a subset of F .1 n

By the definition we have fixed some pure cyclic subgroup Z in Z k in such
a way that the action of this subgroup Z coincides with the integer powers
in F. Because Z is pure in Z k we have Z k s Z [ B, where B is a free
abelian group with a free base t , . . . , t . These generators t -s are called1 n i
parameters in F Z k

. Any homomorphism j : B ª Z gives rise to a F-homo-
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morphism j *: F Z k ª F. In this case we say that the image Uj * is
obtained from U by specializing parameters by j . Let

j * < kU* s U j g Hom Z , Z� 4Ž .D

be the union of all specializations of the set U.
We can slightly generalize the construction of a specialization. Instead

of a set U we can consider a set of tuples of words from F Z k
and specialize

them coordinatewise. Then we will get the set U* of tuples of elements
from F.

Ž .THEOREM 7. Let S X s 1 be a system of equations o¨er a free group F.
Ž .Then there exists a finite set of n-tuples of parametric words U s u , . . . , u1 n

Ž Z k .ng F such that the set of all their specializations U* is a dense subset of
Ž .the ¨ariety V S in the Zariski topology.F

COROLLARY 7. Any system S s 1 o¨er a free group F has a dense subset
which can be parametrized by finitely many parametric words.

DEFINITION 9. The existential theory of G is the set of all formulas of
the form

s t

F s ' x u x , g s 1 ¨ x , g / 1 ,Ž . Ž .H Hi jž /1 1

that are true on G.

w xIt was proved in 12 that the existential theory of a free group is
decidable; this implies that for a finite system S s 1 the group F has aRŽS .
decidable word problem.

DEFINITION 10. A fundamental sequence of length k for a system of
equations f is a triple

MM , Hom, Aut ,Ž .

where MM consists of n systems of equations f s 1, . . . , f s 1, f s f ,1 k 1
and f is an empty system. Hom is a collection of k y 1 homomorphismsk
p , . . . , p where p : F ª F , and p is a retract on F. Aut is1 ky1 i RŽf . RŽf . ii iq1

a collection of k finitely generated automorphism groups P , . . . , P of the1 k
Žgroups F , . . . , F , respectively. A fundamental sequence F s MM,RŽf . RŽf .1 k

.Hom, Aut is effectively given if the systems in MM, homomorphisms from
Hom, and automorphisms from Aut are effectively given. To effectively
define a homomorphism from F ª F means to define the imagesRŽf . RŽc .
of the generators of the group F .RŽf .



IRREDUCIBLE AFFINE VARIETIES 525

If F is some fundamental sequence of length k for the system f s 1,
p : F ª F a homomorphism of free groups, and s , s , . . . , s areRŽf . 1 2 kn

automorphisms from P , P , . . . , P , respectively, then the composition1 2 k

F ª F ª F ª F ª ??? F ª F ª FRŽf . s RŽf . p RŽf . s RŽf . p RŽf . s RŽf . p1 1 2 2 2 2 k k k

5Ž .

equals p for some solution X of the system f. We say that F describesX
Ž .a solution X of the system f if p can be represented in the form 5 forX

some choice of p , . . . , p , s , s , . . . , s .1 k 1 2 k

w xLEMMA 3 19, Lemma 1.1 . In an infinite sequence

G ª G ª ??? ª G ª ???1 p 2 p p r p1 2 ry1 r

of finitely generated residually free groups G , . . . , G , . . . and surjectï e homo-1 r
morphisms, almost all homomorphisms are isomorphisms.

Proof. Let g , . . . , g be a finite family of generators of G . Consider1 n 1
the system of equations

<f x , . . . , x s 1 ' r p ??? p f g , . . . , g s 1 . 6Ž . Ž . Ž .� 4Ž .Ž .1 n r 1 1 n

w x Ž . Ž .By Guba’s theorem 8 there exists a finite subsystem f x s 1, f x1 2
Ž . Ž . Ž .s 1, . . . , f x s 1 of system 6 which is equivalent to 6 . Let r be suchm 0

Ž Ž ..a number that p ??? p f g , . . . , g s 1, 1 F i F m. We claim that pr 1 i 1 n r0

is an isomorphism for r G r .0
Indeed, p is surjective by definition; so we only have to verify that it isr

Ž .injective. Let g g G ; p g s 1. Choose g 9 g G such that p ???r r 1 ry1
Ž . Ž . Ž .p g 9 s g and consider g 9 s f g , . . . , g . Then f x , . . . , x s 1 is an1 1 n 1 n

Ž .equation of the system 6 , and for any X , . . . , X g F the following1 n
implication is true

m

f X , . . . , X s 1 ª f X , . . . , X s 1.Ž . Ž .H i 1 n 1 n
is1

Suppose now that g / 1. Because G is residually free, there exists ar
Ž .homomorphism p : G ª F such that p g / 1. Let X s pp ???r j ry1

Ž . Ž . Ž .p g 1 F j F n . Then for any 1 F i F m one has f X s pp ???1 j i ry1
Ž . Ž . Ž . Ž .p f g s 1 since r G r . But f X s pp ??? p g 9 s p g / 1. This1 i 0 ry1 1

gives a contradiction with the implication above.
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1. REDUCTION TO A GENERALIZED EQUATION

Ž . Ž .Everywhere below G s F will denote a free group F a , and F x will
denote a free group with generators x , . . . , x . We will consider now a1 n

Ž .finite system of equations S x, a s 1.
A generalized equation is defined to be a collection consisting of the

following:

Ž .1 An interval I, subdivided into r items h , . . . , h which play the1 r

role of the unknowns. The points of division are called ‘‘boundaries.’’ This
number r is called the number of unknowns. We have r q 1 boundaries.

Ž . Ž2 A system of 2n oriented subintervals, divided into pairs a base
.and the dual base and corresponding system of n basic equations. If l is

Ž . Ž .the number of a base, then D l s n q l, if l F n and D l s l y n, if
Ž . Ž .l ) n denotes the dual base; a l and b l denote the initial and

terminal boundary of l.
The corresponding system of basic equations consists of the n equations

Ž . Ž Ž ..« l « D lh h ??? h s h h ??? h ,a Žl. a Žl.q1 b Žl.y1 a ŽDŽl.. a ŽDŽl..q1 b ŽDŽl..y1

� 4where « g 1, y1 .
Ž . « l Ž Ž .3 A system of m coefficient equations h s a 1 F l F m; t l si jl l

Ž ..i , j , « .l l l

Ž .4 A system of k boundary connections and a corresponding system
of k boundary equations. A boundary connection is a connection between

Ž .boundary p on the base l and boundary q on the base D l . A corre-
sponding boundary equation is an equation

h h ??? h s h h ??? h ,a Žl. a Žl.q1 py1 a ŽDŽl.. a ŽDŽl..q1 qy1

Ž . Ž .if « l s « Dl and

y1h h ??? h s h h ??? h ,a Žl. a Žl.q1 py1 q qq1 b ŽDŽl..y1

Ž . Ž .if « l s y« Dl .

So there is a system of equations corresponding to the generalized
equation. A solution of the generalized equation V is defined to be a
collection H of nonempty words H , . . . , H , which, when substituted into1 r

this system, turn it into graphical equalities, and the left and right sides of
the basic equations are irreducible after this substitution.
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Ž .The notation V, H means that H is a solution of the generalized
equation V.

Ž . Ž .If f h s c h is an arbitrary list of equations, then the same list with
Ž .asterisk for example, V* denotes the system of equations of the form

y1Ž .Ž Ž ..f h c h s 1 in the free group. Obviously, if H turns all the equa-
tions of V into a graphical equality, then H is a solution of the system V*.
The converse is false.

For a solution H of a generalized equation V we introduce the notation

Ž .« mX ' H ??? H .m a Ž m . b Ž m .y1

In the cases when several solutions are being considered at the same
time, superscripts on the words X will indicate which solution they relatem

to.
Ž .The length of the word B will be denoted by d B . The length of a

solution H of a generalized equation is defined to be

r

d H s d H .Ž . Ž .Ý i
is1

The periodicity exponent of a list of words is the maximal number m such
that some of the words in the list contain a subword cm for some c.

The periodicity exponent of a solution H is defined to be the periodicity
� 4exponent of the list of words X , m g 1, . . . , 2n .m

w x Ž .LEMMA 4 19 . For a gï en system of equations in a free group S x, a s 1
it is possible to construct effectï ely a finite list of generalized equations
V , . . . , V and homomorphisms p F ª F U such that for any solu-1 r i RŽS . RŽV .i

� 4tion X of the system S s 1 there exists i g 1, . . . , r and a solution H of V i
such that the following diagram commutes.

p i 6

UF F

6

RŽS . RŽV .

6

i

pX pH

F aŽ .

Proof. Every system S can be transformed by adding new variables into
a system S such that every equation in S contains not more than 3 terms,1 1
and F is isomorphic to F . Thus we can suppose that the systemRŽS . RŽS .1



KHARLAMPOVICH AND MYASNIKOV528

S s 1 has this property and write it in the form

r r r s 111 12 13

r r r s 1,21 22 23

???

r r r s 1,m1 m2 m3

"1 "1where r are letters in the alphabet X j a .i j
A partition table is defined to be a set of irreducible words

� Ž .4 Ž . � "1 "14V z , . . . , z 1 F i F m, 1 F j F 3 in the alphabet z , . . . , z suchi j 1 p 1 p
that the following conditions are satisfied:

Ž .1 The equality V V V s 1, 1 F i F m, holds in the free group withi1 i2 i3
basis z;

Ž . Ž .2 d V F 2;i j
"1Ž . Ž .3 if r g a , then d V s 1.i j i j

The finite set of all partition tables can be effectively constructed for a
system S s 1. An example of a partition table for equation x x x s 1 is1 2 3
the following: V s z z , V s zy1 z , V s zy1 zy1.11 1 2 12 2 3 13 3 1

� 4To each partition table T s V assign a generalized equation V ini j T
Žthe following way. Below we will use the notation s for graphical˙

.equality. Let

V s V V V ??? V V V .˙ 11 12 13 m1 m2 m3

Ž .Let r s d V . The equation V contains r variables h , . . . , h corre-T 1 r

sponding to the letters of the word V. For any two distinct occurrences of
z "1 introduce a basic equation h«1 s h« 2 , where unknowns h , h corre-i j1 j2 j1 j2

spond to the selected occurrences of z "1, and « and « are determinedi 1 2
by the signs of these occurrences.

For all 1 F i , i F m, 1 F j , j F 3 such that r "1 s r "1 s x we in-1 2 1 2 i j i j k1 1 2 2

troduce the basic equation

« «1 2h ??? h s h ??? h ,a b y1 a b y11 1 2 2

w x w xwhere the words h ??? h and h ??? h correspond to thea b y1 a b y11 1 2 2

occurrences of the words V and V in V.i j i j1 1 2 2

For any r s a"1 introduce the coefficient equation h s a"1, wherei j k a k
h corresponds to the occurrence of V in V.a i j

The list of boundary equations is empty.
For an arbitrary letter x in x we choose some occurrence r of thek i jk k

letter x «k in the system. Suppose that the word h h ??? h corre-k a a q1 b y1k k k
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sponds to the occurrence of V in V. We define a homomorphismi jk k

Ž . Ž .«k Ž .Up : F ª F as p x s h ??? h . The value of p x doesRŽS . RŽV . k a b y1 kT k k

not depend on the choice of the occurrence of r .i jk k

Ž Ž .. Ž . Ž Ž ..A pair of dual bases m, D m is said to be matched if a m s a D m .
We note some trivial properties satisfies by all generalized equations

having at least one solution:

Ž . Ž . Ž Ž .. Ž .a If « m s y« D m , then the bases m and D m do not inter-
sect.

Ž . Ž .b If two boundary equations have respective parameters p, l, q
Ž . Ž . Ž Ž ..and p , l, q with p F p , then q F q in the case when « l « D l s 1,1 1 1 1

Ž . Ž Ž ..and q G q in the case « l « D l s y1.1

Ž . Ž Ž ..c For a matched pair of bases m, D m and a boundary connection
Ž .p, m, q we must have p s q.

Ž .d A variable cannot occur in two distinct coefficient equations.

Ž . Ž .e If h is a variable from some coefficient equation, and if i, m, q ,i 1
Ž . < <i q 1, m, q are boundary connections, then q y q s 1.2 1 2

Generalized equations satisfying these restrictions will be called nonde-
generate.

2. ELEMENTARY TRANSFORMATIONS

Ž . Ž .We say that an item h belongs to the base m if a m F i F b m y 1.i

An item is said to be empty if it does not belong to any base. A boundary i
Ž . Ž .cuts the base m if a m - i - b m . A boundary i touches the base m if

Ž . Ž .i s a m or i s b m . A boundary is said to be open if it cuts at least one
base and is closed otherwise. A boundary is said to be free if it does not
touch any base and is not connected by any boundary connection. A set of

� 4 w xitems h , . . . , h , denoted by i, i q j is called a section. A section isi iqjy1

said to be closed if the boundaries i and i q j are closed and all the
boundaries between them are open.

An elementary transformation of a nondegenerate generalized equation
V gives a set of generalized equations V , . . . , V and a collection of1 r

surjective homomorphisms u : G ª G U such that for every pairi RŽV*. RŽV .i
Ž i.Ž . Ž .V, H there exists an unique pair V , H for which the followingi
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diagram commutes.
ui 6

UF F

6

RŽV*. RŽV .

6

i

pH Ž i.pH

F aŽ .
Ž . Ž .Here, H s H , . . . , H and p x s H .1 n H j j

We need 5 types of elementary transformations.

Ž . Ž . Ž .E1 Cutting a Base Fig. 1 . Suppose there is a boundary connec-
² :tion p, l, q . Then we cut the base l into two bases l and l in the1 2

Ž . Ž . Ž .boundary p. We also cut D l into D l and D l in the boundary q,1 2
replace the corresponding basic equation by the two equations, and correct
all the remaining boundary equations.

˜If V is a generalized equation, then by V we denote a generalized
Ž .equation obtained from V by a consequent application of all possible E1

transformations. The groups F and F are isomorphic.˜RŽV*. RŽV*.

Ž . Ž . Ž .E2 Transfer of a Base Fig. 2 . Suppose that the base u is con-
Ž Ž . Ž . Ž . Ž ..tained in the base m a m F a u - b u F b m . Suppose further

² Ž . : ² Ž . :that there are boundary connections a u , m, g and b u , m, g and1 2
that if there are some boundary connections for some boundaries cut by u
then these boundaries are connected through boundary connections to the

Ž .corresponding boundaries on D m .
Then we transfer u from the situation on the base m to the situation on

Ž .the base D m and adjust all the basic and boundary equations.
Ž . Ž .E3 Removal of Matched Bases . Remove a pair of matched bases.

Ž . Ž .For the transformations E1 ] E3 the output consists of a single equation
V ; the list of unknowns remains the same; every solution H of V is a1
solution of V , and the systems V* and VU in the free groups are1 1
equivalent. The homomorphism p is induced by the identity isomorphism1
on G and is itself an isomorphism.

Ž . Ž . wE4 Removal of a Single Base . Suppose the section h ???a Ž m .
x« Ž Ž .h is covered by the single base m and that for all i 1 F i F b mb Ž m .y1

FIGURE 1
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FIGURE 2

Ž . . Ž .y a m y 1 there exists a w i such that the list of boundary connections
² Ž . Ž .:contains a m q i, m, w i .

Ž .The transformation E4 carries V into a unique generalized equation
V obtained from V by deleting h , . . . , h from the list of1 a Ž m . b Ž m .y1

Ž .unknowns. We define the homomorphism p as follows: p h s h if1 1 j j
Ž . Ž .j - a m or j G b m ;

h ??? h , if « m s « Dm ,Ž . Ž .wŽ iy1. wŽ i.y1
p h q i y 1 sŽ .1 a Ž m . ½ h ??? h , if « m s y« DmŽ . Ž .wŽ i. wŽ iy1.y1

Ž . Ž .for 1 F i F b m y a m . p is obviously an isomorphism.1

Ž . Ž .E5 Introduction of a Boundary . Suppose the list of boundary
connections does not contain any connections with the first two parame-

² : Ž .ters p, m, . . . . Let q be a boundary on D m . Then we perform one of
the following two transformations:

Ž . ² :1 Introduce the boundary connection p, m, q if the new gener-i
Žalized equation is nondegenerate the corresponding homomorphism from

w xUG onto G will be induced by the identity isomorphism on G hRŽV*. RŽV .i
.and is not necessarily an isomorphism .

Ž .2 Replace the unknown h by the two items h9 and h0 andqi

introduce the new connection, connecting boundary p with the boundary
Žbetween h9 and h0 the corresponding homomorphism p from Gi RŽV*.

onto G U will be induced by the following homomorphism onRŽV .iw x Ž . Ž . .G h : p h s h if k / q , and p h s h9h0; p is an isomorphism .ˆ ˆi k k i i q ii

From now on we consider solutions of generalized equations in the
Ž .extended alphabet a j b. Let now F s F a, b . Suppose we have a gener-

alized equation V and a solution H.
Ž1. Ž2.Let P be a group of automorphisms of F and H and H be twoRŽV*.

Ž1. Ž2.solutions of the generalized equation V. We will write H - H ifP
² :there exists an endomorphism p of the group F which is an a -homo-

Ž2. Ž1.morphism, and an automorphism s g P such that p s pp s andH H
Ž Ž1.. Ž Ž2..d H F d H for all 1 F k F r and such that at least for one k,k k

Ž1. Ž2.Ž . Ž .d H - d H . A solution H of V is called minimal with respect to thek k
qgroup of automorphisms P if there is no solution H of the equation V

qsuch that H - H. A solution H of V is called minimal if it is minimal
Žwith respect to the canonical group of automorphisms of F to beRŽV*.

.defined below .
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3. SOME RESULTS ABOUT IRREDUCIBLE SYSTEMS

w xThe following lemma was proved in 9, Lemma 19 .

LEMMA 5. Let H be a CSA-group and

F s f : H ª H� 4f

a separating family of homomorphisms of H. Then for any finite partition
n Ž .F s D F there exists an index i 1 F i F n , such that F is also ais1 i i

separating family of homomorphisms.

Every fully residually free group is CSA; hence for any irreducible
system S we can apply this lemma to H s F and any separating familyRŽS .
of homomorphisms.

4. KERNEL OF A GENERALIZED EQUATION

Let V be a generalized equation and let g denote the number of basesi
containing h .i

Suppose first that V does not contain boundary connections. The base
m is called eliminable in the equation V if at least one of the following two
conditions is satisfied:

Ž .a There exists h such that h g m, g s 1, and h is not containedi i i i
in the coefficient equations.

Ž . Ž . Ž .b At least one of the boundaries a m , b m is different from
1, r q 1, and does not touch any other base and any coefficient equation.

Consider a sequence

V s V ª V ª ??? ª V , 7Ž .0 1 l

in which V is obtained from V by deleting some eliminable base miq1 i iq1
Ž .together with D m . Suppose V does not contain eliminable bases.iq1 l

Ž .LEMMA 6. Equation V in the sequence 7 depends only on V but notl
Ž .on the choice of sequence 7 .

Proof. Suppose there is another sequence

V s V ª V
X ª ??? ª V

X , 8Ž .0 1 l9

with the same properties and V / V
X . Without loss of generality we canl l9

Ž Ž .. Xsuppose that the pair m, D m belongs to V but not to V . Suppose thisl l9
pair is deleted with the transformation V

X ª V
X . Let k be minimal withk kq1
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these two properties. Then the set of bases of V is contained in the set ofl
bases of V

X . This implies that m is eliminable in V . This contradicts thek l
Ž .definition of sequence 7 .

Ž .Equation V in 7 will be called the kernel of the equation V andl
Ž .denoted Ker V . We say that h belongs to the kernel, if h belongs to ati i

least one base in the kernel or h occurs in some coefficient equation.i
Let the generalized equation V be obtained from V by deletingl l

Ž .variables h f Ker V .i

w x Ž . Ž .ULEMMA 7 19 . F is isomorphic to F y ) F , where F y is a freeRŽV*. RŽV .l

group with a finite basis y.

Ž .5. CONSTRUCTION OF T V

Let V be a nondegenerate generalized equation. We describe the
Ž .construction of the tree T V , which is oriented from the root. To each

Ž .vertex of T V we assign a generalized equation V , and an equation¨
corresponding to the root ¨ . For any edge e: ¨ ª ¨ 9 we assign a surjec-0

Ž . U Utive homomorphism p ¨ , ¨ 9 : F ª F . If ¨ ª ¨ ª ??? ª ¨ ªXRŽV . RŽV . 1 s¨ ¨
Ž . Ž . Ž .¨ 9 is a path in T V , then p ¨ , ¨ 9 is a composition of p ¨ , ¨ 9 ,s

Ž . Ž .p ¨ , ¨ , . . . , p ¨ , ¨ . The set of all edges is subdivided into principalsy1 s 1
and auxiliary edges.

Closed sections of V are subdivided into working and constant sec-¨
tions. We will suppose that the union of working closed sections forms the

w xsection 1, j for some boundary j of the equation V , and the union of¨ ¨ ¨
w xconstant sections forms section j , r q 1 . The edges are also subdivided¨ ¨

into two classes: principal and auxiliary.
The construction begins with announcing all closed sections as working

sections.
Denote by r9 the number of variables in the working sections of some

equation V, and by n9 the number of bases on these sections, by n 9 the
number of open boundaries in the working sections, s 9 the number of
closed boundaries in the working sections. The number of closed working
sections containing zero bases, one base, or more than one base is denoted
by t9, u9, w9, respectively. The complexity of the equation V is the number

� 4t 9 s n9 y u9 y 2w9 s Ý max 0, n y 2 ,i

where n is the number of bases on the closed working section withi
number i, and the summation is taken over all closed working sections.

It is obvious that t 9 G 0, and equality holds if and only if each closed
working section contains not more than two bases.
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Suppose we are of the vertex ¨ . The outgoing edges of this vertex
depend on which of the cases described below takes place. If we have Case
Ž .i i - 15 , then suppose that Cases 1, . . . , i y 1 do not take place. Cases 14

and 15 can take place for the same vertex ¨ .
In Cases 1 and 2 the vertex is said to be the end vertex.

Ž .Case 1. The homomorphism p ¨ , ¨ is not an isomorphism.0

Case 2. V does not contain working sections.¨

Case 3. V contains h , which belongs to the working sections and to¨ k
w xsome coefficient equation, and the section k, k q 1 is not closed. Then

Ž .we first perform a series of elementary E5 transformations, continuing
the boundaries k and k q 1 through all bases they intersect. Then perform

Ž .a series of E1 transformations, cutting these bases on the introduced
w xboundaries. In all the equations obtained this way k, k q 1 is closed.

Case 4. The generalized equation contains h , which belongs to thek
w xclosed section k, k q 1 contained in some coefficient equation. The

w xsection k, k q 1 becomes constant and the corresponding edge is auxil-
iary.

Case 5. V contains a fictitious unknown h belonging to the working¨ q
w xsection. The section q, q q 1 is transferred into constant sections and the

edge is auxiliary.

Case 6. V contains a pair of matched bases in a working section.¨
Ž .Perform E3 and delete it.

Case 7. g s 1 for some h belonging to a working section, such thati i
Ž .both boundaries i and i q 1 are closed. Apply E4 and delete the closed

w xsection i, i q 1 together with unique base that is contained in this
section.

Case 8. g s 1 for some h belonging to a working section, and one ofi i
the boundaries i, i q 1 is open and the other is closed. Without loss of

Ž .generality we can consider i as a closed boundary. Perform E5 and
continue i q 1 through the only base m it intersects; cut m in i q 1, and

w xdelete i, i q 1 which is now closed.

Case 9. g s 1 for some h belonging to a working section, and bothi i
w xi, i q 1 are open. In addition, some closed section j , j contains exactly1 2

Ž . Ž . Ž . Ž .two bases m , m , such that a m s a m , and b m s b m and all1 2 1 2 1 2
˜the bases of V , obtained from m , m by cuttings, do not belong to the¨ 1 2

˜kernel of V .¨
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Ž .Using E5 continue through m all the boundaries that intersect it.1
Ž . Ž .Using E2 transfer m from the situation on m to the situation on D m .2 1 1

w xDelete m together with the closed section j , j .1 1 2

Case 10. The first assumption in Case 9 holds and the second does not.
Ž . Ž .Perform E5 , continue i and i q 1 through m, perform twice E1 , and

w xthen cut m into 3 new bases Finally, delete i, i q 1 together with the
unique base that is contained in it.

Case 11. Some boundary ll on the working part is free. Since we do
note have Case 5, ll intersects at least one base m. Continue ll through m

Ž .using E5 .

Before considering Case 12 let us proceed to the consideration of the
entire transformation composed in a definite way from the elementary ones.
We apply this transformation only to equations with g G 2, for each i. Wei
can perform the entire transformation on the union of some closed
sections of the equation V . First suppose that these sections are all¨

w xsituated on the interval 1, j q 1 . A base m of the equation V is called a
Ž .leading base, if a m s 1. A leading base m is said to be maximal if

Ž . Ž .b l F b m , for any other leading base l. The base having largest index
among the maximal bases is called the carrier base. A base l is called a

Ž . Ž .transfer base if b l F b m and l / m, where m is the carrier base. Let
m be the carrier base of the equation V. Take a transfer base l and

Ž .applying an E5 transformation, continue through m all the boundaries on
Ž .l. Using E2 we transfer all the transfer bases from the situation at the

Ž . Ž .base m to the situation at the base D m . Now, there exists some w - b m
such that h , . . . , h belong to only one base m, while the interval h1 w wq1

Ž .belongs to at least two bases. Applying E1 we cut m along the boundary
Ž . w xi q 1. An application of E4 annihilates the section 1, w q 1 which has

become closed together with the unique base belonging to it. Notice that
the entire transformation does not increase complexity.

Case 12. g G 2 for each h belonging to working sections. In addition,i i
w Ž . Ž .x Ž .for some base m section a m , b m is closed. Using E5 continue all

Ž .the boundaries which intersect m through m. Using E3 transfer all the
Ž . Ž .bases situated on m to the situation on D m . Using E2 delete

w Ž . Ž .x Ž .a m , b m together with the pair m, D m .

Case 13. g G 2 for each h belonging to working sections. In additioni i
some boundary ll , belonging to a working section and touching some base
intersects some base m and is not continued through m by a boundary

Ž .connection. Continue ll through m using E5 .
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Case 14. g G 2 for each h and g s 2 for some h and in additioni i i i
F U is not isomorphic to F U , where s is a generalized equation asRŽV . RŽ s . 2¨ 2

defined below.
Notice that the function g is constant when h belongs to some closedi i

˜section of V .¨
Ž .Consider the following transformation of V . Applying E1 transforma-¨

tions to cut the bases containing h covered exactly twice, we finally geti
that the union of bases covered twice becomes a union of closed sections.

w xRenumbering h ’s we can suppose that the section 1, j q 1 is coveredi
exactly twice. We say now that this is a quadratic section.

If m and Dm both belong to the quadratic section, then m is called a
¨ariable base. If m belongs and Dm does not belong to the quadratic
section, then m is called a constant base.

˜Apply now the entire transformation to the quadratic section of V .¨
Each time we apply the entire transformation we do not increase complex-
ity and do not increase the total number of items in the whole interval.

Every time we express some items of the quadratic section through the
other items of the quadratic section and the rest of the items. The number
of items on the quadratic section and the number of bases cannot increase.
We also delete pairs of matched bases. If the process continues for too
long then the equation with the same quadratic part will occur twice, and
the corresponding homomorphism is an automorphism invariant with

w xrespect to the items in the nonquadratic part 19, Lemma 3.3, second part .
w x w xLemma 8 in 9 and 19 imply that this group of automorphisms is finitely

generated and there is an effective procedure to obtain the generating set.
After we get a repetition of the equation, we have to introduce a new

boundary equation without introducing a new boundary in the quadratic
section. This operation decreases the number of items in the quadratic
section. Finally, we find a solution of a quadratic equation expressed in
terms of h’s not belonging to the quadratic part.

There are several new h’s and several new equations on the h’s not
belonging to the quadratic part obtained after the process stopped.

Let s be a generalized equation consisting of bases such that one of the1
paired bases is either variable or a constant base with respect to the
quadratic part. Let p be a generalized equation on h’s not belonging to2
the quadratic part before the process started. Let s be a generalized2
equation on h’s not belonging to the quadratic part which we get after we
have finished the process with the quadratic part. We have V s s j p .¨ 1 2

There are two possibilities.

Ž .1 The canonical homomorphism F ª F is an isomor-RŽ s j p . RŽ s .1 2 2

phism. In this case we do not apply the transformation described above;
instead we construct outgoing edges as described in Case 15 below.
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Ž .2 The canonical homomorphism F ª F is not an iso-RŽ s j p . RŽ s .1 2 2

morphism. Then we construct a path

¨ s ¨ ª ¨ ª ??? ¨ 9Ž .1 2 n

Ž .in T V , such that each edge ¨ ª ¨ corresponds to one entire transfor-i iq1
mation. We say that for each ¨ in this path we have Case 14 and for ¨ ,i n
V s s . To each ¨ assign the group of automorphisms P of F¨ 2 i i RŽŽV .*.n ¨ i
invariant with respect to the nonquadratic part of V and call it a¨ i

canonical group of automorphisms for the equation V in Case 14. We¨ i

have a piece of Razborov’s fundamental sequence

F U ª F U ª F U ª F U ª ??? F URŽV . s RŽV . p Ž¨ , ¨ . RŽV . s RŽV . p Ž¨ , ¨ . RŽV .¨ 1 ¨ 1 2 ¨ 2 ¨ 2 3 ¨1 1 n

ª F U , 10Ž .s RŽV .n ¨ n

where s g P , correspond to some epimorphisms p : F ª F U .i i RŽŽ s j p .*. RŽ s .1 2 2

Let P be the group of all such epimorphisms. In Case 15 we can also
consider the group P which will be a group of automorphisms of F U .RŽV .¨
We call it canonical for Case 15.

Let l be a natural homomorphism F ª F . Then forRŽŽ s j p .*. RŽŽ s j s .*.1 2 1 2

any epimorphism p g P there is a natural epimorphism f : F ªRŽŽ s j s .*.1 2

F U such that the following diagram commutes.RŽ s .2

l 6

F F

6

RŽŽ s j p .*. RŽŽ s j s .*.

6

1 2 1 2

p
f

UFRŽ s .2

In the situation where the canonical homomorphism F ª F URŽŽ s j p .*. RŽ s .1 2 2

is an isomorphism, l is an embedding of F into F ,RŽŽ s j p .*. RŽŽ s j s .*.1 2 1 2

because all the epimorphisms p are isomorphisms.

LEMMA 8. The natural homomorphism c : F ª F is aRŽŽ s .*. RŽŽ s j s .*.2 1 2

monomorphism.

Ž .UProof. Let H be the subgroup c F in F . The epimor-RŽ s . RŽŽ s j s .*.2 1 2

phism f : F ª F U defined above is a identical on H andRŽŽ s j s .*. RŽ s .1 2 2

determines a solution of the system sU over F U . Hence f (c is an1 RŽ s .2

Uidentity on F .RŽ s .2
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˜Let F be the factor-group of F over the intersectionRŽŽ s j p .*. RŽŽ s j p .*.1 2 1 2

of the kernels of all epimorphisms in P.

˜LEMMA 9. The homomorphism l induces an embedding of F intoRŽ s j p .1 2

F .RŽŽ s j s .*.1 2

Proof. Take an element g g F which does not belong to theRŽŽ s j p .*.1 2

intersection of all these kernels. Then there is an epimorphism
Ž . Ž .Up : F ª F such that p g / 1. This implies that l g / 1 byRŽŽ s j p .*. RŽ s .1 2 2

the commutativity of the diagram above.

ŽCase 15. g G 2 for each h belonging to working sections and thei i
application of Case 14 would give an isomorphism F ª F U , soRŽŽ s j p .*. RŽ s .1 2 2

.we do not apply the transformation of Case 14 . In this case it must be
some h with g ) 2. Apply the entire transformation. Continue all bound-i i
aries that touch at least one base through all the bases they intersect.

In Case 15 it is also possible that there are some auxiliary edges coming
out of the vertex ¨ ; this is described below in Case 15.1.

Case 15.1. All the assumptions of Case 15 hold. In addition the carrier
Ž .base m of the equation V intersects with D m . First construct some¨

equation V in the following way. Introduce the new closed section¨ 9

w xr q 1, r q 2 , and announce this section as a constant section. Intro-¨ ¨
Ž Ž .. Ž . Ž . Ž Ž ..duce a new pair of bases l, D l , such that a l s 1, b l s b D m ,

Ž Ž .. Ž Ž ..a D l s r q 1, b D l s r q 2. In other words we introduce the¨ ¨
w Ž Ž ..xnew basic equation h9 s h 1, b D m , where h9 is a new variable. Let

Ž .p ¨ , ¨ 9 be a natural isomorphism. Notice that V can be obtained from¨
Ž . Ž .V with the use of E4 by deleting d l together with the closed section¨ 9

w xr q 1, r q 2 . For the equation V we have Case 15, but l is a carrier¨ ¨ ¨ 9

base. Applying to V transformations described for Case 15, we obtain¨ 9

the list of all auxiliary edges coming out of the vertex ¨ .
Ž .The tree T V is described. In Case 14 we cannot say that every solution

of one of the equations V is a solution of V , but we can say that every¨ 9 ¨
solution of one of the equations VU , is a solution of VU. We can also say¨ 9 ¨
that every solution of V is a solution of one of the equations V and¨ ¨ 9

every solution of VU is a solution of one of the equations VU .¨ ¨ 9

Notice that our first 11 cases coincide with 11 cases in Razborov’s thesis.
Our Cases 12 and 13 correspond to his Cases 13 and 14, respectively. Our
Case 14 is different; our Case 15 is a partial case of his Case 15.

Ž .If Case i 1 F i F 13 takes place for a vertex ¨ , we say that ¨ has type i
Ž . Ž . Ž . Žand write tp ¨ s i. In Case 14 resp. 15 we say that tp ¨ s 14 resp.

Ž . .tp ¨ s 15 depending on whether we apply to ¨ the transformation of
Case 14 or 15.
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w xLEMMA 10 19, Lemma 3.1 . If ¨ ª ¨ , is the principal edge of the tree1 2
Ž .T V , then

Ž . X X Ž . Ž .1 n F n , if tp ¨ / 3, 10. This inequality is proper if tp ¨ s2 1 1 1
6, 7, 9, 12.

Ž . Ž . X X2 If tp ¨ s 10, then n F n q 2.1 2 1

Ž . X X Ž . Ž .3 n F n if tp ¨ F 12 and tp ¨ / 3, 11.2 1 1 1

Ž . X X Ž .4 t F t , if tp ¨ / 3, 14.2 1 1

All these assertions can be ¨erified directly.

LEMMA 11. Let ¨ ª ¨ ª ??? ª ¨ ??? be an infinite path in the tree1 2 r
Ž .T V . Then there exists N such that all the edges of this path starting with N

are principal edges, and one of the following holds:

Ž . Ž .1 7 F tp ¨ F 10 for all n G N,n

Ž . Ž .2 tp ¨ s 15 for all n G N.n

Proof. Notice that if some generalized equation contains a coefficient
equation h s a"1, such that h belongs to the working part, then we applyi j i
transformations of Cases 3, 4, decreasing the number of such equations. So

Žin generalized equations of 2 t ’s level where t is the number of coefficient
.equations in initial V unknowns on the working part will not belong to

coefficient equations, and without loss of generality we can think that V
already has this property. Then we do not use Cases 3, 4 in the construc-
tion of the tree. Case 14 can only occur finitely many times, because the
transformation 14 gives a proper homomorphism F U ª F U . So weRŽV . RŽ s .¨ 2

can suppose that we do not have it. So all our transformations do not
Ž .increase complexity. We can suppose that tp ¨ G 5 for all i.i

Ž .We show that the number of vertices for which tp ¨ s 5 is not morei
than r. Indeed, if we denote by V9 the generalized equation obtained

Ž .from V by deleting all the coefficient equations, then the tree T V9 can
Ž .be obtained from T V by replacing all generalized equations V by V ;¨ ¨ 9

hence for any vertex there is a surjective homomorphism from F toRŽV9*.
F XU . This implies that F XU can be generated by r q v elements,RŽV . RŽV .¨ ¨

Ž .where v s card a . If the path from the root ¨ to ¨ contains at least0
r q 1 vertex of type 5, then V

X would have at least r q 1 fictitious¨
Ž .variables on the constant sections . Sending all the other variables into

identity we would have a homomorphism from F XU onto a free group ofRŽV .¨
Ž w x.rank r q v q 1, which gives a contradiction see Proposition 1.2.7 of 11 .

Ž .So we can suppose that tp ¨ / 5.i
The value of complexity must be stabilized for the infinite path. If we

have an auxiliary edge then it only can be constructed by using the Case
15.1. But by applying the transformation of Case 15 to the equation V

X ,¨
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Ž .constructed for the Case 15.1, both bases m and D m will be transferred
from the base l to the constant part, so the complexity will be decreased
by 2. But t s t q 1, hence t X - t X. Hence the number of auxiliary¨ 9 i iq1 i
edges in the path must be finite. So we can suppose that t X is a constanti
and all the edges of the path are principal edges.

Ž .If now tp ¨ s 6, then the closed section, containing matched basesi
Ž .m, D m , cannot contain any other bases, because then complexity would

be decreased. But if this section does not contain any other bases, then
Ž .tp ¨ s 5 which is also impossible.iq1

Ž .So we can suppose that tp ¨ G 7. If the equation V does not containi 1
free boundaries and V is obtained from it by an elementary transforma-2

Ž .tion other than E3 , then V does not contain free boundaries. Hence2
Ž . Ž .tp ¨ / 6 implies that tp ¨ / 11.i i

Ž . Ž . Ž . � 4If 12 F tp ¨ F 13, or tp ¨ s 15, then tp ¨ g 6, 13, 14, 15, 12 .i i iq1
Ž . Ž .Since tp ¨ / 6, 14, this implies that for all vertices ¨ j G i we also havei j
Ž . Ž .12 F tp ¨ F 13 or tp ¨ s 15. In this case the sequence n9 stabilizes byi i

Ž . X X Ž .Lemma 10. In addition, if tp ¨ s 12, then n - n . Hence tp ¨ / 12j jq1 j j
Ž .2for all j. There cannot be more than 8 n9 vertices of type 13 in a row;

Ž .hence there exists j G i such that tp ¨ s 15. The series of transforma-j
Ž . Ž .tions E5 in Case 15 guarantees the inequality tp ¨ / 13; hencejq1

Ž .tp ¨ s 15, and we have assertion 2 of the lemma.jq1
Ž .So we can suppose tp ¨ F 10 for all the vertices of our path. Then wei

Ž .have assertion 1 of the lemma.

6. PERIODIZED EQUATIONS

This section is basically a translation of the corresponding section from
w x19 .

Let us assume at first that the equation V contains no boundary
connections and is nondegenerate. The periodic structure of the equation

² :V is a pair PP, R , where PP is a set of unknowns, bases, and closed
sections of the equation V; R is an equivalence relation on a certain set of

Ž Ž ..boundaries which will be defined below}see item e , and where the
² :pair PP, R satisfies the following six properties:

Ž .a if h g PP and h g m, then m g PP; moreover, this holds ;h gi i i
Ž .PP g G 1 ;i

Ž . Ž .b if m g PP, then D m g PP;
Ž . w x w xc if m g PP and m g i, j , then i, j g PP;
Ž .d there exists a function XX mapping the set of closed sections from

� 4 w x w xPP into y1, q1 such that for every m, i , j , i , j g PP, the condition1 1 2 2
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w x Ž . w x Ž . Ž Ž .. Žw x.that m g i , j and D m g i , j implies « m ? « D m s XX i , j ?1 1 2 2 1 1
Žw x.XX i , j ;2 2

Ž .e R is an equivalence relation on the set of those boundaries l for
w xwhich there exists i, j g PP such that i F l F j. Furthermore, if a bound-

w x w xary l is closed, and both closed sections j, l and l, j belong to PP, then
we consider two copies of the boundary l, not related to each other, one of

w x w xwhich is associated with i, l and the other with l, j ;
Ž . Ž Ž . Ž Ž ... Ž Ž . Ž Ž ...f if m g PP, then R a m , a D m , R b m , b D m in the case

Ž . Ž Ž .. Ž Ž .. Ž Ž ... Ž Ž . Ž Ž ...where « m s « D m and R a m , b D m , R b m , a D m in the
Ž . Ž Ž .. Ž . Ž .case where « m s y« D m . Here the boundaries a m , b m are

associated with the closed section on which the base m lies.

A solution H of a generalized equation V is called periodic with respect
Ž .to a period P P is a primitive cyclically irreducible word , if for every
w x Ž w x.closed section i, j containing at least one base either d H i, j s 1 or

w xthe word H i, j can be represented in the form

w x rH i , j s A A1

r G 1, A s A A , A is a primitive word, d A F d P , 11Ž . Ž . Ž .Ž .1 2

Ž .where for at least one such section the word A in presentation 11 is a
cyclic shift of the word P "1, and r G 2.

Now we will show how one associates to each solution H of a general-
² :ized equation V a periodic structure PP, R , which will be denoted by

Ž . w xPP H, P . A closed section i, j is included in the list PP if and only if it
Ž .contains at least one base and has a presentation 11 in which A is a

cyclic shift of the word P "1 and r G 2. An unknown h is included in thei
Ž .list PP if and only if h belongs to a closed section from PP and d H Gi i

Ž . Ž .2 d P . A base m is included in PP if and only if either m or D m contains
an unknown from PP.

Ž . Ž .For a set PP defined in this way, items a and b from the definition of
a periodic structure can be trivially verified.

w xLet m g PP and m g i, j . There exists an unknown h g PP such thatk
Ž . w x Ž .h g m or h g D m . If h g m, then, obviously, i, j g PP. If h g D mk k k k

Ž . w x w x w Ž Ž ..and D m g i9, j9 , then i9, j9 g PP, and hence, the word H a D m ,
Ž Ž ..x r 9b D m can be written in the form Q Q , where Q s Q Q ; Q is a cyclic1 1 2

"1 Ž .shift of the word P and r 9 G 2. Now let 11 be a presentation for the
w x w Ž . Ž .x ssection i, j . Then H a m , b m s B B , where B is a cyclic shift of the1

"1 Ž . Ž .word A , d B F d P , B s B B , and s G 0. From the equality1 2
w Ž . Ž .x« Ž m . w Ž Ž .. Ž Ž ...x« ŽDŽ m ..H a m , b m s H a D m , b D m and Lemma 1.2.9 of

w x "11 it follows that B is a cyclic shift of the word Q . Consequently, A is a
"1 Ž . Ž w x.cyclic shift of the word P and r G 2 in 11 , since d H i, j G
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Ž w Ž . Ž .x. Ž . w x Ž .d H a m , b m G 2 d P . Therefore, i, j g PP; i.e., part c of the
definition of a periodic structure holds.

Žw x. Ž .Put XX i, j s "1 depending on whether in 11 the word A is conju-
y1 w x Ž . w xgate to P or to P . If m g i , j , D m g i , j , and m g PP, then the1 1 2 2

Ž . Ž Ž .. Žw x. Žw x.equality « m ? « D m s XX i , j ? XX i , j follows from the fact that1 1 2 2
given ArA s B sB and r, s G 2, the word A cannot be a cyclic shift of the1 1

y1 Ž .word B . Hence, part d also holds.
w xNow let i, j g PP and i F l F j. Then there exists a subdivision P s

Žw x. w xP P such that if XX i, j s 1, then the word H i, l is the end of the1 2
Ž `. w x Ž .word P P and H l, j is the beginning of the word P P , and if1 2 `

Žw x. w x Ž y1 .` y1XX i, j s y1, then the word H i, l is the end of the word P P2
w x y1Ž y1 .` w xand H l, j is the beginning of P P . Again, Lemma 1.2.9 of 11

implies that the subdivision P s P P with the indicated properties is1 2
Ž .unique; denote it by d l . Let us define a relation R in the following way:

Ž . Ž . Ž . Ž .R l , l | d l s d l . Item e of the definition of a periodic structure1 2 1 2
obviously holds.

Ž . w Ž . Ž .x« Ž m .Item f follows from the graphic equality H a m , b m s
w Ž Ž .. Ž Ž ..x« ŽDŽ m .. w xH a D m , b D m and Lemma 1.2.9 of 1 .

² : Ž .Now let us fix a nonempty periodic structure PP, R . Item d allows us
Ž y1 y1to assume after replacing the variables h , . . . , h by h , . . . , h oni jy1 jy1 i

w x Žw x. . Ž .those sections i, j g PP for which XX i, j s y1 that « m s 1 for all
Ž .m g PP. For a boundary k, we will denote by k the equivalence class of

the relation R to which it belongs.
Let us construct an oriented graph G whose set of vertices is the set of

R-equivalence classes. For each unknown h lying on a certain closedk
Ž .section from PP, we introduce an oriented edge e leading from k to

Ž . y1 Ž . Ž .k q 1 and an inverse edge e leading from k q 1 to k . This edge e
Ž . Ž Ž y1 . y1 .is assigned the label h e | h respectively, h e | h . For everyk k

"1 "1 Ž . Ž "1.path r s e ??? e in the graph G denote by h r its label h e ???1 s 1
Ž "1. ² :h e . The periodic structure PP, R is called connected, if the graph Gj

² :is connected. Suppose first that PP, R is connected.

LEMMA 12. Let H be a solution of a generalized equation V periodic with
² : Ž .respect to a period P, PP, R s PP H, P ; c a cycle in the graph G at the

Ž . Ž . Ž . Ž .n¨ertex l ; d l s P P . Then there exists n g Z such that H c s P P .1 2 2 1

Proof. If e is an edge in the graph G with initial vertex V 9 and terminal
vertex V 0 and P s PX PX , P s PYPY are two subdivisions corresponding to1 2 1 2

Ž .the boundaries from V 9, V 0, respectively, then, obviously, H e s
X nk Y Ž .P P P n g Z . The claim is easily proven by multiplying together the2 1 k

Ž .values H E for all the edges e taking part in the cycle c.
A generalized equation V is called periodized with respect to the

² :periodic structure PP, R of this equation, if for every two cycles c and c1 2
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in the graph G having the same initial vertex, the following equality holds
in the group F :RŽV*.

h c , h c s 1. 12Ž . Ž . Ž .1 2

Let G be the subgraph of the graph G having the same set of vertices0
and consisting of the edges e whose labels do not belong to PP. Choose a
maximal subforest T in the graph G and extend it to a maximal subforest0 0

² :T of the graph G. Since PP, R is connected by assumption, it follows that
Ž .T is a tree. Let V be an arbitrary vertex of the graph G and r V , V0 0

Ž .the unique path from V to V all of whose vertices belong to T. For0
every edge e: V ª V 9 not lying in T , introduce a cycle c se
Ž . Ž Ž ..y1 Ž w x.r V , V e r V , V 9 . Then see the proof of Proposition 3.2.1 in 11 the0 0

Ž .fundamental group p G, V is generated by the cycles c . This and the1 0 e
decidability of the universal theory of a free group imply that the property
of a generalized equation ‘‘to be periodized with respect to a given
periodic structure’’ is algorithmically decidable.

Furthermore, the set of elements

< <h e e g T j h c e f T 13� 4 � 4Ž . Ž . Ž .e

� <forms a basis of the free group with the set of generators h h is ank k
4 Ž Ž ..unknown lying on a closed section from PP . If m g PP, then b m s

Ž Ž Ž ... Ž Ž .. Ž Ž Ž ... Ž .b D m , a m s a D m by part f from the definition of a peri-
w Ž . Ž .xodic structure and, consequently, the word h a m , b m

w Ž Ž .. Ž Ž ..xy1 Ž . Ž Ž Ž ...h a D m , b D m is the label of a cycle c9 m from p G, a m .1
Ž . Ž Ž Ž ... Ž . Ž Ž Ž ...y1Let c m | r V , a m c9 m r V , a m . Then0 0

y1 y1h c m s uh a m , b m h a D m , b D m u , 14Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .

Ž . Ž . Ž .where u is a certain word. Since c m g p G, V , it follows that c m s1 0
Ž� < 4.b c e f T , where b is a certain word in the indicated generatorsm e m

which can be effectively constructed on the basis of the proof of Proposi-
w xtion 3.2.1 of 11 .

˜ Ž .Let b denote the image of the word b in the factor group of p G, Vm m 1 0
˜over the derived subgroup. Denote by Z the free abelian group consisting

˜Ž .of formal linear combinations Ý n c n g Z , and by B its subgroup˜ef T e e e
˜ Ž . Ž Ž .generated by the elements b m g PP and the elements c e f T , h e˜m e

˜ ˜ ˜ ˜ ˜ ˜. Ž .f PP . Let A s ZrB, T A the torsion subgroups of the group A, and Z1
˜ ˜ ˜ ˜Ž .the preimage of T A in Z. The group ZrZ is free; therefore, there1

exists a decomposition of the form

˜ ˜ ˜ ˜ ˜ ˜Z s Z [ Z , B : Z , Z : B - `. 15Ž .ž /1 2 1 1
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Ž1. Ž2.˜ ˜Note that it is possible to express effectively a certain basis c , c of
˜ ˜ ˜the group Z in terms of the generators c so that for the subgroups Z , Zẽ 1 2

Ž1. Ž2.˜ ˜ Ž .generated by the sets c , c , respectively, relation 15 holds. For this it
suffices, for instance, to look through the bases one by one, using the fact

˜ ˜ ˜ ˜ ˜ ˜ ˜Ž .that under the condition Z s Z [ Z the relations B : Z , Z : B - `1 2 1 1
˜ ˜hold if and only if the generators of the groups B and Z generate the1

same linear subspace over Q, and the latter is easily verified algorithmi-
Žcally a more economical algorithm can be constructed by analyzing the

.proof of the classification theorem for finitely generated abelian groups .
Ž1. Ž2.w xBy Proposition 1.4.4 of 7 , one can effectively construct a basis c , c of

Ž1. Ž2.˜ ˜Ž . Ž .the free nonabelian group p G, V so that c , c are the natural1 0
Ž1. Ž2. ˜images of the elements c , c in Z.

A generalized equation V is called singular with respect to a connected
² :periodic structure PP, R , if at least one of the following three conditions

holds:

Ž . ² :a V is not periodized with respect to PP, R ;
Ž . Ž .b rk A m Q G 2;
Ž . Ž . Ž .c rk A m Q s 1 and there exists e f T such that h e f PP and

Ž .h c / 1 in the group F .e RŽV*.

Otherwise, the equation V is called regular. Thus, V is regular with
² : Ž .respect to PP, R if and only if V is periodized, rk A m Q G 1, and in
Ž . Ž .the case rg A m Q s 1 for all e f T such that h e f PP, we have

Ž .h c s 1 in the group F . The definitions of singularity and regularitye RŽV*.
formally depend on the tree T ; therefore we assume that T is fixed once
and for all in an arbitrary way.

² :Now assume that PP, R is an arbitrary periodic structure of a general-
ized equation V, not necessarily connected. Let G , . . . , G be the con-1 r
nected components of the graph G constructed above. The labels of edges
of the component G form in the equation V a union of closed sectionsi
from PP; moreover, if a base m g PP belongs to such a section, then its

Ž . Ž .dual D m , by item f of the definition of a periodic structure, also
possesses this property. Therefore, by taking for PP the set of labels ofi
edges from G belonging to PP, sections to which these labels belong, andi
bases m g PP belonging to these sections, and restricting in the corre-
sponding way the relation R, we obtain a periodic connected structure
² :PP , R with the graph G . A generalized equation V is called singulari i i

² :with respect to PP, R if it is singular with respect to at least one structure
² : Ž .PP , R 1 F i F r and regular otherwise.i i

² : ² :The notation PP9, R9 : PP, R means that PP9 : PP, and the relation
² : ² :R9 is a restriction of the relation R. In particular, PP , R : PP, R ini i

the situation described above.
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LEMMA 13. Let V be a nondegenerate generalized equation with no
² :boundary connections, singular with respect to the periodic structure PP, RR .

Then F is isomorphic to F where S is such that the list of ¨ariables x ofRŽV*. RŽS .
V is subdï ided into two parts y and z, and the list of equations in S is
subdï ided into two parts u and c , such that y does not occur in the equations
c , and u has the following form.

Ž .a If V is singular of type a, then u is empty.
Ž .b If V is singular of type b, then

w xy , y s y , U z , a s y , U z , a s 1, i s 1, . . . , k . 16Ž . Ž . Ž .1 2 1 i 2 i

Ž .c If V is singular of type c, then

y , U z , a s 1, i s 1, . . . , k . 17Ž . Ž .1 i

The group F is isomorphic to F . There is a finite family of cyclesRŽS . Žu , RŽc ..
Ž . Ž .c , . . . , c in the graph G such that h c / 1 1 F i F r in the group F1 r i RŽV*.

and for any solution H of the equation V periodic with respect to some period
q² : Ž .P, such that PP, R s PP H, P , there is an automorphic image H of H

with respect to the group of automorphisms P of F in¨ariant on elements0 RŽS .
Ž . Ž .qfrom a, z p s p s , s g P such that there exists i 1 F i F r such thatH H 0

qŽ . Ž . Ž . Ž .H c s 1. In case a , r s 1. In case b , r s 1 and y s h c .i 1 1
In all cases e¨ery solution of the system c can be extended to a solution of

the system u j c .

In other words, e¨ery solution H of V can be obtained as a composition of
a solution of u o¨er a factor-group of F o¨er the normal subgroupRŽV*.

Ž .generated by one of the h c and a canonical homomorphism from thisi
qfactor-group into F corresponding to the solution H .

Proof. We can restrict ourselves to the case of a connected graph G.
Consider 3 types of equations singular with respect to the periodic

² :structure PP, R .
Ž . � 4 w xIn case a the list c consists of some cycle c , c , e , e f T whichi e e 1 21 2

qis not equal to the identity in F , and we put H s H.RŽV*.
Ž . Ž .In case b , V s V is periodized and rk A m Q G 2. Adding to the¨

Ž . Ž .system V* Eqs. 12 for all pairs of cycles c , c e , e f T , we have ane e 1 21 2
Ž .equivalent system. Consider in the free group F V* a new basis a, x

consisting of a, variables not belonging to the closed sections from PP,
Ž1. Ž2. Ž2.� Ž . < 4 Ž . Ž . < < Žvariables h e e g T , and words h c , h c . Notice that c s rk A

. Ž Ž2.. Ž Ž2..m Q G 2. Let y s h c , y s h c , and the rest of the variables from1 1 2 2
the list x will be considered as variables from z. All the equations of the

Ž .system V* can be rewritten modulo 12 in the variables z as a system
Ž0.Ž .c z, a s 1.
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Ž .The relations in 12 can be rewritten in the form

w xh c , h c9 s y , y s y , h c s y , h c s 1Ž . Ž . Ž . Ž .1 2 1 2

Ž1. Ž2. Ž2. Ž2.c, c9 g c , c , c , . . . , c . 18Ž .Ž .3 4 m

Ž0.Ž .The system f, obtained as a union of Eqs. 18 and equations from c
is equivalent to V* so there is a natural isomorphism between F andRŽV*.
F .RŽf .

Ž .If in these relations some h c is a proper power, we can replace it by
Ž .the corresponding root, get a new system f , and by Lemma 12, R f s1

Ž .R f .1
Ž0. w Ž . Ž .xWe assign equations from c and h c , h c9 s 1 to the list c and

Ž .the rest of the Eqs. 18 to the list u . We have a splitting of equations and
can consider a canonical group of automorphisms connected to this
splitting.

The list c , . . . , c consists of the one cycle cŽ2..1 r 1

Every solution H of V can be obtained as a composition of a solution of
Ž .u over a factor-group F over the normal subgroup generated by h c ,RŽV*. 1

and a canonical homomorphism from this factor-group into F correspond-
qing to the solution H .

If the equation V has at least one solution, then c also has a solution
Z. Take as Y and Y an arbitrary nontrivial word that commutes with1 2

Ž1. Ž2. Ž2.components C , C , . . . , C of the solution Z and we will have a3 m
Ž2.Ž .solution of system f ; this implies that h c / 1 in the group F .1 RŽV*.

Let solution H of the generalized equation V be periodized with
Ž2.² : Ž . Ž .respect to the period P, and PP, R : PP H, P . By Lemma 12, H c s1

n1 Ž Ž2.. n2Q , H c s Q .2
Applying the automorphism from the canonical group of automorphisms

we can make y s 1. This means that sending y s cŽ2. into a trivial1 1 1
element we have a proper homomorphism from F into the subgroupRŽV*.
generated by the rest of the generators including y , and F is the2 RŽV*.

Ž .extension of a centralizer, since the subgroup generated by h c , c g
Ž1. Ž2. Ž2. Ž2.c , c , c , . . . , c is maximal abelian in the group generated by z.3 4 m

Ž .Consider now case c . The system of equations is equivalent to some list
Ž0. Ž2.Ž .c which does not contain the variable w s h c and has commutativ-1

ity relations,
Ž1.w , h c s 1 c g c , 19Ž . Ž . Ž .

Ž1.h c , h c9 s 1 c, c9 g c . 20Ž . Ž . Ž . Ž .
These relations can be also rewritten in the form

y1 Ž1.u s h c ; w uw s h c ; u , h c s 1 c g c . 21Ž . Ž . Ž . Ž . Ž .e e0 0
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The group F is isomorphic to the extension of a centralizer of aRŽV*.
maximal abelian subgroup of the group generated by all the generators
a, x except w.

The epimorphism from F to the subgroup generated by all theRŽV*.
generators except w is proper.

i Ž Ž2.. jAs a list of cycles c , . . . , c we can take c c , where i, j run through1 r e 10
< < < <the set of pairs of integers not simultaneously equal to zero and i , j F 2 r

Ž .r is the number of items in V .
Ž . i Ž Ž2.. jVerify that if h c h c s 1 in F , then i s j s 0. Supposee 1 RŽV*.0

Ž . i Ž Ž2.. jh c h c s 1. Let s be a generator of the group of automorphismse 1 00
Ž Ž .. Ž Ž .. Ž Ž Ž2... Ž Ž ..Ž Ž Ž2...P such that s h c s h c and s h c s h c h c .0 0 e e 0 1 e 10 0 0

Ž Ž .. iq j Ž Ž2.. j Ž Ž .. jHence h c h c s 1 in F and h c s 1. This impliese 1 RŽV*. e0 0
Ž Ž .. Ž . Ž Ž ..h c s 1 because F is torsion-free unless j s 0. But h c / 1;e RŽV*. e0 0

hence j s 0. In the same way we get i s 0.
Let a solution H of the generalized equation V be periodic with respect

² : Ž .to the period P and PP, R : PP H, P . Observe that e s r c r , where0 1 e 20

r and r are paths in the tree T. Since e g G , it follows that the initial1 2 0 0
vertex and the terminal vertex of the edge e lie in the same connected0
component of the graph G and, consequently, are connected by a path s0
in the forest T . Furthermore, r and sry1 are paths in the tree T0 1 2
connecting the same vertices; therefore, r s sry1. Hence, c s r cX ry1,1 2 e 2 e 20 0

where cX is a certain cycle in the graph G .e 00
Ž . Ž . Ž X . Ž .y1From the equality H c s H r H c H r it follows that thee 2 e 20 0

Ž . Ž X .cyclically irreducible words H c and H c are conjugate, and hencee e0 0
Ž Ž .. Ž Ž X .. Ž . Xd H c s d H c F 2 r d P , since the cycle c is primitive and fore e e0 0 0

Ž . Ž .every unknown h f PP the inequality d H - 2 d P is true by thek k
Ž .definition of the structure PP H, P .

Ž .Without loss of generality we may assume that d V s L P, where L is0
Ž . n0 Ž Ž2..the empty word, so by Lemma 12, H c s P , and H C s W se 10

n Ž < < .P n F 2 r .0
q � 4If n s 0, we can take s s 1, H s H, and the set of cycles c .0 e0

< < tLet n / 0, n s tn q n9, and n9 F 2 r. Take as s the power s of the0 0 0
q

qgenerator s and define the vector H by the formula p s p s . If we0 H H
Ž .yn 9Ž Ž2..n0 qŽ . n0 qŽ Ž2.. n9take the cycle c s c c , then H c s P , H c s P ,e 1 e 10 0qŽ .and H c s 1. The proof of Lemma 13 is complete.

w xLEMMA 14 19, Lemma 2.11 . Let V be a consistent generalized equation
without boundary connections, regular with respect to a periodic structure
² :PP, R . Then it is possible to effectï ely construct a group of automorphisms
P of the group F , which is a direct product of a finite number of0 RŽV*.
canonical groups of automorphisms, so that the following condition is satis-
fied.
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Let H be a solution of the generalized equation V, periodic with respect to a
² : Ž .period P, and PP, R s PP H, P . If the solution H is minimal with respect

to the group of automorphisms P , then for e¨ery h g PP the inequality0 k
Ž . Ž . Ž .d H F f V, PP, R ? d P holds, where f is a certain computable function.k 2 2

Proof. Let G be the graph corresponding to the periodic structure
² : ² :PP, R , and G , . . . , G its connected components. Let PP , R be the1 r i i
corresponding connected periodic structures. If we were able to prove

² :Lemma 14 for each of the structures PP , R and construct the requiredi i
groups of automorphisms P , . . . , P , then every solution minimal with1 r

² :respect to P s P , . . . , P s P = ??? = P would also be minimal with0 1 r 1 r
² :respect to all the P , which would imply Lemma 14 for PP, R . Therefore,i

it suffices to restrict ourselves to the case of a connected periodic struc-
ture.

Let e , . . . , e be all the edges of the graph G from T _ T . Since T is1 m 0 0
Ž . Ž .the spanning forest of the graph G , it follows that h e , . . . , h e g PP.0 1 m

Let us choose a basis x, a in the same way as in the proof of the previous
Ž . Ž .lemma and study in more detail how the unknowns h e 1 F i F m cani

participate in the equations from V* rewritten in this basis.
If h does not lie on a closed section from PP, or h g PP, but e f Tk k

Ž Ž . .where h e s h , then h belongs to the basis x, a and is distinct fromk k
Ž . Ž . Ž .each of h e , . . . , h e . Now let h e s h , h f PP, and e f T. Since1 m k k

Ž . Ž .e g G , the vertices k and k q 1 lie in the same connected component0
of the graph G , and hence are connected by a path s in the forest T .0 0
Furthermore, r and sry1 are paths in the tree T connecting the vertices1 2
Ž . y1 y1k and V ; consequently, r s sr . Thus, e s sr c r and h s0 1 2 2 e 2 k
Ž . Ž .y1 Ž . Ž . Ž . Ž .h s h r h c h r . The unknown h e 1 F i F m can occur in the2 e 2 i

Ž .right-hand side of the expression obtained written in the basis x, a
Ž .only in h r and at most once. Moreover, the sign of this occurrence2

Ž .if it exists depends only on the orientation of the edge e with respecti
to the root V of the tree T. If r s rX e"1rY , then all the occurrences0 2 2 i 2

Ž .of the unknown h e in the words h written in the basis x, a, withi k
h f PP, are contained in the occurrences of words of the formk
Ž .. 1 ŽŽ X .y 1 X . Ž ." 1h e h r c r h e , i.e., in occurrences of the formi 2 e 2 i
Ž ..1 Ž . Ž ."1h e h c h e , where c is a certain cycle of the graph G starting ati i

the initial vertex of the edge e"1. The system V* is equivalent to thei
Ž i. Ž i.� < 4following system: we introduce new variables u s u e f T , z si e

� < 4z 1 F i F m, e f T and add to V* equationsi e

y1u s h r V , V c r V , V , 22Ž . Ž . Ž .Ž .i e 0 i e 0 i

y1h e u h e s z , 23Ž . Ž . Ž .i i e i i e

w xu , u s 1, 24Ž .i e i e1 2
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where e runs over the list of edges not belonging to T and i is fixed.
Ž . Ž .Because h e does not belong to the right part of 22 , we can rewrite V*i

Ž1. Ž i. Ž1.Ž . Ž .in the form c x, z , a s 1, such that h e does not occur in c .i
Ž .Include now all the variables except h e into the list z and also all thei

Ž i. Ž1.variables u except some fixed u . Let c consist of the equations ci e0
Ž . Ž .and those equations 22 , 24 which do not contain this u . u consists ofi e0

Ž . Ž . Ž .23 and the rest of 22 , and 24 .
Ž . Ž Ž .y1 Ž ..We write u s u , w s h e , U s h r V , V c r V , V , U s z ,i e 1 0 i e 0 i 0 i e0 0

² : ² : Ž .and let pairs U, V be pairs u , z e / e .i e i e 0
Then we have a presentation

y1w uw s U z , a , u s U , 25Ž . Ž .0 1

and several pairs

y1 w xw Uw s V , u , U s 1. 26Ž .

Canonical automorphisms have the form u ª u, w ª ur w.
Now let H be a solution of the generalized equation V periodic with

² :respect to some period P, PP, R a connected component of the structure
Ž .PP H, P , and let the solution H be minimal with respect to the group of

Ž .automorphisms P . Without loss of generality, we can assume that d V0 0
˜s L P. Then, by Lemma 12, there is a homomorphism g : Z ª Z such that

g Ž c̃.Ž . Ž .for every cycle c g p G, V the condition H c s P holds. Let us first1 0
verify that if for some variable h g PPk

d H G 2 r 2d P , 27Ž . Ž . Ž .k

˜Ž . Žthen g Z contains a certain n such that 1 F n F 2 r r is the number of
.unknowns in the equation V .

To verify this, let us construct a chain

Ž0. Ž1. Ž t .V , H s V , H ª V , H ª ??? ª V , H , 28Ž . Ž .Ž . Ž . Ž .0 1 t

in which every term is obtained from the previous one by extending a
Ž .certain boundary through a certain base m g PP with the help of the E5

Ž .transformation. The construction of the chain 28 terminates when all
boundaries intersecting bases from PP turn out to be extended through
these bases. Let V

X be the equation obtained from V by deleting alli i
Ž i.boundary connections. It is obvious that the solution H of the equation

X ² :V is periodic with respect to the period P. Denote by PP , R thei i i
XŽ i.Ž .periodic structure PP H , P of the equation V restricted to the closedi

Ž i. ˜Ž i.sections of PP, and by G , Z , g the corresponding graph, abelian groupi
˜Ž i.of cycles and homomorphism Z ª Z, respectively.
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² : Ž . ŽIf P, m, q m g PP is a boundary connection of the equation V 1 Fi
. Ž . Ž . Ž0. Ž1. Ž t .i F t , then d p s d q ; therefore, all the graphs G , G , . . . , G have

the same set of vertices, whose cardinality does not exceed r. The solution
Ž t .H of the equation V is minimal with respect to the trivial group oft

automorphisms. Suppose that for some unknown h lying on a closedl
Ž t . Ž t .Ž . Ž .section from PP the inequality d H ) 2 d P holds. In the vector H ,l

Ž t . "1Ž .replace all the components that are graphically equal to H andl

correspond to the unknowns lying on the closed sections from PP, by a
"1 Ž t .letter u of the alphabet S not participating in the solution H . The2

resulting vector obviously satisfies the conditions of nonemptiness and
irreducibility. It satisfies all basic equations of the generalized equation V t

with numbers m g PP and all the corresponding boundary equations, since
in the equation V all the boundaries from PP are extended through allt

possible boundaries. If, on the other hand, m f PP, then for every unknown
h g m of the equation V lying on a closed section from PP, we havek

Ž . Ž .h f PP and, consequently, d H F 2 d P . In particular, this inequalityk k

holds for the unknowns h g m of the equation V ; therefore, suchk t
Ž t .unknowns have not been replaced in the vector H . Consequently, the

vector constructed is a solution to the equation V , which contradicts thet
Ž t .minimality of the solution H .

Ž Ž t .. Ž .Thus we have established the fact that d H F 2 d P , if h lies on al l

closed section from PP. In particular, the unknown h of the equation Vk
Ž .for which inequality 27 holds was divided during the transition to the

equation V into at least r distinct unknowns. Since the graph GŽ t .
t

contains at most r vertices, in the equation V
X we can choose boundariest

Ž . Ž . w xl and l9 such that l - l9, l s l9 , and l9 y l F r. The word h l, l9 is a
Ž t . Ž Ž .. Ž .label of a cycle c of the graph G for which 0 - d H c F 2 r d P , i.e.,t t

˜Ž t .Ž . Žg Z contains a number n with the property 1 F n F 2 r. By p 0 F it i j
. Ž U . Ž U .- j F t we denote from now on the homomorphism G V ª G Vi j

Ž .defined by the sequence 28 . It remains to prove the existence of a cycle
Ž Ž .. Ž .c of the graph G for which p h c s h c .0 0 t 0 t

To do this, it suffices to show that for every path r : V ª V 9 in theiq1
graph GŽ iq1. there exists a path r : V ª V 9 in the graph GŽ i. such thati

Ž Ž .. Ž .p h r s h r . In turn, it suffices to verify the latter statement fori, iq1 i iq1
Ž .the case where r is the edge e. If the unknown h e of the equationiq1

V is also an unknown of the equation V , then this is obvious.iq1 i

Otherwise one should use the formulas

y1y1p h9 s h a D m , q h a m , p ,Ž . Ž . Ž .Ž .i , iq1

y1y1p h0 s h a m , p h a D m , q q 1 ,Ž . Ž . Ž .Ž .i , iq1
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defining the inverse isomorphism to p , and notice that the right-handi, iq1
Ž i. Ž Ž ..sides of these formulas are labels of paths in G , since a m s

Ž Ž Ž ...a D m .
˜Ž . Ž .Thus, we have deduced from 27 that g Z is a nonzero subgroup in Z

< <whose generator n satisfies the inequality n F 2 r. Assume first that, let0 0
Ž .rk A m Q s 1. Then the regularity of the equation V implies that for all

Ž . Ž . Ž .e f T with h e f PP we have H c s 1, i.e., g c s 0. Since H is a˜e e
˜ ˜Ž . Ž . Ž .solution, it follows that g b s 0 m g PP . Therefore, g B s 0. Bym

˜ ˜Ž . Ž . Ž .2.54 we obtain that g Z s 0 and, consequently, g Z is generated by1
Ž Ž2.. < Ž Ž2.. <the single element g c . Therefore, g c F 2 r. By the representation˜ ˜1 1

Ž . Ž2. Ž1. Ž Ž1.15 , one can effectively construct an expression c s n c q z z g˜ ˜ ˜ ˜e e 1 e e
˜ . Ž .Z of the elements c e f T in terms of the basis elements. Hence˜1 e
< Ž . < < Ž Ž2.. <g c s n g c F 2 rn , and we finally obtain˜ ˜e e 1 e

< <g c F g V , PP, R , 29Ž . Ž .Ž .ẽ 1

where g is a computable function.1
˜ ˜Ž .Now let us analyze the case rk A m Q s 0, i.e., Z s Z . As we have1
Ž Ž . .already seen in the proof of Lemma 13, the cycle c e f T , h e f PP ise
Ž Ž .. Ž .conjugate to a certain cycle of the graph G , and d H c F 2 r d P .0 e

˜ ˜< Ž . < Ž . Ž .Hence, g c F 2 r for h e f PP. Because Z : B - `, for every e f Tẽ 0
one can effectively construct a valid equality of the form n c s˜e e0 0˜Ý n c q Ý n b , which implies˜hŽ e.f PP e e m g P m m

< < < < < < < <g c F g n c F n g c F 2 r ? n .Ž .˜ ˜ ˜Ž . Ž . Ý Ýe e e e e e0 0 0
Ž . Ž .h e fPP h e fPP

Ž .Thus, in this case we have also demonstrated the estimate 29 for a
certain computable function g .3

ŽŽ .. Žk . Žk . Ž .Let d k s P P . Denote by t c, h the number of occurrences of1 2 k
the edge with label h in the cycle c, calculated taking into account thek
orientation. Finally, let

H s P Žk .P nk P Žkq1. 30Ž .k 2 1

Ž . Ž .h lies on a closed section from PP , where the equality in 30 is graphick
whenever h g PP. Direct calculations show thatk

H c s PÝk tŽc , hk .Žnkq1 . . 31Ž . Ž .
˜Ž . Ž .Since g Z / 0, e f T can be chosen in such a way that g c / 0. Let˜0 e0

< Ž . < < Ž . < Ž .n s g c m q r , where 0 - r F g c . Equation 31 implies that˜ ˜k e k k k e0 0
� < 4the vector m h g PP is a solution to the following system of Diophan-k k

� < 4tine equations in variables z h g PP :k k

< <t c , h g c z q r q 1 q t c , h n q 1 s g cŽ . Ž . Ž . Ž .˜ ˜Ž .Ý Ýž /e k e k k e k k e0
h gPP h fPPk k

e f T . 32Ž . Ž .
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Ž .Note that the number of unknowns and coefficients of the system 32 are
Ž Ž .bounded from above this follows from 29 , the simplicity of the cycles c ,e

< < Ž ..and the inequality n F 2 r h f PP by a certain computable functionk k
of V, PP, and R.

� 4A solution m of a system of linear Diophantine equations is calledk
w x � q4minimal 14 , if m G 0 and there is no other solution m such thatk k

0 F mq F m for all k, and that at least one of the inequalities mq F mk k k k
� < 4 Ž .is strict. Let us verify that the solution m h g PP of the system 32 isk k

minimal.
� q4 Ž .Indeed, let m be another solution to the system 32 such thatk

0 F mq F m for all k, and at least for one k the inequality is strict. Letk k
q q q q< Ž . <n s g c m q r . Form a vector H , putting H s H if h f PP,˜k e k k k k k0

and Hq s P Žk .P nq
k P Žkq1. if h g PP. Since the words Hq and H startk 2 1 k k k

Ž .and end with the same letter, it follows that

qT H s T H . 33Ž . Ž . Ž .
qObviously, the vector H satisfies all the coefficient equations and the

� q4basic equations with numbers m f PP. Since m is a solution of thek
q g Ž c̃ .eŽ . Ž . Ž .system 32 , H c s P s H c . Therefore, for every cycle c we havee e

qŽ . Ž . qŽ . Ž .H c s H c and, in particular, H b s H b s 1. Thus the vectorm m
qH is a solution of the system V*.

q Ž .The vector H satisfies the condition of nonemptiness, and by 33 it
also satisfies the condition of irreducibility. Since for every m it is true that

y1q qH a m , b m H a D m , b D m s 1,Ž . Ž . Ž . Ž .Ž . Ž .
qw Ž . Ž .x qw Ž Ž .. Ž Ž ..xand the words H a m , b m , H a D m , b D m are irreducible;

q q qw Ž . Ž .x w Ž Ž .. Ž Ž ..xit follows that H a m , b m s H a D m , b D m . Thus, H is a
solution to the generalized equation V.

Denote by d the generator of the group of automorphisms Pie ie0 0

constructed above. In the basis x, a the map d acts in the following way:i e0
Ž . Ž Ž .y1 Ž .. Ž . Žd : h e ¬ h r V , V c r V , V h e the other unknowns remaini e i 0 i e 0 i i0 0 X. Ž .unchanged . Therefore, if p s p d and h e s h g PP, then H sH 9 H ie i k k0Žk . n qg Ž e . Žkq1.˜k 0 Ž .P P P , and all the other components of H9 in the basis x, a2 1

m D qi Ž . Žare the same as in H. Denote d s Ł d , where h e s h , D s mis1 i e i k i k0 i i
. Ž Ž ..y m ? sgn g e . Let us verify the equality˜k 0i

qp s p d . 34Ž .H H

Ž1. Žk . mq Žkq1. qkŽ1.Let p d s p . Then, by construction, H s P P P s HH H k 2 1 k
for all h that are labels of edges from T _ T . If the edge with label hk 0 k
lies in T , or h does not lie on a closed section from PP, then h f PP and0 k k

Ž1. q Ž1.Ž . Ž .H s H s H . Finally, note that for every e f T , H c s H c sk k k e e
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qŽ .H c . Since cx s r er , where r , r are paths in the tree T , and fore e 1 2 1 2
every unknown h which is a label of an edge from T , the equalityk

Ž1. q Ž1.Ž . qŽ .H s H has already been established, it follows that H e s H e .k k
Ž .This proves 34 .

qŽ . Ž .From 33 and 34 it follows that H F H, which contradicts theP0

minimality of the solution H with respect to the group P . Consequently,0
� < 4the solution m h g PP of the system of linear Diophantine equationsk k

Ž .32 is minimal.
w xLemma 1.1 from 14 states that the components of the minimal solution

� < 4m h g PP can be bounded from above by a recursive function depend-k k
ing on the parameters of the system. Since the parameters of the system
Ž .32 , as was mentioned earlier, are bounded from above by a computable
function depending on V, PP, and R, we have the estimate m Fk
Ž .g V, PP, R . The conclusion of Lemma 14 holds if we put2

f V , PP, R | g V , PP, R 2 r q 1 .Ž . Ž . Ž .2 2

Ž .7. CONSTRUCTION OF T V0

Ž .We assign to some vertices ¨ of the tree T V the groups of automor-
phisms of groups F U . We also assign for some paths ¨ ª w homomor-RŽV .¨
phisms from F U into F , where s is some system of equationsRŽV . RŽ s j s .* 1¨ 1 2

over F U with a solution in F U and s s V .RŽV . RŽV . 2 ww w

Ž .For each vertex ¨ such that tp ¨ s 14, s and s are defined as in1 2
Case 14.

Ž .For each vertex ¨ such that 7 F tp ¨ F 10 we assign the group of
automorphisms invariant with respect to the kernel; in this case s is an1
empty system over F U .RŽV .w

Ž .For each vertex ¨ such that tp ¨ s 15 and the transformation of Case
Ž .U U14 is not applicable because it gives an isomorphism p : F ª FRŽV . RŽ s .¨ 2

systems s and s are those that are defined in the description of Case 14.1 2
Take the group P described in Case 14 as the group of automorphisms of
F U assigned to ¨ .RŽV .¨

Ž .For each vertex ¨ such that tp ¨ s 15, and there are outcoming
auxiliary edges from ¨ , assign a group generated by the groups of automor-
phisms constructed in Lemma 14 that applied to V and all possible¨

˜periodic structures of this equation with respect to which V is regular.¨
² :For each periodic structure PP , R there is a natural homomorphism ofi i

the group F U into a free extension of a centralizer of the elementRŽV .¨
Ž .UU g F from Eq. 25 , sending w into a minimal solution w of V1 RŽV . 0 ¨¨

with respect to the automorphism group P of F U from Lemma 14.i RŽV .¨



KHARLAMPOVICH AND MYASNIKOV554

Ž .Let tp ¨ s 2. Equation V will be called nontrivial, if it has a closed¨
section containing at least one base and not containing variables from the
coefficient equations. From the construction it follows that V is nontriv-¨
ial if and only if the path from ¨ to ¨ contains an auxiliary edge,0
corresponding to the Case 15.1. If all the auxiliary edges correspond to the
Cases 4, 5, then the equation V is trivial.¨

w xLEMMA 15 19, Lemma 3.3 . Let ¨ ª ¨ ª ??? ª ¨ ª ??? be an1 2 k
Ž . Ž .infinite path in the tree T V , and 7 F tp ¨ F 10 for all k. Then amongk

� 4V some generalized equation occurs infinitely many times. If V s V ,k ¨ ¨k l
Ž .then p ¨ , ¨ is an isomorphism in¨ariant with respect to the kernel.k l

Proof. By Lemma 10, t X F t X and n X F n X for all k. Hence, we cank 1 k 1
suppose t X s t X and n X s n X for all k. These equalities imply that all thek 1 k 1

Ž .transformations E5 introduce a new boundary.
˜Ž .For all k, Ker V have the same bases. Indeed, consider equations¨ k˜ ˜ ˜V and V . Because we do not have Cases 3, 4, the working part of V¨ ¨ ¨k kq1 k

does not contain coefficient equations.
˜ ˜Ž .If tp ¨ s 7, 8, 10, then V can be obtained from V by cuttingk ¨ ¨kq 1 k˜some m eliminable in V and then by deletion of one of the new bases¨ k

Ž Ž ..which is also eliminable by item a in the definition of the eliminable
Ž .base. But the rest of the base m will also be eliminable by item b . So the

set of bases from the kernel does not change.
Ž .Let tp ¨ s 9. By similar reasoning one can show that all the bases ofk

Ṽ obtained from m by cutting do not belong to the kernel. If we cut¨ 2kq 1

bases m and m in all boundaries that are continued in the equation V1 2 ¨ k

w xthrough both these bases, then we can suppose that the section j , j1 2
˜does not contain closed boundaries of the equation V ; hence is closed in¨ k ˜Ž .this equation. Construct some sequence 7 for the equation V and take¨ k

the first equation V , such that one of the bases obtained by cutting fromi
m , m , Dm , Dm is eliminated in this equation. Denote it by n . This base1 2 1 2
n cannot be obtained from m , m . In addition, if n is eliminable in the1 2

Ž . Ž . � Ž Ž .. Ž Ž ..4equation V using item b , then either a n g a D m , a D m ori 1 2
Ž . � Ž Ž .. Ž Ž ..4b n g b D m , b D m . We can start the construction of the se-1 2

˜Ž .quence 7 for V by deletion of the same first i bases as was done for¨ kq 1

˜ Ž .V . Then some base n 9 obtained by cutting from m , D m of the¨ 2 2k

equation V will become eliminable. But after deletion of n 9 one can¨ kq 1

subsequently delete all the other bases obtained from m by cutting, using2
Ž .item b of the definition since all the boundaries, touching these bases

Ž Ž . Ž .. Ž .except a m , b m were not continued through D m in the equation2 2 1

˜V , and hence do not touch any other bases of V . So, all the bases of¨ ¨k kq1˜equation V , obtained from m do not belong to the kernel.¨ 2kq 1
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We have shown that the number of bases is the same in all the
˜Ž .equations Ker V . We denote this number by n0. We will now prove the¨ k

inequality

nX F 3t 9 q 6n0 q 1. 35Ž .k

Indeed, if k is the first number for which it fails, then

nX F 3t 9 q 6n0 q 1, nX ) 3t 9 q 6n0 q 1. 36Ž .ky1 k

Ž .By Lemma 10, tp ¨ s 10. Hence we cannot apply transformations ofky1
Cases 5]9 to the equation V . Hence every working section of V¨ ¨ky 1 ky1

either contains at least three bases or contains some base of the equation
X X 1 X X˜Ž . Ž .Ker V . Hence u q w F n q n0 and by 10 , t 9 s n y¨ ky1 ky1 ky1 ky13ky 1X X 1 X Ž . Ž . Ž .2w y u G n y 2n0, which contradicts 36 . Now 10 and 35ky1 ky1 ky13

imply that uX q wX F nX F 3t 9 q 6n9 q 1 and rX F n X q uX q wX q 1 Fk k k k k k k
� < 43t 9 q 6n0 q n 9 q 2. Hence the set V k g N is finite and some gener-¨ k

alized equation occurs in this set infinitely many times.
˜ ˜Ž . Ž .Let now V s V . Ker V is obtained from Ker V by cutting¨ ¨ ¨ ¨k l iq1 i ˜Ž .some variables and deletion of some variables not belonging to Ker V .¨ i

So the number of variables belonging to the bases and coefficient equa-
˜Ž .tions of Ker V can only increase, but V s V ; hence this number is¨ ¨k l

Ž .Ž .the same for all the vertices ¨ , ¨ , . . . , ¨ . Thus p ¨ , ¨ h s h fork kq1 l k l i i
any such variable.

Ž . Ž .Let the tree T V be obtained from T V by replacing the infinite path1
Ž . Ž .in T V corresponding to the case 7 F tp ¨ F 10 by a finite initialk

subpath r such that every generalized equation with r variables in the set
� 4V occurs in r not more than once. For each vertex ¨ in r assign an¨ k

Ž . Ž .extra edge ¨ ª w, where V s V is the kernel of V see Lemma 7 .w ¨ l ¨
Then for w we have Case 1.

Introduce the new parameter

t Y s t X q r y rY ,¨ ¨ ¨

where r is the number of variables in the initial equation V, rY the¨
number of variables belonging to the constant sections of the equation V .¨
We have rY F r, hence t Y G 0. In addition if ¨ ª ¨ is an auxiliary edge,¨ ¨ 1 2
then t Y - t Y.2 1

Y Ž .Define by the joint induction on t a finite subtree T V and a¨ 0 ¨
Ž . Ž .natural number s V . The tree T V will have ¨ as a root and consist of¨ 0 ¨

Ž . Ysome vertices and edges of T V that lie higher than ¨ . Let t s 0; then1 ¨
Ž .in T V there cannot be auxiliary edges and vertices of type 15 higher1

Ž . Ž .than ¨ . Hence a subtree T V consisting of vertices of T V that are0 ¨ 1 ¨
higher than ¨ is finite.
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Let now

s V s max max r f V , PP, R , 37Ž . Ž . Ž .w w ² PP , R: w 2 w

Ž .where w runs through all the vertices of T for which tp w s 2 and V is0 w

˜² :nontrivial, PP, R is the set of periodic structures of the equation V ,w
˜ ² :such that V is regular with respect to PP, R , and f is a functionw 2

appearing in Lemma 14.
Suppose now that t Y ) 0 and that for all ¨ with t Y - t Y the tree¨ 1 ¨ ¨1
Ž . Ž .T V and the number s V are already defined. We begin with the0 ¨ ¨1 1

consideration of the paths

r s ¨ ª ¨ ª ??? ª ¨ , 38Ž .1 2 m

Ž . Ž . Y Ywhere tp ¨ s 15 1 F i F m . We have t s t .i ¨ ¨i
Ž .Denote by m the carrier base of the equation V . The path 38 will bei ¨ i

called m-reducing if m s m and either there are no auxiliary edges from1
the vertex ¨ and m occurs in the sequence m , . . . , m at least twice, or2 1 my1
there are auxiliary edges ¨ ª w , ¨ ª w . . . , ¨ ª w from ¨ and m2 1 2 2 2 k 2

Ž .occurs in the sequence m , . . . , m at least max s V times.1 my1 1F iF k w i
Ž .The path 38 will be called prohibited, if it can be represented in the

form

r s r s ??? r s r 9, 39Ž .1 1 l l

such that for some sequence of bases h , . . . , h the following three1 l
properties hold:

Ž .1 every base occurring at least once in the sequence m , . . . , m1 my1
occurs at least 40n2 q 20n q 1 times in the sequence h , . . . , h , where n1 l
is the number of pairs of bases in V ;¨ i

Ž .2 the path r is h -reducing;i i

Ž .3 every transfer base of some equation of path r is a transfer base
of some equation of path r 9.

Ž .The property of path 38 of being prohibited is algorithmically decidable.
Ž .Every infinite path 38 contains a prohibited subpath. Indeed, let v be

the set of all bases occurring in the sequence m , . . . , m , . . . infinitely1 m
many times, and v the set of all bases, that are carrier bases of infinitely˜
many equations V . If one cuts out some finite part in the beginning of¨ i

this infinite path, one can suppose that all the bases in the sequence
m , . . . , m , . . . belong to v and each base that is a carrier base of at least1 m
one equation, belongs to m. Such an infinite path for any m g v contains˜
infinitely many non-intersecting m-reducing finite subpaths. Hence it is

Ž .possible to construct a subpath 39 of this path, satisfying the first two
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conditions in the definition of a prohibited subpath. Making r 9 longer one
obtains a prohibited subpath.

Ž . Ž .Let T V be a subtree of T V consisting of the vertices ¨ for2 ¨ 1 ¨ 1
Ž .which the path from ¨ to ¨ in T V contains neither prohibited subpaths1

nor vertices ¨ with t Y - t Y, except perhaps ¨ . So the terminal vertices of2 ¨ ¨ 12
Ž . Y YT V are either vertices ¨ such that t - t , or terminal vertices of2 ¨ 1 ¨ ¨1
Ž . Ž . Ž .T V . A subtree T V can be effectively constructed. T V is ob-1 ¨ 2 ¨ 0 ¨

Ž . Žtained by attaching T V already constructed by the induction hypothe-0 ¨1
. Ž . Y Ysis to those terminal vertices ¨ of T V for which t - t . The1 2 ¨ ¨ ¨1

Ž . Ž . Ž . Ž .function s V is defined by 37 . Let now T V s T V .¨ 0 0 ¨ 0
Ž .Notice that if tp ¨ G 6 and ¨ ª w , . . . , ¨ ª w is the list of principal1 m

outgoing edges from ¨ , then the generalized equations V , . . . , V arew w1 m

obtained from V by the application of several elementary transforma-¨
Ž i.Ž .tions. Denote by e a function that assigns a pair V , H to the pairw i

Ž . Ž .V , H . For tp ¨ s 4, 5 this function is identical.¨
Ž .If tp ¨ s 15 and there are auxiliary edges from the vertex ¨ , then the

Ž .carrier base m of the equation V intersects D m . For any solution H of¨
the equation V one can construct a solution H9 of the equation V by¨ ¨ 9

X w Ž Ž ..x Ž . Ž .H s H 1, b D m . Let e9 V , H s e V , H9 .r q1 ¨ ¨ 9¨ w xLet H be a solution of the equation V with quadratic part 1, j q 1 .
Define the numbers

j

d H s d H , 40Ž . Ž . Ž .Ý1 i
is1

d H s d H a m , b m , 41Ž . Ž . Ž . Ž .Ž .Ý2
m

where m is a constant base.

LEMMA 16. If in Case 14, p : F U ª F U is an isomorphism, thenRŽV . RŽ s .¨ 2 qfor any solution H of V there is another solution H , which is an automor-¨
phic image of H with respect to the canonical group of automorphisms defined
in the beginning of this section, such that

q qd H F d H .Ž . Ž .1 2

ŽProof. If p is an isomorphism, then every base except one constant
.base in the quadratic part can be transferred to the nonquadratic working

part with the use of some constant base as a carrier base. This means that
the length of the transferred base is equal to the length of the part of the
constant carrier base, which will then be deleted.
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LEMMA 17. For any solution H of a generalized equation V there exists a
Ž .path ¨ ª ¨ ª ??? ¨ s w into a terminal ¨ertex w of the tree T V ha¨ing0 1 n 0

Žw .type 1 or 2, and a solution H of a generalized equation V such thatw

Ž . Ž .Žw .1 p s pp s ??? s p ¨ , ¨ s , where p is an endomorphism ofH H n 1 0 1 0
a free group and s is an automorphism in the canonical group of automor-i
phisms of F U .RŽV .p i

Ž . Ž .2 If tp w s 2 and the equation V is nontrï ial, then there exists aw
wprimitï e cyclically reduced word P such that H is periodic with respect to P

wŽ .and the equation V is singular with respect to the periodic structure P H , P .w

Ž .3 Let s be a linear or quadratic equation corresponding to the1 i
edge ¨ ª ¨ described in the beginning of Section 6, and F U ,i iq1 RŽV .¨ iq1
F U . Then there is a natural homomorphism g : F ªRŽ s . w RŽV*.2 i

F . If F is the factor-group of F o¨er the inter-RŽ s j s j? ? ?s j s .* w RŽV*.10 11 1Žny1. 2Žny1.

section of the kernels of all the homomorphisms from F into F URŽV*. RŽV .w
Ž .corresponding to the path in T V from ¨ to w, then the induced homomor-0 0

phism g : F ª F is a monomorphism.w RŽ s j s j? ? ?s j s .*10 11 1Žny1. 2Žny1.

Proof. Construct a sequence

Ž0. Ž1. Žu.V , H s V , H ª V , H ª ??? ª V , H ª ??? 42Ž . Ž .ž / ž / ž /¨ ¨ ¨0 1 u

Ž .in which the ¨ are the vertices of the tree T V in the following way. Leti
Ž1.¨ s ¨ and let H be some minimal solution of the equation V with the1 0

Ž1. Ž .property H G H . If tp ¨ s 15 and there are auxiliary edges from vertexi
Ž¨ : ¨ ª w , . . . , ¨ ª w the carrier base m intersects with its doublei i 1 i m

Ž ..D m and there exists a primitive word P such that

Ž i. rH 1, b D m ' P P , P ' P P , r G max s V 43Ž . Ž .Ž . Ž .1 1 2 1F jF m w j

˜Žnote that in such a case V is not regular with respect to a periodic¨ i
Ž i. Ž iq1.² : Ž .. Ž .structure PP, R s PP H , P , then we set V , H s¨ iq1

Ž i. Ž iq1. Ž i.Ž . Ž . Ž .e9 V , H . In all of the other cases we set V , H s e V , H¨ ¨ ¨i iq1 i
Ž iq1.and H is a minimal solution of V with respect to the canonical¨ iq1

Ž .group of automorphisms assigned to ¨ . The sequence 42 ends ifiq1
Ž .tp ¨ F 2.i

Ž . Ž .We will show that in the sequence 42 , ¨ g T V . It can be proved byi 0
Ž p. Žq.induction on q y p that for p - q solutions H and H in the

Ž .sequence 42 are connected by the equation

Ž p. Žq .p s pp s p ¨ , ¨ s ??? p ¨ , ¨ s . 44Ž . Ž . Ž .H H q qy1 q qy2 p pq1 p
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Ž .Suppose ¨ f T V , and let i be the first of such numbers. It followsi 0 0
Ž .from the construction of T V that there exists i - i such that the path0 1 0

from ¨ into ¨ contains a subpath prohibited in the construction ofi i1 0
Ž .T V . From the minimality of i it follows that this subpath goes from2 ¨ 0i1Ž . Ž . Ž .¨ i F i - i to ¨ . So tp ¨ s 15 i F i F i .i 1 2 0 i i 2 02 0

Ž .Suppose we have a subpath 38 corresponding to the fragment

Ž1. Ž2. Žm.V , H ª V , H ª ??? ª V , H ª ??? 45Ž .ž / ž / ž /¨ ¨ ¨1 2 m

Ž . Ž .of the sequence 42 . Here ¨ , ¨ , . . . , ¨ are vertices of the tree T V ,1 2 my1 0
Ž .and for all vertices ¨ having outcoming auxiliary edges condition 43 doesi

not hold.
� 4As before, let m denote the carrier base of V , v s m , . . . , m ,i ¨ 1 my1i

and v denote the set of such bases which are transfer bases for at least˜
Ž .one equation in 45 . By v denote the set of such bases m for which1

Ž .either m or D m belongs to v j v ; by v denote the set of all the other˜ 2
bases. Let

a v s min min a m , j ,Ž . Ž .Ž .mg v 2

where j is the boundary between working and constant sections. Let
w Ž . Ž .x Ž . Ž .X s H a m , b m . If V, H is a member of sequence 45 , then˙m

denote
Ž .a v y1

d H s d H , 46Ž . Ž . Ž .Ýv i
is1

c H s d X y 2 d H . 47Ž . Ž . Ž .Ž .Ýv m v
mgv 1

w Ž .xEvery item h of the section 1, a v belongs to at least two bases, andi
Ž .both bases are in v , hence c H G 0.1 v

˜ Ž .Consider the quadratic part of V which is situated to the left of a v .¨1

If we apply the transformation of Case 14 to this part, we will get an
Ž1.isomorphism at the end. The solution H is minimal with respect to the

canonical group of automorphisms corresponding to this vertex. By Lemma
16 we have

Ž1. Ž1.d H F d H . 48Ž . Ž . Ž .1 2

Ž1.Ž .Using this inequality estimate d H from above.v

Ž .Denote by g v the number of bases m g v containing h . Theni 1 i

r
Ž1. Ž1.d X s d H g v . 49Ž . Ž .Ž .Ž .Ý Ým i i

mgv is11
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� < Ž . 4 � < Ž .Let I s i 1 F i F a v y 1 & g s 2 and J s i 1 F i F a v y 1 & gi i
4 Ž .) 2 . By 46

Ž1. Ž1. Ž1. Ž1. Ž1.d H s d H q d H s d H q d H . 50Ž . Ž . Ž .Ž . Ž . Ž .Ý Ý Ýv i i 1 i
igI igJ igJ

˜Ž Ž ..Let l, D l be a pair of constant bases of the equation V , where l¨1

belongs to the nonquadratic part. This pair can only appear from the bases
m g v . There are two types of constant bases.1

Ž .Type 1. l is situated to the left of the boundary a v . Then l is
� < 4 Ž . Ž Ž1..formed by items h i g J and hence d X F Ý d H . Thus the sumi l ig J i
Ž . Ž .of the lengths d X q d X for constant bases of this type is not morel DŽl.
Ž Ž1..than 2n9 Ý d H .ig J i

Ž .Type 2. l is situated to the right of the boundary a v . The sum of
length of the constant bases of the second type is not more than

r Ž Ž1.. Ž .2 Ý d H g v .isa Žv . i i

We have

r
Ž1. Ž1. Ž1.d H F 2n9 d H q 2 d H g v . 51Ž . Ž . Ž .Ž . Ž .Ý Ý2 i i i

igJ Ž .isa v

Ž . Ž .Now 47 and 49 imply

r
Ž1. Ž1. Ž1.c H G d H q d H g v . 52Ž . Ž .Ž . Ž .Ž . Ý Ýv i i i i

igJ Ž .isa v

Ž . Ž . Ž . Ž .Inequalities 48 , 50 , 51 , 52 imply

Ž1. Ž1.d H F c H 2n9 q 1 . 53Ž . Ž . Ž . Ž .v v

Ž i.w xFrom the definition of Case 15 it follows that all the words H 1, r q 1i
Ž1.w xare the ends of the word H 1, r q 1 , that is,1

Ž1.w x Ž i.w xH 1, r q 1 s U H 1, r q 1 . 54Ž .˙1 i i

On the other hand bases m g v participate in these transformations2
Ž1.w Ž . xneither as carrier bases nor as transfer bases; hence H a v , r q 1 is1

Ž i.w xthe end of the word H 1, r q 1 , that is,i

Ž i. Ž1.w xH 1, r q 1 s V H a v , r q 1 . 55Ž . Ž .˙i i 1



IRREDUCIBLE AFFINE VARIETIES 561

So we have

Ž i. Ž iq1.d H y d H s d V y d V s d U y d UŽ . Ž . Ž . Ž . Ž . Ž .v v i iq1 iq1 i

s d X Ž i. y d X Ž iq1. . 56Ž .Ž . Ž .m mi i

Ž1. Ž2.Ž . Ž . Ž . Ž .In particular 47 , 56 imply that c H s c H s ??? sv v
Žm.Ž . Ž .c H s c . Denote the number 56 by d .v v i

Ž .Let the path 38 be m-reducing, that is, either m s m and ¨ does not1 2
have auxiliary edges and m occurs in the sequence m , . . . , m at least1 my1
twice, or ¨ does have auxiliary edges ¨ ª w , . . . ¨ ª w and the base m2 2 1 2 k

Ž .occurs in the sequence m , . . . , m at least max s V times.1 my1 1F iF k w i
Ž . my 1Estimate d U s Ý d from below. First notice that if m s m sm is1 i i i1 2

Ž .m i - i and m / m for i - i - i then1 2 i 1 2

i y12
i q11d G d H 1, a D m . 57Ž . Ž .Ž .Ý ž /i i q11

isi1

Ž Ž i1.w Ž Ž ..x Ž Ž i1q1.Indeed, if i s i q 1, then d s d H 1, a D m s d H2 1 i1w Ž Ž ..x1, a D m . If i ) i q 1, then m / m and m is a transfer base in the2 1 i q11
Ž Ž i1q 2.w Ž .x. Ž Ž i1q 1.equation V . Hence d q d H 1, a m s d H¨ i q 1i q 1 11w Ž .x. Ž .1, a m . Now 57 follows fromi q11

i y12
Ž i q2.1d G d H 1, a m .Ž .Ž .Ý i

isi q21

So if ¨ does not have outgoing auxiliary edges, that is, the bases m and2 2
Ž . Ž .D m do not intersect in the equation V , then 57 implies that2 ¨ 2

my1
Ž2. Ž2. Ž2. Ž1.d G d H 1, a Dm G d X G d X s d X y d ,Ž .Ž . Ž . Ž .Ý Ž .i 2 m m m 12

is1

which implies that
my1 1

Ž1.d G d X . 58Ž .Ž .Ý i m2is1

Suppose now there are outgoing auxiliary edges from the vertex ¨ :2
¨ ª w , . . . , ¨ ª w . The equation V has some solution. Let2 1 2 k ¨1

Ž2.w Ž Ž ..x Ž .H 1, a D m s Q, and P a primitive word in the final h’s such that˙2
d Ž2. Ž2. Ž2.w Ž Ž ..xQ s P . Then X and X are beginnings of the word H 1, b D m ,˙ m m 22

` Ž . Ž .which is a beginning of P . By the construction of 42 , relation 43 does
not hold for ¨ ; hence2

X Ž2. s P rP , P s P P , r - max s V . 59Ž .˙ ˙ Ž .m 1 1 2 1F jF k w j
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Let m s m s m; i - i ; m / m for i - i - i . Ifi i 1 2 i 1 21 2

d X Ž i1q1 . G 2 d P 60Ž . Ž .ž /m i q11

Ž i1q1 .w x 3and H 1, r q 1 begins with a cyclic permutation of P , theni q11

Ž Ž i1q1 .w Ž Ž ..x. Ž . Ž . i2y1d H 1, a D m G d P . Together with 57 this gives Ý d Gi q1 isi i1 1
Ž .d P . The base m occurs in the sequence m , . . . , m at least1 my1

Ž . Ž .max s V times, so either 60 fails for some i F m y 1 or1F iF k w 1imy 1 Ž . Ž .Ý d G r y 3 d P .is1 i
Ž . Ž Ž iq1.. Ž Ž iq1..If 60 fails, then the inequality d X F d X , the definitionm mi iq1

Ž . Ž .56 , and 59 imply that

i1
Ž1. Ž i q1.1d G d X y d X G r y 2 d P ;Ž . Ž .Ž .Ý ž /i m m i q11

is1

so everything is reduced to the second case.
Let

my1

d G r y 3 d P .Ž . Ž .Ý i
is1

Ž . my 1 Ž . Ž . my 1Notice that 57 implies for i s 1, Ý d G d Q G d P ; so Ý d G1 is1 i is1 i
1my 1 Ž2.Ž . � 4 Ž . Ž .d P max 1, r y 3 . Together with 59 this implies Ý d G d Xis1 i m5

1 Ž1.Ž Ž . .s d X y d . Finally,m 15

my1
1 Ž1.d G d X . 61Ž .Ž .Ý i m10

is1

Ž . Ž . Ž .Comparing 58 and 61 we can see that for the m-reducing path 38
Ž .inequality 61 always holds.

Ž .Suppose now that the path 38 is prohibited; hence it can be repre-
Ž . Ž . Ž Žm..sented in the form 39 . From definition 47 we have Ý d X G c ;mg v m v1

Ž Žm.. Ž .so at least for one base m g v the inequality d X G 1r2n c holds.1 m v
Žm. Ž Žm. ."1Because X s X , we can suppose that m g v j v. Let m be˙ ˜m DŽ m . 1

Ž .the length of the path r s ??? r s in 39 . If m g v then by the third part˜1 1 l l
of the definition of a prohibited path there exists m F i F m such that m1

Ž Žm1.. Ž Ž i.. Ž Ž i.. Ž Žm..is a transfer base of V . Hence, d X G d X G d X G d X¨ m m m mi i i
Ž .G 1r2n c . If m g v, then take m instead of m . We proved thev i

existence of a base m g v such that

1
Žm .1d X G c . 62Ž .Ž .m v2n
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Ž Ž i.. Ž Žm1.. ŽBy the definition of a prohibited path, the inequality d X G d X 1m m

. Ž . Ž .F i F m , 61 , and 62 we obtain1

my1 1
2d G max c , 1 40n q 20n q 1 . 63Ž . Ž .Ý i v½ 520nis1

Ž1.Ž . Ž . Ž .By 56 the sum in the left part of the inequality 63 equals d H yv
Žm .1Ž .d H ; hencev

1
Ž1. 2d H G max c , 1 40n q 20n q 1 ,Ž . Ž .v v½ 520n

Ž .which contradicts 53 .
This contradiction was obtained from the supposition that there are

Ž . Ž . Ž .prohibited paths 45 in the sequence 42 . Hence 42 does not contain
Ž . Ž .prohibited paths. This implies that ¨ g T V for all ¨ in 42 . For all i,i 0 i

Ž .¨ ª ¨ is an edge of a finite tree. Hence the sequence 42 is finite. Leti iq1
w wŽ . Ž .V , H be the final term of this sequence. We show that V , Hw w

satisfies all the properties formulated in the lemma.
Ž .The first property follows from 44 .

Ž .Let tp w s 2 and let V be nontrivial. It follows from the constructionw
Ž . w x Ž i.w xof 42 that if j, k is a constant section for V then H j, k ṡi

Ž iq1.w x Žw .w x Ž . Ž .H j, k s ??? s H j, k . Hence 43 and the definition of s V˙ ˙ ¨
imply that the word h ??? h can be subdivided into subwords1 r ww x w x Žw .h i , i , . . . , h i , i , such that for any a either H has length 1, or1 2 ky1 k

w xh i , i does not participate in basic and coefficient equations, ora aq1
Žw .w xH i , i can be written asa aq1

Žw .w x r X X YH i , i s P P ; P s P P ; r G max r f V , P , R ,Ž .˙ ˙a aq1 a a a a a ² PP , RR: w 2 w

64Ž .

² :where P is a primitive word, and PP, R runs through all the periodica
˜ ˜ ˜structures of V for which V is regular. Then for a maximal such P , Vw w a w

is singular, because if it were regular we would have h such thatk
Žw . Žw .Ž . Ž .d H G f V , P, R . This contradicts the minimality of H .k 2 w

The third assertion of the lemma follows by induction from the first and
second assertions, by Lemma 9, and the fact that automorphisms corre-

Ž . rsponding to Eq. 26 have the form u ª u, w ª u w. Thus Lemma 17 is
proved.
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Ž .8. TREE T V4

Ž . Ž .Let w be the terminal vertex of T V , such that tp w s 2 and V is0 w
˜² :nontrivial. Let PP, R be a periodic structure such that V is singular,w

and let c be a cycle in G. There is a homomorphism f from the group
F in the free extension of a centralizer of the group F U byRŽV .* RŽV j hŽc.s1.w w

Ž .the element y, where h c s h ??? h is the label of the cycle from thei i1 k
� 4set c , . . . , c from Lemma 13. Denote by V a generalized equation for1 k T

the subequation consisting of bases in PP and equation h ??? h s 1.i i1 k

Denote the new variables by z. Let the generalized equation V be
˜obtained from V by deleting all the bases and variables in PP. Consider

these two generalized equations V and V together on the disjoint sets ofT
T Ž .Ž .variables. Add the following basic equations: h s p h h f PP , where˜k k k

the h in the left side is considered as a variable in V , and in the rightk ¨
side as some section of the generalized equation V . Denote it byT

Ž .V PP, R, c, T . The homomorphism f induces a homomorphism c fromw
the group F in the free extension of a centralizer of the groupRŽV .w ˜F . Denote by F the factor-group of F over theRŽV Ž PP, R , c, T ..* RŽV . RŽV .*w w w

intersection of the kernels of all the homomorphisms from F intoRŽV .*w

F which can be obtained as a composition of s g P andRŽV Ž PP, R , c, T ..* 0w ˜Ž .qp Lemma 13 . Then c is monic on F .H RŽV .w
Ž . Ž .Add the corresponding edge to the tree T V and denote by T V the0 3

Ž .tree obtained by using this procedure on each final vertex w of T V ,0
Ž . Žsuch that tp w s 2 and V is nontrivial. So if w9 corresponding to thew
. Ž . Ž .edge w ª w9 is a final vertex of T V , which is not the vertex of T V3 0

Ž . Ž .then p ¨ , w is not an isomorphism. Finally glue T V to those final0 3 w
Ž .vertices w of T V , for which V is nontrivial, and iterate this process.3 w
Ž .Finally we get T V . By Lemma 3 it does not contain infinite branches; so4

Ž .it is finite. The construction of T V is effective.4

9. THE PROOF OF THEOREMS 2 AND 3

We shall first prove Theorem 3. Consider an irreducible system S s 1.
By Lemma 5, F can be approximated by the homomorphisms in onlyRŽS .
one Razborov’s fundamental sequence, corresponding to some path in
Ž .T V , ¨ ª ¨ ª ¨ ª ??? ¨ s w ª ¨ ª ¨ ª ??? ¨ s w ???4 0 11 12 1, n 1 21 22 2, n 21 2

w ª ¨ ª ¨ ª ??? ¨ , where w is the terminal vertex of typemy 1 m1 m2 m , n iq1m
Ž .2 for the tree T w .3 i

Let S be a quadratic equation from the beginning of Section 7i j
Žcorresponding to the vertex ¨ in case j s n , S corresponds to thei j i in i
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.extension of a centralizer . Denote by F the factor-group of¨ , . . . , ¨0 m , nm

F over the intersection of the kernels of all the homomorphismsRŽŽV .*.¨ 0

from F into F corresponding to this sequence. The groupRŽŽV .*. RŽŽV .*.¨ ¨0 m , n m

F is free. It follows from Lemma 17 that F is embeddedRŽŽV .*. ¨ , . . . , ¨¨ 0 m , nm , n mm

into F . But F is embedded into F ; hence FRŽS j? ? ?j S . RŽS . ¨ , . . . , ¨ RŽS .0 m n 0 m , nmy1 m

is embedded into F . The system S j ??? j S is trian-RŽS j? ? ?j S . 0 m n0 m n my1my1
gular quasi-quadratic.

To prove Theorem 2 we have to follow the process described for the
irreducible system in the proof of Theorem 3. Instead of one branch of the

Ž . Ž .tree T V we will have several branches. The construction of T l is4 4

effective, hence this process is effective.

10. THE PROOF OF THEOREMS 6, 5 AND
COROLLARIES 2]5, 6

Proof of Corollary 2. Let G be a finitely generated residually free
² :group, and X, S be a finitely generated presentation for G. Let F s

Ž .F A be a nonabelian free group with some basis A disjoint with X. We
can think of S as a system of equations S s 1 over F. The group

w x ² Ž . < Ž . :F X rS s F ) F X S X s 1 s F )G is approximated in F by F-
Ž . Ž . w x Ž .homomorphisms; hence R S s ncl S and F )G s F X rR S . Thus G

Ž .is a free factor of the affine coordinate group F . The variety V S is aRŽS .
Ž . Ž . Ž .finite union of its irreducible components V S s V S j ??? j V S .1 n

This implies that F is embedded into F = ??? = F , and eachRŽS . RŽS . RŽS .1 n

group F is fully residually free. By the theorem, G is embedded intoRŽS .i
Zw x x Zw x xF = ??? = F .

Ž . Ž .Proof of Theorem 5. Let F s F A be a free group, and S X be a
system of equations over F which determines an irreducible variety over

Ž . Ž .F. Then F s F A j X rR S is a fully residually free group; hence itRŽS .
Ž .is finitely presented. So there are finitely many relations r A j X ,i

Ž . Ž . � 4i s 1, . . . , n, such that R S s ncl r , . . . , r . The system S9 s r , . . . , r1 n 1 n

is equivalent to S and satisfies the Nullstellensatz.

Ž .Remark. There exists a variety V reducible which cannot be defined
by a finite system satisfying Nullstellensatz.

Indeed, this follows from the existence of finitely generated residually
free and not finitely presented groups.
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Ž .Proof of Theorem 6. Let GG X be a graph of groups.

Ž .1 X is a connected graph;
Ž .2 For every vertex ¨ of X and every edge e groups G and G are¨ e

Ž .defined such that G s G here e is the inverse edge for e ;e e

Ž .3 For every edge e g X, G F G , and there exists a monomor-e es

Ž .phism t : G ª G here es and et are initial and terminal vertices of e .e et

Ž Ž .. Ž .The fundamental group p GG X of a graph of groups GG X is defined as1
follows. Let T be a maximal subtree of X. Then

² <p GG X s ) G , t e g E X t s 1 e g T ,Ž . Ž . Ž .Ž . Ž .Ž .1 ¨ g V Ž X . ¨ e e

y1 :t gt s g g g G , t t s 1 .Ž .e e t e e e

Ž Ž .. Ž .It is known that p GG X is independent up to isomorphism of T.1
Ž Ž ..The group p GG X can be obtained from the vertex groups by a tree1

product with amalgamation and then by HNN-extensions. Subgroups of
Ž Ž ..p GG X are again fundamental groups of some special graphs of groups1

Ž .related to GG X .

w x Ž . Ž Ž ..THEOREM 8 6 . Let GG X be a graph of groups, and let H F p GG X .1
Ž Ž .. Ž Ž .. y1Then H s p GG Y where the ¨ertex groups of GG Y are H l gG g for1 ¨

Ž .all ¨ertices ¨ g X, and g runs o¨er a suitable set of H, G double coset¨
representatï es, and the edge groups are H l gG gy1 for all edges e g X,e

Ž .where g runs o¨er a suitable set of H, G double coset representatï es.e

Let G be obtained as a union of the finite chain,

F - G - ??? - G s G,1 n

where G is a free extension of a centralizer of G . We prove theiq1 i
theorem by induction on n. If n s 0 it is obvious, because all finitely
generated subgroups of F are free of finite rank. By induction all finitely
generated subgroups of G satisfy the conclusion of the theorem. Theny1

Ž ² :.group G is a free product with amalgamation: G s G ) C = t ,ny1 CsC
Ž .where C s C u is a centralizer of some element u g G , and C isG ny1ny 1

an isomorphic copy of C. In particular, G is a fundamental group of the
² :graph of groups with vertex groups G and C = t , and edge group C.ny1

By Theorem 8, a finitely generated subgroup H of G is a fundamental
Ž .group of some graph of groups HH Y , where the vertex groups of Y are of

y1 y1Ž ² :.the form H l g G g or H l g C = t g and edge groups are ofny1
the form H l gy1 Cg.
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ŽFrom general properties of amalgamated products one can deduce see
w x .17 for details that centralizers in G are free abelian groups of finite rank
Ž . Ž .F n . Therefore all edge groups in the graph of groups HH Y are finitely

Ž Ž ..generated abelian groups. Since H s p HH Y and H is finitely gener-1
ated, H is an HNN-extension with finitely many stable letters of a free
product with amalgamation of finitely many vertex groups.

Notice, that if amalgamated subgroups are finitely generated and at
least one of the free factors is not finitely generated, then the whole

Žamalgamated product is not finitely generated this follows from normal
.forms of elements in amalgamated products . Similarly, if the base group is

not finitely generated, and associated subgroups are finitely generated,
then an HNN-extension is not finitely generated. This implies that the
vertex groups H l gy1 G g are finitely generated. Therefore, by induc-ny1
tion, the vertex groups can be obtained from free abelian groups of finite
rank by finitely many operations of the types 1]4.

The group G as well as all the subgroups of G are CSA-groups. It was
w xshown in 7 that if a free product with abelian amalgamation results in a

CSA-group, then at least one of the amalgamated subgroups is maximal
abelian. Similarly, an HNN-extension with abelian associated subgroups is

w xa CSA-group if and only if this HNN-extension is of type 3 or 4 7 .

Proof of Corollary 4. According to Theorem 6, if all proper centralizers
in a finitely generated subgroup H of F Zw x x are cyclic, then H is obtained

Žfrom cyclic groups by operations 1, 2, 4, which preserve hyperbolicity see
w x.10, 15, 5 .

Proof of Corollary 5. Consider the formula

w x w x w x; x; y;z'u x , y s x , z s y , zŽ
s 1 ª xy s u2 k xz s u2 k yz s u2 .Ž . .

This formula holds in all subgroups of F Zw x x in which all centralizers are
cyclic, and does not hold in any other subgroup. Hence every finitely
generated group which is ;'-equivalent to a free group is a subgroup of

Zw x xF with all centralizers cyclic.

Proof of Corollary 6. The assertion of the corollary follows from Theo-
w x Zw x xrem 4 and the results of 16, part 1 , where a length function on F with

many useful properties has been constructed. The corollary can be also
w xdeduced from Theorem 4 and the results of Bass 2 .



KHARLAMPOVICH AND MYASNIKOV568

11. THE PROOF OF THEOREM 6

Ž .It is enough to prove the theorem in the case when the variety V S isF
irreducible. By the theorem we have an embedding

w x Z k
m : F X rRad S ª FŽ .

for some suitable number k. Let u be the image of the generator x g Xi i
Ž .under m and U s u , . . . , u be the corresponding tuple of parametric1 n

w xwords. Due to 4 the family of specializations

< kJ* s j * j g Hom Z , Z� 4Ž .
is a discriminating family of F-homomorphisms. In particular, U* is a

Ž . Ž .subset of V S . Let us prove that this subset is dense in V S in theF F
n Ž .Zariski topology on F . Choose an arbitrary point ¨ g V S and an openF

� < Ž . 4 Ž w x.basic neighborhood O s w g F f w / 1 here f g F X of ¨ . Thusf
Ž . Ž .f ¨ / 1 and hence f is not in Rad S . Therefore, f defines a nontrivial

w x Ž .element in the affine coordinate group F X rRad S . Now there exists a
homomorphism f g J* such that f f / 1. But this means that the solu-
tion Uf g U* belongs to the same neighborhood O . This shows that U* isf

Ž .dense in V S in the Zariski topology.G

12. AN EMBEDDING THEOREM FOR AFFINE GROUPS

Ž .THEOREM 9. Suppose we ha¨e a generalized equation w h such that w*
Ž . Ž .is irreducible, and a system ¨ y, h s 1, w* h s 1. Then the following

assertion is true: if for any solution g g F of the system w* there exists a
Ž .solution y in F of the system ¨ y, h s 1, w* s 1, then there is an embedding

of F into F .RŽw*. RŽ¨ Ž y, h., wŽh..*

Proof. Suppose first that for any solution g g F of the system w* there
Ž .exists a solution y in F of the system ¨ y, h s 1.

Let H be a subgroup generated in F by the elements h. Then forRŽw*, ¨ .
any homomorphism a : F s F ª F, this a can be extended to aRŽw*. w*
homomorphism a 9: H ª F such that the following diagram is commuta-
tive. 6 6

F H FRŽu. RŽw*, ¨ .m

6

l

6 6
a 9a a 0

F
Ž . ŽHere l is a canonical homomorphism l h s h the h’s in FRŽ¨ , w*.

a a 0Ž . . Ž .satisfy w h s 1 , m is an inclusion, and ¨ h , y s 1 in F.
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F is residually F. If some nontrivial element r g F belongs toRŽw*. RŽu*.
Ž .the kernel of l, then there exists some a such that a r / 1 in F, but

Ž .a 9( l r s 1. This implies that l is an isomorphism. So we have proved
the existence of an embedding.
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