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We shall prove the conjecture of Myasnikov and Remeslennikov [4] which states
that a finitely generated group is fully residually free (every finite set of nontrivial
elements has nontrivial images under some homomorphism into a free group) if
and only if it is embeddable in the Lyndon’s exponential group FZ*], which is the
Z[ x]-completion of the free group. Here Z[x] is the ring of polynomials of one
variable with integer coefficients. Historically, Lyndon’s attempts to solve Tarski’s
famous problem concerning the elementary equivalence of free groups of different
ranks led him to introduce FZ*1,

An 3-free group is a group G such that the class of 3-formulas, true in G, is the
same as the class of 3-formulas, true in a nonabelian free group. A finitely
generated group is 3-free if and only if it is fully residually free [22]. Our result
gives an algebraic description of 3-free groups.

We shall give an algorithm to represent a solution set of an arbitrary system of
equations over F as a union of finite number of irreducible components in the
Zariski topology on F". The solution set for every system is contained in the
solution set of a finite number of systems in triangular form with quadratic words
as leading terms. The possibility of such a decomposition for a solution set was
conjectured by Razborov in [20] and also by Rips.
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We shall give a description of systems of equations determining irreducible
components using methods developed in [13, 19]; it is possible to find some of these
methods in [18]. We are thankful to E. Rips for attracting our attention to these
techniques.  © 1998 Academic Press

0. INTRODUCTION

All the necessary definitions can be found in [9]. Nevertheless, we repeat
here most of them to make this paper self-contained.

Let G be a group, F(X) the free group with basis X = {x,, x,,..., x,},
and G[X] = G = F(X) the free product of G and F(X).

An element s from G[X] is called an equation over the group G. We
write this as s(x;,...,x,, &,...,8,) =1 or, simply, as s(x,g) =1 A4
system of equations over group G is an arbitrary set of equations § = {s; =
1li € I} (in more succinct notation: S =1). A solution of a system
S(xq,.oy X, 810---,8&,) =1 over a group G is a tuple of elements
a,,...,a, € G such that after replacement of each x, by a, in every
equation s(¥, g) = 1 one gets a trivial element in a group G. In other
words, a solution of the system § =1 over G can be described as a
G-homomorphism (i.e,, a homomorphism which is identical on G)
7y G[X] — G such that ¢(S) = 1. If by V(S) we denote the set of all
solutions in G of the system S = 1, then V(S) is called an algebraic subset
or an (affine) variety in G”".

For any S € G[X] we have V(S) = V(ncl(S)), where ncl(W) is the
normal closure of W in G[ X 1.

A group G is called a CSA-group if every maximal abelian subgroup M
of G is malnormal, i.e., M " M = 1 forany g & M.

It was shown in [3] that for a nonabelian CSA-group G all algebraic sets
in G" define a topology on G” in which they are exactly the closed sets.
One verifies that it is really a topology: V(U S,) = NV(S)); V(S,) U V(S,)
=V([u*,v*"], ues, ves,), where a,be G, [a,bl+1, a, BE
{1, -1}, V(1 = 1) = G" and V(G[ X)) = &. The topology defined by alge-
braic sets as closed subsets is said to be a Zariski topology.

Below G is always a nonabelian group.

DeriNnITION 1. Let Y € G”. Define a set

I(Y) = {s € G[XIs(gy,.-.8,) =1 V(gy.....8,) € V).

The set I(Y) has a description in terms of homomorphisms. Any tuple
g =1(g ..., g,) €Y defines a homomorphism z,: G[X] — G by the con-
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dition x; — g,. Then

I(Y) = () ker(m,).

geEY

I(Y) is a normal subgroup of G[X], and if G is a torsion-free group
then I(Y) is an isolated normal subgroup of G[X], in particular, 1(V(S))
contains the intersection VS of all normal isolated subgroups containing S.

DeFINITION 2. Let V(S) be a variety defined by S < G[X]. Then
I(V(S)) is called the radical of the system S = 1 and is denoted by Rad(S).
Denote G[X]/Rad(S) by Ggs,, and G[X1/ncl(S) by Gg.

A system S = 1 over G is called consistent if there is a G-homomor-
phism 7: G[X] - H > G such that S € ker(sr). Otherwise it is inconsis-
tent over G. If a system S =1 over G is consistent then the canonical
homomorphism G — Gy, is monic. Therefore, for nonempty varieties
1(S) we will assume that G is a subgroup of Gy,

DeriniTION 3. Let H be a group and £ be a family of groups.

(1) A homomorphism of groups ¢: H — G separates a nontrivial
element h € H if (h) + 1;

(2) A family of homomorphisms ¥ = {¢y: H —» G|G € £} is called a
separating (discriminating) family of homomorphisms if any nontrivial
h € H (any finite number of nontrivial elements #4,,...,h, € H) can be
separated by some ¢ € W. In this case H is called a residually & group
(w-residually & group or fully residually & group).

In the case when % consists of a single group G, which is also a
subgroup of H, and if the separating (discriminating) homomorphisms in
are all G-homomorphisms, we say that H is separated (discriminated) by
G-homomorphisms.

A group G is called Equationally Noetherian (EN) if for every system §
of equations over G there is a finite subsystem S, such that V(S) = V(S,).
A free group is an EN group [8].

A closed set in a topological space is called irreducible if it is not a union
of two proper closed subsets.

LEMMA 1 [3]. Let G be an EN CSA-group. Then V(S) is irreducible if
and only if Gy, is discriminated in G by G-homomorphisms.

DeriniTION 4. An equation is said to be quadratic if every variable
occurs in the equation not more than twice. An equation is said to be
strictly quadratic if every variable occurs in the equation exactly twice. A
system is said to be quadratic if every variable occurs in the equations of
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the system not more than twice (it may not occur at all). A system is said to
be strictly quadratic if every variable occurs in the equations of the system
exactly twice.

Let the set X consist of three types of variables: x,, y;, z;, We call a
guadratic equation standard if it has one of the following forms,

[Tlxonl=1 (>0, 1)
TT[xo [Tz ezd = 1 2
[Ix-1 (n>0) 3
1f[ Zflz te,zd = 1, (4)

where d,¢; (i = 1,..., m) are nontrivial elements in G.

DEFINITION 5. Let G be a group, C(u) the centralizer of the element u
in G. Suppose C(u) is abelian. Then the group C(u,t) = {G, t[v,t] =1, v
e C(u)) is called a free extension of the centralizer of u.

Let A be an arbitrary associative ring with identity and G a group. Fix
an action of the ring 4 on G, i.e., amap G X A — G. The result of the
action of « € A on g € G is written as g“. Consider the following axioms:

(1) g1=g7g0=1’1a=

(2) ge+B =g gB g = (g*)F;
(3) (h~gh)* = h™'g“h;

@ [g hl =1= (gh)* =g*h*.

DerINITION 6. Groups with A-actions satisfying axioms (1)—(4) are
called A-groups.

In particular, an arbitrary group G is a Z-group. We now recall the
definition of A-completion.

DEerFINITION 7. Let G be a group. Then an A-group G together with a
homomorphism A: G — G“ is called a tensor A-completion of the group
G if G satisfies the following universal property: for any A-group H and
a homomorphism ¢: G — H there exists a unique A-homomorphism
. G* - H (a homomorphism that commutes with the action of A4) such
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that the following diagram commutes:

G G

H

By Z[x] we denote as usual the ring of polynomials of one variable with
integer coefficients.

LEMMA 2 [17].  Every group obtained from a CSA group G by a sequence
of free extensions of centralizers is embeddable into G“X.

Below x denotes several variables.

DerFINITION 8. Let G be a group, ¢ a tuple of elements from G,
Xy, ..., X, disjoint tuples of variables. A system U/, S.(¢, X,,...,%,) =1
is said to be triangular quasi-quadratic if for every i the equation
S,(¢, x;,...,x,) = 1is quadratic in the variables from x,.

Such a system is said to be nondegenerate if for each i the equation
S; =1 over G[)'cHl,...,)'cm]/R(U]’-;iSj) (with elements x; considered as
variables and elements from ¢, x;,, --- X,, as coefficients) has a solution.

In [9] the following result was proved.

THEOREM 1. If S is a nondegenerate triangular quasi-quadratic system
over a fully residually free group G, then Gy, is isomorphic to a subgroup of
a group obtained from G by a sequence of free extensions of centralizers and
hence a subgroup of GA*,

If G is fully residually free, then every finitely generated subgroup of
G4l is a subgroup of a group obtained from G by a finite series of free
extensions of centralizers, and hence is discriminated by G-homomor-
phisms [4]. This and Lemma 1 imply

CoROLLARY 1. For a nondegenerate triangular quasi-quadratic system S
over a fully residually free group G the solution set V(S) is irreducible.

THEOREM 2. For any finite system S(X) = 1 over a free group F, one can
find effectively a finite family of nondegenerate triangular quasi-quadratic
systems U,,...,U, and word mappings p;: Vy(U) = V(S) (i =1,...,k)
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such that for every b € Vi(S) there exists i and ¢ € Vz(U) for which
b =p(c), i.e.,

Vi (S) =p1(VF(U1)) U Upk(VF(Uk))

and all sets p(V(U)) are irreducible; moreover, every irreducible component
of Vi(S) can be obtained as a closure of some p.(Vp(U)) in the Zariski

topology.
This theorem will be proved in Sections 1-10. A system S is said to be

irreducible if the solution set 1/(S) is irreducible. The main objective in this
paper is to prove the following

THEOREM 3. For a system S = 1 over a free group, V(S) is irreducible if
and only if Fp) C Fp,, for a nondegenerate triangular quasi-quadratic
system S.

Sections 1-9 will be devoted to proving that for any irreducible system
S =1 over a free group F, Fg) C Fy(s,, for a nondegenerate triangular
quasi-quadratic system ;.

Notice that in [4] it was shown that FZX is fully residually free.

Theorem 3 implies

THEOREM 4. A finitely generated group is fully residually free if and only if
it is isomorphic to a subgroup of F*.

Proof. Consider a finitely generated fully residually free group G given
by generators x,,..., x, and relations s,(x,...,x,), j € J. Consider § =
{s;(xy,...,x,), j €J} as a system of equations over F. Then G = F = Fj
and ncl(S) = Rad(S), since Fy is fully residually free. Hence G < Fyy, is
embeddable into F4X, |

Now we can describe the algebraic structure of finitely generated
subgroups of FZ* in terms of free constructions.

Let H = (G, t|A" = B) be an HNN extension of G with associated
subgroups A4 and B. H is called a separated HNN-extension if for any
g€ G, ASNB =1

COROLLARY 2. Every finitely generated residually free group G is a
subgroup of a direct product of finitely many fully residually free groups; hence,
G is embeddable into FA*) X --- X F4~],

THEOREM 5. Let V be an irreducible variety over F. Then there exists a
finite system of equations S = 1 over F which defines the variety V and
satisfies the Nullstellensatz.

THEOREM 6 (joint with V. Remeslennikov). Let a group G be obtained
from a free group F by a series of finitely many free extensions of centralizers.
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Then every finitely generated subgroup H of G is obtained from free abelian
groups of finite rank by finitely many operations of the following type:

(1) free products;

(2) amalgamated products with abelian amalgamated subgroups at least
one of which is maximal abelian;

(3) free extensions of centralizers;

(4) separated HNN-extensions with abelian associated subgroups at least
one of which is maximal abelian.

The following four corollaries will be proved in Section 10.

COROLLARY 3.  Every finitely generated fully residually free group is finitely
presented.

Corollary 3 was also announced by Z. Sela.

COROLLARY 4. All finitely generated subgroups of FA*, in which all
proper centralizers are cyclic, are hyperbolic.

COROLLARY 5. Every finitely generated group H which is Y 3-equivalent to
a nonabelian free group is torsion-free hyperbolic; moreover, H can be
obtained from infinite cyclic groups by finitely many operations of the following
type:
(1) free products;

(2) amalgamated products with infinite cyclic amalgamated subgroups at
least one of which is maximal abelian,;

(3) separated HNN-extensions with infinite cyclic associated subgroups at
least one of which is maximal abelian.

In [23] Remeslennikov proved that every finitely generated fully residu-
ally free group acts freely on some Z"-tree with some order for a suitable
natural number 7. In [21] he asks (Question A) if such a group acts freely
on some Z"-tree with lexicographic order. Corollary 6 gives a positive
answer to his question.

COROLLARY 6. FEvery finitely generated fully residually free group acts
freely on some Z"-tree, where Z" is a direct sum of n copies of Z with
lexicographic order.

Let U = {uy,...,u,)} be a set of parametric words, i.e., a subset of FZ".
By the definition we have fixed some pure cyclic subgroup Z in Z¥ in such
a way that the action of this subgroup Z coincides with the integer powers
in F. Because Z is pure in Z¥ we have Z¥ = Z @ B, where B is a free
abelian group with a free base ¢,,...,t,. These generators t,-s are called
parameters in FZ", Any homomorphism &: B — Z gives rise to a F-homo-
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morphism ¢*: FZ' > F. In this case we say that the image U¢" is
obtained from U by specializing parameters by &. Let

U* = |J {U¥'| ¢ € Hom(Z*, 2)}

be the union of all specializations of the set U.

We can slightly generalize the construction of a specialization. Instead
of a set U we can consider a set of tuples of words from FZ* and specialize
them coordinatewise. Then we will get the set U* of tuples of elements
from F.

THEOREM 7. Let S(X) = 1 be a system of equations over a free group F.
Then there exists a finite set of n-tuples of parametric words U = (uy, ..., u,)
€ (FZ'Y" such that the set of all their specializations U* is a dense subset of
the variety Vi (S) in the Zariski topology.

COROLLARY 7. Any system S = 1 over a free group F has a dense subset
which can be parametrized by finitely many parametric words.

DeriNnITION 9. The existential theory of G is the set of all formulas of
the form

s t
| Au(x8) =1Av(%38)
1 1

that are true on G.

It was proved in [12] that the existential theory of a free group is
decidable; this implies that for a finite system § = 1 the group Fg, has a
decidable word problem.

DeriniTiON 10. A fundamental sequence of length k£ for a system of
equations ¢ is a triple

(.#,Hom, Aut),

where .# consists of n systems of equations ¢, = 1,...,¢, =1, ¢ = ¢4,
and ¢, is an empty system. Hom is a collection of k£ — 1 homomorphisms
Ty, Mg Where amt Fpyy = Freg ) and ar; is a retract on F. Aut is
a collection of k finitely generated automorphism groups P;, ..., P, of the
groups Fry ..., Freg,) respectively. A fundamental sequence ® = (2,
Hom, Aut) is effectively given if the systems in .#, homomorphisms from
Hom, and automorphisms from Aut are effectively given. To effectively
define a homomorphism from Fg,) — Fg.,, means to define the images
of the generators of the group Fp,,.
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If ® is some fundamental sequence of length k for the system ¢ = 1,
m: Fre,, = F @ homomorphism of free groups, and oy, 0,,..., 0, are
automorphisms from P,, P,, ..., P,, respectively, then the composition

Frigy 2o, Fresy 2my Fresy) 2o, Freop 2my = Freoo o Frep) 2 F

(5)

equals 7y for some solution X of the system ¢. We say that & describes
a solution X of the system ¢ if 75 can be represented in the form (5) for
some choice of my,..., 7, 0y, 05,..., 0.

LEMMA 3 [19, Lemma 1.1]. In an infinite sequence

Gl _>771 GZ_) B Gr “r

T2 Tr-1 r

of finitely generated residually free groups G, . .., G,, ... and surjective homo-
morphisms, almost all homomorphisms are isomorphisms.

Proof. Let g,,..., g, be a finite family of generators of G,. Consider
the system of equations

{o(xs,..x,) = 18r(m, - w(b(81---08,)) = D} (6)

By Guba’s theorem [8] there exists a finite subsystem ¢,(x) = 1, ¢,(X)
=1,...,¢,(x) =1 of system (6) which is equivalent to (6). Let r, be such
a number that 7, - 7,(¢(gy,...,8,)) =1, 1 <i<m. We claim that =,
is an isomorphism for r > r,.

Indeed, =, is surjective by definition; so we only have to verify that it is
injective. Let g G,; m(g) =1 Choose g' € G, such that m_, -
m,(g’) = g and consider g’ = #(gy,...,g,)- Then ¢(x,,...,x,) = 1isan
equation of the system (6), and for any X,,..., X, € F the following
implication is true

(X X,) =12 B(K, X, =1

||>§

Suppose now that g # 1. Because G. is residually free, there exists a
homomorphism 7: G, > F such that 7(g) #1. Let X, = EPERIE
m(g;)) (1 <j <n). Then for any 1 <i <m one has d)(X) = 7777, -
m{(g) = Lsince r = ry. But ¢(X) = 7m,_, -+ w(g") = m(g) # L. This
gives a contradiction with the |mpI|cat|on above. |
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1. REDUCTION TO A GENERALIZED EQUATION

Everywhere below G = F will denote a free group F(a@), and F(x) will
denote a free group with generators x,,...,x,. We will consider now a
finite system of equations S(x, a) = 1.

A generalized equation is defined to be a collection consisting of the
following:

(1) An interval [, subdivided into p items hy, ..., h, which play the
role of the unknowns. The points of division are called “boundaries.” This
number p is called the number of unknowns. We have p + 1 boundaries.

(2) A system of 2n oriented subintervals, divided into pairs (a base
and the dual base) and corresponding system of n basic equations. If A is
the number of a base, then A(A) =n + A, if A <n and A(N) = A — n, if
A > n denotes the dual base; a(A) and B(A) denote the initial and
terminal boundary of A.

The corresponding system of basic equations consists of the n equations

e(N)

e(A(N)
[ha(A(A))ham(A)H 1 hB(A(A))—l] '

[ha(A)ha()\)+1 hB()\)—l]
where ¢ € {1, —1}.

(3) A system of m coefficient equations h;, = a' (1 </ <m; () =
(il, jl, 6‘1))-

(4) A system of k boundary connections and a corresponding system
of k boundary equations. A boundary connection is a connection between
boundary p on the base A and boundary g on the base A(A). A corre-
sponding boundary equation is an equation

[ha(A)ha(A)+l hp—l] = [ha(A(A))ha(A(A))+1 hq—l]n

if &(A) = (AN and

[ha()\)ha()\)+l hp*l] = [hqhqﬂ hB(A(A))*l]_l’

if e(A) = —g(A).

So there is a system of equations corresponding to the generalized
equation. A solution of the generalized equation ) is defined to be a
collection H of nonempty words H. ,-+, H,, which, when substituted into
this system, turn it into graphical equalities, and the left and right sides of
the basic equations are irreducible after this substitution.
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The notation (Q, H) means that H is a solution of the generalized
equation ().

If $(h) = y(h) is an arbitrary list of equations, then the same list with
asterisk (for example, Q*) denotes the system of equations of the form
d(h)(y(h))~* = 1 in the free group. Obviously, if H turns all the equa-
tions of Q into a graphical equality, then H is a solution of the system Q*.
The converse is false.

For a solution H of a generalized equation Q) we introduce the notation

XM = [H

a(py

H

e(p)
B(M)*l] :

In the cases when several solutions are being considered at the same
time, superscripts on the words X, will indicate which solution they relate
to.

The length of the word B will be denoted by d(B). The length of a
solution H of a generalized equation is defined to be

a(f) = ¥ d(H).

The periodicity exponent of a list of words is the maximal number m such
that some of the words in the list contain a subword ¢™ for some c.

The periodicity exponent of a solution H is defined to be the periodicity
exponent of the list of words X, u € {1,...,2n}.

LEMMA 4 [19].  For a given system of equations in a free group S(x,a) = 1
it is possible to construct effectively a finite list of generalized equations
Qy,...,Q, and homomorphisms m; Fps) = Fpeox, such that for any solu-
tion X of the system S = 1 there exists i € {1,...,r} and a solution H of (),
such that the following diagram commutes.

i
FR(S) FR(QT)
Tx g
F(a)

Proof. Every system S can be transformed by adding new variables into
a system S, such that every equation in S, contains not more than 3 terms,
and Fpgs, is isomorphic to Fp(s,. Thus we can suppose that the system
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S = 1 has this property and write it in the form
rurpris =1

Falaalss = 1,

rmlrn12rm3 = 1’
where r;; are letters in the alphabet X *' U a*™,

A partition table is defined to be a set of irreducible words
Vilzy,.... 2, A <i <m, 1 <j < 3)inthe alphabet {z/"*, ..., z'} such
that the following conditions are satisfied:

(1) The equality V,,V;,V;; = 1,1 < i < m, holds in the free group with
basis z;

() av;) < 2;

() if r,; €a*?, then d(V)) = 1.

The finite set of all partition tables can be effectively constructed for a
system S = 1. An example of a partition table for equation x,;x,x; = 1 is
the following: V, = z,z,, Vi, = 2525, Vis = 23127 .

To each partition table T = {V,-j} assign a generalized equation € in
the following way. (Below we will use the notation = for graphical
equality.) Let

V= VidVioVis = VidVinoVins-

Let p =d(V). The equation (), contains p variables &y,...,h, corre-
sponding to the letters of the word V. For any two distinct occurrences of
z;** introduce a basic equation hi{ = hi3, where unknowns #;q, h;, corre-
spond to the selected occurrences of z;**, and &, and &, are determined
by the signs of these occurrences.

Forall 1 <i;, iy <m, 1 <j, j, <3 such that rEt=r5l =x, wein-
troduce the basic equation

€2

T e L R

where the words [h, - hg_,] and [h, -+ hg _,] correspond to the
occurrences of the words V;; and V, ; in V.

For any r;; = aj* introduce the coefficient equation %, = a;°*, where
h, corresponds to the occurrence of V;; in V.

The list of boundary equations is empty.

For an arbitrary letter x, in X we choose some occurrence r; ; of the

. Jk
letter xg* in the system. Suppose that the word s, h, ., - hg _, cOITe-
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sponds to the occurrence of V;; in V. We define a homomorphism
T Fresy = Freasy as m(xy) = (h,, -+ hg _ )%, The value of m(x,) does

not depend on the choice of the occurrence of Tije: |

A pair of dual bases ( u, A( w)) is said to be matched if a( ) = a(A(w)).
We note some trivial properties satisfies by all generalized equations
having at least one solution:

(@ If e(w) = —e(A(w)), then the bases w and A(w) do not inter-
sect.

(b) If two boundary equations have respective parameters (p, A, q)
and (p,, A, g;) with p < p,, then g < g, in the case when (M) e(A())) = 1,
and g > g, in the case e(M)e(A(A) = —1.

(c) For a matched pair of bases ( u, A(«)) and a boundary connection
(p, w, g) we must have p = q.

(d) A variable cannot occur in two distinct coefficient equations.

(e) If A, is a variable from some coefficient equation, and if (i, u, ¢,),
(i + 1, u, q,) are boundary connections, then |g, — g¢,| = 1.

Generalized equations satisfying these restrictions will be called nonde-
generate.

2. ELEMENTARY TRANSFORMATIONS

We say that an item %, belongs to the base w if a(p) <i < B(p) — 1.
An item is said to be empty if it does not belong to any base. A boundary i
cuts the base w if a( ) <i < B(w). A boundary i touches the base u if
i =a(u)ori= B(u). Aboundary is said to be open if it cuts at least one
base and is closed otherwise. A boundary is said to be free if it does not
touch any base and is not connected by any boundary connection. A set of
items {h;,..., h;,;_,}, denoted by [i,i + j] is called a section. A section is
said to be closed if the boundaries i and i +j are closed and all the
boundaries between them are open.

An elementary transformation of a nondegenerate generalized equation
() gives a set of generalized equations Q,,...,Q, and a collection of
surjective homomorphisms 6,: G+ = Ggeqx, such that for every pair
(Q, H) there exists an unique pair (Q,, H?”) for which the following
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diagram commutes.

e R—— IO

TGO

F(a)
Here, H = (H,,..., H,) and 7g(x;) = H,.

J
We need 5 types of elementary transformations.

(E1) (Cutting a Base) (Fig. 1). Suppose there is a boundary connec-
tion {p, A, ¢). Then we cut the base A into two bases A, and A, in the
boundary p. We also cut A(A) into A(A;) and A(A,) in the boundary ¢,
replace the corresponding basic equation by the two equations, and correct
all the remaining boundary equations. _

If Q) is a generalized equation, then by ) we denote a generalized
equation obtained from Q by a consequent application of all possible (E1)
transformations. The groups Fy o~ and Fg g, are isomorphic.

(E2) (Transfer of a Base) (Fig. 2). Suppose that the base 6 is con-
tained in the base w (a(w) < a(8) < B(6) < B(w)). Suppose further
that there are boundary connections {«(6), i, v, and { B(0), u, v, and
that if there are some boundary connections for some boundaries cut by
then these boundaries are connected through boundary connections to the
corresponding boundaries on A( w).

Then we transfer # from the situation on the base w to the situation on
the base A( ) and adjust all the basic and boundary equations.

(E3) (Removal of Matched Bases). Remove a pair of matched bases.
For the transformations (E1)-(E3) the output consists of a single equation
Q,; the list of unknowns remains the same; every solution H of Q is a
solution of Q,, and the systems Q* and Qf in the free groups are
equivalent. The homomorphism 7, is induced by the identity isomorphism
on G and is itself an isomorphism.

(E4) (Removal of a Single Base). Suppose the section [A,,, -
hg .17 is covered by the single base w and that for all i (1 <i < B(u)

A a(x) ALk A(A) A(A)

1
T

P q r q
FIGURE 1
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© Ap) I A(p)

FIGURE 2

— a( ) — 1) there exists a w(i) such that the list of boundary connections
contains (a(uw) + i, w, w(i)).

The transformation (E4) carries  into a unique generalized equation
), obtained from Q by deleting £, ..., g, -1 from the list of
unknowns. We define the homomorphism m, as follows: (k) = h; if
j<a(w)orj=> B(w);

hw(i—l) hw(i)—l’ if e(p) =e(Ap),
hw(i) hw(i—l)—l’ if e(p) = —e(Ap)

for 1 <i < B(w) — alpw). m; is obviously an isomorphism.

(E5) (Introduction of a Boundary). Suppose the list of boundary
connections does not contain any connections with the first two parame-
ters {p, u,...». Let g be a boundary on A(w). Then we perform one of
the following two transformations:

(1) Introduce the boundary connection ¢ p, w, g;, if the new gener-
alized equation is nondegenerate (the corresponding homomorphism from
Greax ONto Gpox, Will be induced by the identity isomorphism on Glh]
and is not necessarily an isomorphism).

(2) Replace the unknown #, by the two items 4’ and A" and
introduce the new connection, connectlng boundary p with the boundary
between A’ and A" (the corresponding homomorphism m; from G g«
onto  Gpegs, Will be induced by the following homomorphlsm on
Glhl: 7T(h ) =hy if k#q, and 7(h,) =h'h"; m; is an isomorphism).

From now on we consider solutions of generalized equations in the
extended alphabet @ U b. Let now F = F(a, b). Suppose we have a gener-
alized equation Q and a solution H.

Let P be a group of automorphisms of Fp ., and H® and H® be two
solutions of the generalized equation Q. We will write H® <, H® if
there exists an endomorphism 7 of the group F which is an <a> homo-
morphism, and an automorphism o € P such that wze = m7poo and
d(H®) < d(H®) for all 1 <k <p and such that at least for one k,
d(H®) < d(H®). A solution H of Q is called minimal with respect to the
group of automorphisms P if there is no solution H* of the equation Q
such that H* < H. A solution H of Q is called minimal if it is minimal
with respect to the canonical group of automorphisms of Fy ., (to be
defined below).

Ty( Moy Ti—1) =

a(p
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3. SOME RESULTS ABOUT IRREDUCIBLE SYSTEMS

The following lemma was proved in [9, Lemma 19].
LEMMA 5. Let H be a CSA-group and

® = {¢: H—)H(/)}

a separating family of homomorphisms of H. Then for any finite partition
® = U, D, there exists an index i (1 <i <n), such that ®, is also a
separating family of homomorphisms.

Every fully residually free group is CSA; hence for any irreducible
system § we can apply this lemma to H = Fp s, and any separating family
of homomorphisms.

4. KERNEL OF A GENERALIZED EQUATION

Let ) be a generalized equation and let vy, denote the number of bases
containing #;.

Suppose first that 2 does not contain boundary connections. The base
w is called eliminable in the equation () if at least one of the following two
conditions is satisfied:

(a) There exists h; such that #; € u, y; = 1, and A; is not contained
in the coefficient equations.

(b) At least one of the boundaries a(uw), B(u) is different from
1, p + 1, and does not touch any other base and any coefficient equation.

Consider a sequence
Q=0Qp-> 0, > - =, (7)

in which Q, , is obtained from (, by deleting some eliminable base u,,
together with A( ;). Suppose Q, does not contain eliminable bases.

LEMMA 6.  Equation Q, in the sequence (7) depends only on Q) but not
on the choice of sequence (7).

Proof.  Suppose there is another sequence
Q=0,-0,-> - ->Q), (8)

with the same properties and Q, # ().. Without loss of generality we can
suppose that the pair ( u, A( 1)) belongs to Q, but not to .. Suppose this
pair is deleted with the transformation Q) — (1, ;. Let k be minimal with
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these two properties. Then the set of bases of (), is contained in the set of
bases of (1. This implies that w is eliminable in Q,. This contradicts the
definition of sequence (7). 1

Equation Q, in (7) will be called the kernel of the equation Q and
denoted Ker(Q). We say that 4, belongs to the kernel, if 4, belongs to at
least one base in the kernel or 4, occurs in some coefficient equation.

Let the generalized equation €, be obtained from Q, by deleting
variables &; & Ker(Q).

LEMMA 7 [19].  Fy qx, is isomorphic to F(y)+* Fygy), where F(y) is a free
group with a finite basis y.

5. CONSTRUCTION OF T(Q)

Let Q) be a nondegenerate generalized equation. We describe the
construction of the tree T(Q), which is oriented from the root. To each
vertex of T(Q) we assign a generalized equation Q,, and an equation
corresponding to the root v,. For any edge e: v — v’ we assign a surjec-
tive homomorphism 7 (v, v"): Fggx) = Frx) If v 20 = 0 50—
v’ is a path in T(Q), then =(v,v’) is a composition of = (v, v"),
m(v,_1,0,),...,m(v,v,). The set of all edges is subdivided into principal
and auxiliary edges.

Closed sections of ), are subdivided into working and constant sec-
tions. We will suppose that the union of working closed sections forms the
section [1, j,] for some boundary j, of the equation Q,, and the union of
constant sections forms section [j,, p, + 1]. The edges are also subdivided
into two classes: principal and auxiliary.

The construction begins with announcing all closed sections as working
sections.

Denote by p’ the number of variables in the working sections of some
equation , and by n’ the number of bases on these sections, by »’ the
number of open boundaries in the working sections, o' the number of
closed boundaries in the working sections. The number of closed working
sections containing zero bases, one base, or more than one base is denoted
by t',u’,w’, respectively. The complexity of the equation Q is the number

7' =n"—u — 2w’ = Ymax{0,n, — 2},

where n; is the number of bases on the closed working section with
number i, and the summation is taken over all closed working sections.

It is obvious that 7' > 0, and equality holds if and only if each closed
working section contains not more than two bases.



534 KHARLAMPOVICH AND MYASNIKOV

Suppose we are of the vertex v. The outgoing edges of this vertex
depend on which of the cases described below takes place. If we have Case
i (i < 15), then suppose that Cases 1,...,i — 1 do not take place. Cases 14
and 15 can take place for the same vertex v.

In Cases 1 and 2 the vertex is said to be the end vertex.

Case 1. The homomorphism (v, v) is not an isomorphism.
Case 2. (1, does not contain working sections.

Case 3. , contains h,, which belongs to the working sections and to
some coefficient equation, and the section [k, k + 1] is not closed. Then
we first perform a series of elementary (E5) transformations, continuing
the boundaries k and £ + 1 through all bases they intersect. Then perform
a series of (E1) transformations, cutting these bases on the introduced
boundaries. In all the equations obtained this way [k, k + 1] is closed.

Case 4. The generalized equation contains #,, which belongs to the
closed section [k, k + 1] contained in some coefficient equation. The
section [k, k + 1] becomes constant and the corresponding edge is auxil-
iary.

Case 5. (), contains a fictitious unknown /, belonging to the working
section. The section [g, g + 1] is transferred into constant sections and the
edge is auxiliary.

Case 6. €, contains a pair of matched bases in a working section.
Perform (E3) and delete it.

Case 7. v, =1 for some h; belonging to a working section, such that
both boundaries i and i + 1 are closed. Apply (E4) and delete the closed
section [i,i + 1] together with unique base that is contained in this
section.

Case 8. v, = 1 for some h; belonging to a working section, and one of
the boundaries i,i + 1 is open and the other is closed. Without loss of
generality we can consider i as a closed boundary. Perform (E5) and
continue i + 1 through the only base w it intersects; cut w in i + 1, and
delete [i, i + 1] which is now closed.

Case 9. vy, =1 for some h; belonging to a working section, and both
i,i + 1 are open. In addition, some closed section [j,, j,] contains exactly
two bases wy, u,, such that a(u,) = a(u,), and B(u,) = B(u,) and all
the bases of (), obtained from u,, u, by cuttings, do not belong to the
kernel of Q.
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Using (E5) continue through w, all the boundaries that intersect it.
Using (E2) transfer u, from the situation on w, to the situation on A( u,).
Delete u, together with the closed section [j,, j,I.

Case 10. The first assumption in Case 9 holds and the second does not.
Perform (E5), continue i and i + 1 through wu, perform twice (E1), and
then cut u into 3 new bases Finally, delete [i,i + 1] together with the
unique base that is contained in it.

Case 11. Some boundary Z on the working part is free. Since we do
note have Case 5, / intersects at least one base u. Continue # through u
using (E5).

Before considering Case 12 let us proceed to the consideration of the
entire transformation composed in a definite way from the elementary ones.
We apply this transformation only to equations with v, > 2, for each i. We
can perform the entire transformation on the union of some closed
sections of the equation (1,. First suppose that these sections are all
situated on the interval [1,j + 1]. A base w of the equation € is called a
leading base, if a(w) = 1. A leading base w is said to be maximal if
B(A) < B(w), for any other leading base A. The base having largest index
among the maximal bases is called the carrier base. A base A is called a
transfer base if B(A) < B(w) and A # w, where w is the carrier base. Let
n be the carrier base of the equation (). Take a transfer base A and
applying an (E5) transformation, continue through w all the boundaries on
A. Using (E2) we transfer all the transfer bases from the situation at the
base w to the situation at the base A( w). Now, there exists some w < B(w)
such that h,,...,h, belong to only one base w, while the interval /4, ,
belongs to at least two bases. Applying (E1) we cut u along the boundary
i + 1. An application of (E4) annihilates the section [1,w + 1] which has
become closed together with the unique base belonging to it. Notice that
the entire transformation does not increase complexity.

Case 12. vy; > 2 for each h; belonging to working sections. In addition,
for some base u section [a(w), B(w)] is closed. Using (E5) continue all
the boundaries which intersect u through wu. Using (E3) transfer all the
bases situated on u to the situation on A(w). Using (E2) delete
[a(w), B(w)] together with the pair w, A(w).

Case 13. vy, = 2 for each h; belonging to working sections. In addition
some boundary /Z, belonging to a working section and touching some base
intersects some base w and is not continued through w by a boundary
connection. Continue # through w using (E5).
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Case 14. v, > 2 for each h; and vy, = 2 for some k; and in addition
Fg(ax) is not isomorphic to Fp ), Where s, is a generalized equation as
defined below.

Notice that the function v; is constant when #; belongs to some closed
section of Q.

Consider the following transformation of Q. Applying (E1) transforma-
tions to cut the bases containing %; covered exactly twice, we finally get
that the union of bases covered twice becomes a union of closed sections.

Renumbering %,'s we can suppose that the section [1, j + 1] is covered
exactly twice. We say now that this is a quadratic section.

If w and Au both belong to the quadratic section, then w is called a
variable base. If w belongs and Au does not belong to the quadratic
section, then w is called a constant base. _

Apply now the entire transformation to the quadratic section of ().
Each time we apply the entire transformation we do not increase complex-
ity and do not increase the total number of items in the whole interval.

Every time we express some items of the quadratic section through the
other items of the quadratic section and the rest of the items. The number
of items on the quadratic section and the number of bases cannot increase.
We also delete pairs of matched bases. If the process continues for too
long then the equation with the same quadratic part will occur twice, and
the corresponding homomorphism is an automorphism invariant with
respect to the items in the nonquadratic part [19, Lemma 3.3, second part].
Lemma 8 in [9] and [19] imply that this group of automorphisms is finitely
generated and there is an effective procedure to obtain the generating set.

After we get a repetition of the equation, we have to introduce a new
boundary equation without introducing a new boundary in the quadratic
section. This operation decreases the number of items in the quadratic
section. Finally, we find a solution of a quadratic equation expressed in
terms of A’s not belonging to the quadratic part.

There are several new A’s and several new equations on the A’s not
belonging to the quadratic part obtained after the process stopped.

Let s, be a generalized equation consisting of bases such that one of the
paired bases is either variable or a constant base with respect to the
quadratic part. Let p, be a generalized equation on A’s not belonging to
the quadratic part before the process started. Let s, be a generalized
equation on A’s not belonging to the quadratic part which we get after we
have finished the process with the quadratic part. We have Q, = s, U p,.

There are two possibilities.

(1) The canonical homomorphism Fg , ,, = Fr,, is an isomor-
phism. In this case we do not apply the transformation described above;
instead we construct outgoing edges as described in Case 15 below.
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(2? The canonical homomorphism Fy, ., = Fg,,, IS not an iso-
morphism. Then we construct a path

v=v, v, o, 9)

in T(Q), such that each edge v, — v, , corresponds to one entire transfor-
mation. We say that for each v; in this path we have Case 14 and for v,

Q, =s,. To each v; assign the group of automorphisms P; of Fp g pe
invariant with respect to the nonquadratic part of (, and call it' a
canonical group of automorphisms for the equation €}, in Case 14. We

have a piece of Razborov’s fundamental sequence

o, FR(nfl) “a(y vy  Freox

Un

Freory 2o, Freary = rew,, 0y FR(Q*;l)
4, Frear ) (10)

where o; € P;, correspond to some epimorphisms m: Fy , p,y = Fress)

Let P be the group of all such epimorphisms. In Case 15 we can also
consider the group P which will be a group of automorphisms of Fy o).
We call it canonical for Case 15.

Let A be a natural homomorphism Fg o, = Frs,us,- Then for
any epimorphism 7 € P there is a natural epimorphism ¢: Fr( o, =
Fp(s3 such that the following diagram commutes.

A
[ S
FR((SI U pa)*) FR((S1 U s2)%)

Frespy

In the situation where the canonical homomorphism Fi . = Fres)
is an isomorphism, A is an embedding of Fp o, N0 Fr; U5,
because all the epimorphisms 7 are isomorphisms.

LEMMA 8. The natural homomorphism i Fp 1o = Fres us,y) 1 @
monomorphism.

Proof. Let H be the subgroup (Fg ) in Fp o, The epimor-
phism ¢! Fr, v, = Fresz) defined above is a identical on H and
determines a solution of the system s over Fp. ). Hence ¢ ¢ is an
identity on Fp.g). |l
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Let I:“;«Slu .y D€ the factor-group of Fg, ., Over the intersection
of the kernels of all epimorphisms in P.

LEMMA 9. The homomorphism X induces an embedding of Fy,, ., ,,, into
FR((S1 U s2)*)”

Proof.  Take an element g € Fy, ,,,~ Which does not belong to the
intersection of all these kernels. Then there is an epimorphism
T Fres,u pyy9 — Fresty such that w(g) # 1. This implies that A(g) # 1 by
the commutativity of the diagram above.

Case 15. v, > 2 for each h; belonging to working sections (and the
application of Case 14 would give an isomorphism  Fg  »,y = Fr(ssy SO
we do not apply the transformation of Case 14). In this case it must be
some h; with v, > 2. Apply the entire transformation. Continue all bound-
aries that touch at least one base through all the bases they intersect.

In Case 15 it is also possible that there are some auxiliary edges coming
out of the vertex v; this is described below in Case 15.1.

Case 15.1. All the assumptions of Case 15 hold. In addition the carrier
base wn of the equation Q, intersects with A(w). First construct some
equation €, in the following way. Introduce the new closed section
[p, + 1, p, + 2], and announce this section as a constant section. Intro-
duce a new pair of bases (A, A(A)), such that a(A) = 1, B(A) = B(A(w)),
a(A(N) = p, + 1, B(A(N) = p, + 2. In other words we introduce the
new basic equation i’ = A[1, B(A(w))], where A’ is a new variable. Let
(v, v') be a natural isomorphism. Notice that ), can be obtained from
Q. with the use of (E4) by deleting 8()) together with the closed section
[ p, + 1, p, + 2]. For the equation Q,. we have Case 15, but A is a carrier
base. Applying to €. transformations described for Case 15, we obtain
the list of all auxiliary edges coming out of the vertex v.

The tree T(Q) is described. In Case 14 we cannot say that every solution
of one of the equations . is a solution of (), but we can say that every
solution of one of the equations Q%,, is a solution of Q*. We can also say
that every solution of Q, is a solution of one of the equations Q,. and
every solution of Q% is a solution of one of the equations Q%..

Notice that our first 11 cases coincide with 11 cases in Razborov’s thesis.
Our Cases 12 and 13 correspond to his Cases 13 and 14, respectively. Our
Case 14 is different; our Case 15 is a partial case of his Case 15.

If Case i (1 < i < 13) takes place for a vertex v, we say that v has type i
and write tp(v) =i. In Case 14 (resp. 15) we say that p(v) = 14 (resp.
tp(v) = 15) depending on whether we apply to v the transformation of
Case 14 or 15.
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LeEMMA 10 [19, Lemma 3.1]. If v, — v,, is the principal edge of the tree
T(Q), then

(D) n, <ny, if p(vy) # 3,10. This inequality is proper if tp(v,) =
6,7,9,12.

) Iftp(vy) = 10, then 1y < n} + 2.
3 v, < v} ifip(vy) < 12 and tp(v,) # 3,11,
@) 7, < 71, if ipvy) # 3,14

All these assertions can be verified directly.

LemmA 11. Let v, » v, = -+ = v, - be an infinite path in the tree
T(Q). Then there exists N such that all the edges of this path starting with N
are principal edges, and one of the following holds:

1) 7 <p(v,) <10 foralln > N,
(2) tp(v,) = 15 foralln > N.

Proof. Notice that if some generalized equation contains a coefficient
equation A; = aji ! such that &, belongs to the working part, then we apply
transformations of Cases 3, 4, decreasing the number of such equations. So
in generalized equations of 2¢’s level (where ¢ is the number of coefficient
equations in initial ) unknowns on the working part will not belong to
coefficient equations, and without loss of generality we can think that
already has this property. Then we do not use Cases 3, 4 in the construc-
tion of the tree. Case 14 can only occur finitely many times, because the
transformation 14 gives a proper homomorphism Fg ox) = Fp(5). SO we
can suppose that we do not have it. So all our transformations do not
increase complexity. We can suppose that p(v;) > 5 for all i.

We show that the number of vertices for which #p(v;) = 5 is not more
than p. Indeed, if we denote by (' the generalized equation obtained
from Q by deleting all the coefficient equations, then the tree T({)’) can
be obtained from T(Q) by replacing all generalized equations Q, by Q,;
hence for any vertex there is a surjective homomorphism from Fz ., to
Frca»). This implies that Fp+, can be generated by p + elements
where o = card(@). If the path from the root v, to v contains at least
p + 1 vertex of type 5, then (', would have at least p + 1 fictitious
variables (on the constant sections). Sending all the other variables into
identity we would have a homomorphism from Fj -+, onto a free group of
rank p + o + 1, which gives a contradiction (see Proposition 1.2.7 of [11]).

So we can suppose that p(v;) # 5.

The value of complexity must be stabilized for the infinite path. If we
have an auxiliary edge then it only can be constructed by using the Case
15.1. But by applying the transformation of Case 15 to the equation €V,
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constructed for the Case 15.1, both bases w and A( ) will be transferred
from the base A to the constant part, so the complexity will be decreased
by 2. But 7,, = 7, + 1, hence 7/, < 7/. Hence the number of auxiliary
edges in the path must be finite. So we can suppose that 7/ is a constant
and all the edges of the path are principal edges.

If now #p(v;) = 6, then the closed section, containing matched bases
u, ACw), cannot contain any other bases, because then complexity would
be decreased. But if this section does not contain any other bases, then
p(v;, ) = 5 which is also impossible.

So we can suppose that p(v;) > 7. If the equation ), does not contain
free boundaries and (), is obtained from it by an elementary transforma-
tion other than (E3), then Q, does not contain free boundaries. Hence
tp(v;) # 6 implies that #p(v,) # 11.

If 12 <p(v,) < 13, or p(v;) = 15, then p(v,, ;) € {6, 13, 14,15, 12}.
Since 1p(v;) # 6, 14, this implies that for all vertices v; (j > i) we also have
12 < tp(v;) < 13 or tp(v;) = 15. In this case the sequence n' stabilizes by
Lemma 10. In addition, if p(v;) = 12, then /., < n). Hence tp(v;) # 12
for all j. There cannot be more than 8(n’)? vertices of type 13 in a row;
hence there exists j > i such that #p(v;) = 15. The series of transforma-
tions (E5) in Case 15 guarantees the inequality p(v;,,) # 13; hence
tp(v;, 1) = 15, and we have assertion 2 of the lemma.

So we can suppose #p(v;) < 10 for all the vertices of our path. Then we
have assertion (1) of the lemma. |

6. PERIODIZED EQUATIONS

This section is basically a translation of the corresponding section from
[19].

Let us assume at first that the equation () contains no boundary
connections and is nondegenerate. The periodic structure of the equation
Q is a pair {2, R), where & is a set of unknowns, bases, and closed
sections of the equation (); R is an equivalence relation on a certain set of
boundaries (which will be defined below—see item (e)), and where the
pair {2, R) satisfies the following six properties:

(@ if h; e and h; € p, then u €2; moreover, this holds Vi; €
Py 2D,

(b) if uw e, then A(u) €%

(© if uezand u € [i,j] then [i, j] € %;

(d) there exists a function 2 mapping the set of closed sections from
2 into {—1, +1} such that for every w,l[i;, j;1,[i,,j,] €, the condition
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that w € [i;, j;]1 and A(w) € [i,, j,] implies e(w) - e(A(w) =2 (i, j,D -
Z iy, j,D;

(e) R is an equivalence relation on the set of those boundaries / for
which there exists [i, j] €2 such that i </ < j. Furthermore, if a bound-
ary [ is closed, and both closed sections [, /] and [/, j] belong to %, then
we consider two copies of the boundary [, not related to each other, one of
which is associated with [i, /] and the other with [/, j];

) if e, then R(a(w), a(A(w))), R(B(w), B(A(w))) in the case
where () = £(A(w)) and R(a(w)), B(A(w)), R(B(w), a(A(w))) in the
case where &(u) = —e(A(w)). Here the boundaries a(w), B(w) are
associated with the closed section on which the base w lies.

A solution H of a generalized equation € is called periodic with respect
to a period P (P is a primitive cyclically irreducible word), if for every
closed section [, j] containing at least one base either d(H[i,j]) =1 or
the word HI[i, j] can be represented in the form

(r=1, A=A4,4,, Aisaprimitiveword, d(A) <d(P)), (11)

where for at least one such section the word A in presentation (11) is a
cyclic shift of the word P** and r > 2.

Now we will show how one associates to each solution H of a general-
ized equation Q a periodic structure {2, R), which will be denoted by
2(H, P). A closed section [i, j] is included in the list & if and only if it
contains at least one base and has a presentation (11) in which A4 is a
cyclic shift of the word P** and r > 2. An unknown #; is included in the
list % if and only if %; belongs to a closed section from % and d(H,) >
2d(P). A base w is included in 2 if and only if either u or A( ) contains
an unknown from 2.

For a set . defined in this way, items (a) and (b) from the definition of
a periodic structure can be trivially verified.

Let u €2 and p € [i,j]. There exists an unknown %, €4 such that
h, € porh, € ACw). If h, € u, then, obviously, [i, j] €. If h, € A(w)
and A(Cw) €[i’,j'], then [i’,j'] €<, and hence, the word H[a(A(w)),
B(A(w))] can be written in the form Q"' Q,, where Q = Q,0,; Q is a cyclic
shift of the word P*! and r’ > 2. Now let (11) be a presentation for the
section [4, j]. Then H[a( ), B(w)] = B°B,, where B is a cyclic shift of the
word A*', d(B) <d(P), B=B,B,, and s> 0. From the equality
Hla(w), B(w]*™ = H[a(A(w), BAA(N]*A*) and Lemma 1.2.9 of
[1] it follows that B is a cyclic shift of the word Q **. Consequently, A is a
cyclic shift of the word P*! and r>2 in (11), since d(H[i,j] >
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d(H[a(w), B(w)] = 2d(P). Therefore, [i,j] €2, i.e., part (c) of the
definition of a periodic structure holds.

Put (i, j) = +1 depending on whether in (11) the word A is conju-
gate to P orto P 1 If w <€ [iy, j,], ACw) € [i,, j,], and u €2, then the
equality e(w) - e(A(w)) =2 (i, j,D -2 {i,, j,D follows from the fact that
given A’A, = B°B; and r, s > 2, the word A4 cannot be a cyclic shift of the
word B~1. Hence, part (d) also holds.

Now let [i,j] €2 and i <! <j. Then there exists a subdivision P =
P, P, such that if 27([i, j] = 1, then the word H[i, ] is the end of the
word (P*)P, and HII, j] is the beginning of the word P,(P), and if
Z(i,jD = —1, then the word HI[i,!] is the end of the word (P~1)*P,*!
and HII,j] is the beginning of P;'(P~1)*. Again, Lemma 1.2.9 of [1]
implies that the subdivision P = P, P, with the indicated properties is
unique; denote it by 8(1). Let us define a relation R in the following way:
R(1;,1,) = 8(1) = 8(1,). Item (e) of the definition of a periodic structure
obviously holds.

Item (f) follows from the graphic equality H[a(w), B(w)]** =
Hla(A(), BAA(u)]*A™ and Lemma 1.2.9 of [1].

Now let us fix a nonempty periodic structure (%, R). Item (d) allows us
to assume (after replacing the variables h;,...,h;_; by hj‘_ll, .. k7t on
those sections [i, j] €2 for which 2°([i, j]) = —1) that e(u) = 1 for all
u €. For a boundary k, we will denote by (k) the equivalence class of
the relation R to which it belongs.

Let us construct an oriented graph I" whose set of vertices is the set of
R-equivalence classes. For each unknown £, lying on a certain closed
section from 22, we introduce an oriented edge e leading from (k) to
(k + 1) and an inverse edge e~ ! leading from (k + 1) to (k). This edge e
is assigned the label h(e) = h, (respectively, h(e ') = h;'). For every
path r = e/ --- eX! in the graph T denote by A(r) its label h(ef?)--
h(ejil). The periodic structure {2, R) is called connected, if the graph T
is connected. Suppose first that {2, R) is connected.

LEMMA 12.  Let H be a solution of a generalized equation () periodic with
respect to a period P, {2, R) =%(H, P); ¢ a cycle in the graph T at the
vertex (1); 8(1) = P P,. Then there exists n € Z such that H(c) = (P,P))".

Proof. If e is an edge in the graph I" with initial vertex V' and terminal
vertex V" and P = P P,, P = P{P; are two subdivisions corresponding to
the boundaries from V7', 7", respectively, then, obviously, H(e) =
P,P"P;] (n, € Z). The claim is easily proven by multiplying together the
values H(E) for all the edges e taking part in the cycle c.

A generalized equation Q is called periodized with respect to the
periodic structure {2, R) of this equation, if for every two cycles ¢, and c,
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in the graph I' having the same initial vertex, the following equality holds
in the group Fyox):

[A(c1) h(cy)] = 1. (12)

Let I, be the subgraph of the graph I' having the same set of vertices
and consisting of the edges e whose labels do not belong to . Choose a
maximal subforest T}, in the graph I’y and extend it to a maximal subforest
T of the graph T'. Since (., R) is connected by assumption, it follows that
T is a tree. Let V, be an arbitrary vertex of the graph T" and r(V,, V)
the (unique) path from ¥, to V7 all of whose vertices belong to 7. For
every edge e: V' — V' not lying in T, introduce a cycle ¢, =
r(Vy, V)e(r(Vy, V")) =L, Then (see the proof of Proposition 3.2.1 in [11]) the
fundamental group = (T',V,) is generated by the cycles c,. This and the
decidability of the universal theory of a free group imply that the property
of a generalized equation ‘“to be periodized with respect to a given
periodic structure” is algorithmically decidable.

Furthermore, the set of elements

{h(e)le € T} U {h(c,)le & T} (13)

forms a basis of the free group with the set of generators {A,|h, is an
unknown lying on a closed section from ). If u €2, then (B(w) =
(B(A(w)), (a(w) = (a(A(w))) by part (f) from the definition of a peri-
odic structure and, consequently, the word Ala(u), B( )]
hla(A(w)), B(ACu)] ™t is the label of a cycle ¢’(w) from (T, (a( w))).
Let c(p) = r(Vy, (al w)e' (wr(Vy, (a(w))~t. Then

h(e(w)) = uhla(p), B(w)]h[a(A(w)), B(A(m)] ‘u?t, (14)

where u is a certain word. Since ¢(w) € 7 (T, V), it follows that ¢(u) =
b(c,le & T}), where b, is a certain word in the indicated generators
which can be effectively constructed on the basis of the proof of Proposi-
tion 3.2.1 of [11].

Let b, denote the image of the word b, in the factor group of 7,(T', V)
over the derived subgroup. Denote by Z the free abelian group consisting
of formal linear combinations ¥, . ;n,c, (n, € Z), and by B its subgroup
generated by the elements b (per) and the elements ¢, (e & T, h(e)
¢ P). Let A=Z7/B, T(A) the torsion subgrohps of the group A, and Z1
the preimage of T(A) in Z. The group Z/Z, is free; therefore, there
exists a decomposition of the form

~ ~

Z-Z,02, BcZ, (Z:B)<~ (15)
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Note that it is possible to express effectively a certain basis W, e of
the group Z in terms of the generators ¢, so that for the subgroups Zl, 22
generated by the sets ¢, ¢, respectlvely, relation (15) holds. For this it
suffices, for instance, to look through the bases one by one, using the fact
that under the condition Z = Z, & Z, the relations B € Z,, (Z,: B) < =
hold if and only if the generators of the groups B and Z, generate the
same linear subspace over Q, and the latter is easily verified algorithmi-
cally (a more economical algorithm can be constructed by analyzing the
proof of the classification theorem for finitely generated abelian groups).
By Proposition 1.4.4 of [7], one can effectively construct a basis ¢, ¢® of
the free (nonabelian) group (T, V) so that ¢®,c® are the natural
images of the elements ¢®,¢® in Z.

A generalized equation () is called singular with respect to a connected
periodic structure {2, R), if at least one of the following three conditions
holds:

(a) Q is not periodized with respect to (%, R);
(b) rk(A4 ® Q) > 2;

(c) rk(4 ® Q) =1 and there exists e & T such that h(e) €2 and
h(c,) # 1in the group Fy g«

Otherwise, the equation Q is called regular. Thus, Q is regular with
respect to (., R) if and only if Q is periodized, rk(4 ® Q) > 1, and in
the case rg(A4 ® Q) =1 for all e & T such that h(e) €2, we have
h(c,) = 1 in the group Fy .. The definitions of singularity and regularity
formally depend on the tree T'; therefore we assume that T is fixed once
and for all in an arbitrary way.

Now assume that (., R) is an arbitrary periodic structure of a general-
ized equation (), not necessarily connected. Let I';,..., I, be the con-
nected components of the graph I'" constructed above. The labels of edges
of the component I’; form in the equation Q) a union of closed sections
from £; moreover, if a base u €% belongs to such a section, then its
dual A(Cw), by item (f) of the definition of a periodic structure, also
possesses this property. Therefore, by taking for &, the set of labels of
edges from I; belonging to .2, sections to which these labels belong, and
bases u €2 belonging to these sections, and restricting in the corre-
sponding way the relation R, we obtain a periodic connected structure
(&, R;) with the graph T,. A generalized equation Q) is called singular
with respect to (., R) if it is singular with respect to at least one structure
(Z, R;) (1 <i<r)and regular otherwise.

The notation (%', R') c (£, R) means that %’ %, and the relation
R’ is a restriction of the relation R. In particular, (%, R,) € {2, R) in
the situation described above.
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LEMMA 13. Let Q be a nondegenerate generalized equation with no
boundary connections, singular with respect to the periodic structure (P, %).
Then Fg o« is isomorphic to Fg s, where S is such that the list of variables X of
Q is subdivided into two parts y and Z, and the list of equations in S is
subdivided into two parts 0 and s, such that y does not occur in the equations
Y, and 0 has the following form.

(@) If Q is singular of type a, then 6 is empty.
(b) If Q is singular of type b, then

[yiv2] = [ (2. @)] = [y, U(z,0)] =1, i=1... k (16)
(©) If Q is singular of type c, then
[y, U(z,@)] =1, i=1,... k. (17)

The group Fy g, is isomorphic to F .,y . There is a finite family of cycles
€1y .y C, in the graph T such that h(c;)) # 1 (1 <i <r) in the group Fy g«
and for any solution H of the equation () periodic with respect to some period
P, such that {#, R) =2(H, P), there is an automorphic image H* of H
with respect to the group of automorphisms P, of Fy, invariant on elements
froma, z (wgr= w0, o € Py) such that there exists i (1 < i < r) such that
H*(ci) = 1. In case @), r = 1. In case (b), r = 1 and y, = h(c,).

In all cases every solution of the system i can be extended to a solution of
the system 0 U .

In other words, every solution H of Q can be obtained as a composition of
a solution of 6 over a factor-group of FR(Q*) over the noriﬁal subgroup
generated by one of the h(c;) and a canonical homomorphism from this
factor-group into F corresponding to the solution H™.

Proof. We can restrict ourselves to the case of a connected graph T

Consider 3 types of equations singular with respect to the periodic
structure (%, R).

In case (a) the list {c,} consists of some cycle [c,,c, ], e;, e, € T which
is not equal to the identity in Fy g, and we put H*= H.

In case (b), O, = Q is periodized and rk(A4 ® Q) > 2. Adding to the
system Q* Eqgs. (12) for all pairs of cycles ¢, ,c,, (e;, e, & T), we have an
equivalent system. Consider in the free group F(Q*) a new basis a,x
consisting of a, variables not belonging to the closed sections from .2,
variables {i(e)le € T}, and words A(¢V), h(c®). Notice that |c®| = rk(A4
® Q) > 2. Let y, = h(c?), y, = h(c$?), and the rest of the variables from
the list x will be considered as variables from z. All the equations of the
system Q* can be rewritten modulo (12) in the variables z as a system
Y O(z,a) = 1.
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The relations in (12) can be rewritten in the form
[h(c),h(c’)] = [y, 5] = [yl,h(c)] = [Yth(C)] =1

(c,c’ €c®, e, cP,....cP). (18)

The system ¢, obtained as a union of Egs. (18) and equations from ©
is equivalent to Q* so there is a natural isomorphism between Fy ., and
E R($): . . )

If in these relations some Ah(c) is a proper power, we can replace it by
the corresponding root, get a new system ¢,, and by Lemma 12, R(¢) =
R(¢y). _ _

We assign equations from @ and [A(c), h(c')] = 1 to the list  and
the rest of the Eqs. (18) to the list 6. We have a splitting of equations and
can consider a canonical group of automorphisms connected to this
splitting.

The list ¢y, ..., c, consists of the one cycle c{?.

Every solution H of Q can be obtained as a composition of a solution of
6 over a factor-group F -~ over the normal subgroup generated by h(c,),
and a canonical homomorphism from this factor-group into F correspond-
ing to the solution H*.

If the equation Q has at least one solution, then ¢ also has a solution
Z. Take as Y; and Y, an arbitrary nontrivial word that commutes with
components C®,CP,...,C? of the solution Z and we will have a
solution of system ¢; this implies that A(c{?) # 1 in the group Fy .

Let solution H of the generalized equation () be periodized with
respect to the period P, and (<, R) C#(H, P). By Lemma 12, H(c{?) =
inl H(C(ZZ)) — an.

Applying the automorphism from the canonical group of automorphisms
we can make y, = 1. This means that sending y, = ¢{? into a trivial
element we have a proper homomorphism from Fy ., into the subgroup
generated by the rest of the generators including y,, and Fg~, is the
extension of a centralizer, since the subgroup generated by A(c), ¢ €
W e, P, ..., c? is maximal abelian in the group generated by Z.

Consider now case (c). The system of equations is equivalent to some list
@ which does not contain the variable w = h(c{?) and has commutativ-
ity relations,

[w,h(c)] =1 (c ec®), (19)
[A(c), h(cH)] =1 (¢, ¢’ €cD). (20)
These relations can be also rewritten in the form

u=nh(c,); wiluww=nh(c,); [uh(c)]=1(cec?). (21)
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The group Frq« is isomorphic to the extension of a centralizer of a
maximal abelian subgroup of the group generated by all the generators
a, x except w.

The epimorphism from Fp ., to the subgroup generated by all the
generators except w is proper.

As a list of cycles ¢y, ..., c, we can take c, (c(z))f where i, j run through
the set of pairs of integers not 5|multaneously equal to zero and i, |j| < 2p
( p is the number of items in Q).

Verify that if h(c, Yh(c{?) =1 in Fge, then i=j=0. Suppose
h(c, Yh(c?PY = 1. Let’ o, be a generator of the group of automorphisms
P, such that oo(h(c, ) = (h(c, ) and  oo(A(c?)) = (hc, Nh(cP)).
Hence (h(c, ))”fh(c(z))/ =1in FR(Q*) and (h(c,)) = 1. This implies
(hlc, ) =1 (because Freo~ 18 torsion-free) unless j = 0. But (i(c, ) # 1;
hence j = 0. In the same way we get i = 0.

Let a solution H of the generalized equation € be periodic with respect
to the period P and (%, R) c%(H, P). Observe that e, = riC, T2, Where
r, and r, are paths in the tree 7. Since e, € I, it follows that the initial
vertex and the terminal vertex of the edge ¢, lie in the same connected
component of the graph I'y and, consequently, are connected by a path s
in the forest T,. Furthermore, r, and sr,;' are paths in the tree T
connectmg the same vertices; therefore, r, = sr,!. Hence, Cop = rzc;orgl,
where ¢/, is a certain cycle in the graph T.

From the equality H(c,) = H(rZ)H(ceO)H(rz)’1 it follows that the
cyclically irreducible words H(c ) and H(c’go) are conjugate, and hence
d(H(c,)) = d(H(c,)) < Zpd(P), since the cycle c, is primitive and for
every unknown h, &% the inequality d(H,) < 2d(P) is true by the
definition of the structure %(H, P).

Without loss of generality we may assume that (V) = AP, where A is
the empty word, so by Lemma 12, H(c,) = P"™, and H(C{?) =W =
P (|n0| < 2P)

If n, = 0, we can take o = 1, H'= H, and the set of cycles {c, }

Let n, + 0, n = tny, + n', and |n'| < 2p. Take as o the power cro of the
generator o, and define the vector H* by the formula 75 = 7gzo. If we
take the cycle ¢ = (¢, )" (¢, then H*(c,) =P", H*(c{) = P",
and H*(c) = 1. The proof of Lemma 13 is complete. 1

LEMMA 14 [19, Lemma 2.11]. Ler Q be a consistent generalized equation
without boundary connections, regular with respect to a periodic structure
(P, R). Then it is possible to effectively construct a group of automorphisms
Py of the group Fg), which is a direct product of a finite number of
canonical groups of automorphisms, so that the following condition is satis-

fied.
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Let H be a solution of the generalized equation (), periodic with respect to a
period P, and {2, Ry = 2(H, P). If the solution H is minimal with respect
to the group of automorphisms P, then for every h, € P the inequality
d(H,) < f,(Q, 2, R)-d(P) holds, where f, is a certain computable function.

Proof. Let T be the graph corresponding to the periodic structure
(P, R), and T,,...,T. its connected components. Let (&, R;) be the
corresponding connected periodic structures. If we were able to prove
Lemma 14 for each of the structures (%, R;) and construct the required
groups of automorphisms P,,..., P, then every solution minimal with
respect to P, = {P,,..., P.) = P, X --- X P, would also be minimal with
respect to all the P,, which would imply Lemma 14 for (%, R). Therefore,
it suffices to restrict ourselves to the case of a connected periodic struc-
ture.

Let ey, ..., e, be all the edges of the graph I" from 7'\ 7. Since T, is
the spanning forest of the graph T, it follows that A(e,), ..., h(e,,) € 2.
Let us choose a basis X, a in the same way as in the proof of the previous
lemma and study in more detail how the unknowns A(e;) (1 <i < m) can
participate in the equations from Q* rewritten in this basis.

If h, does not lie on a closed section from &, or h, €2, but e € T
(where h(e) = hy), then h, belongs to the basis ¥, a and is distinct from
each of h(e,),..., h(e,). Now let h(e) = h,, h, €, and e & T. Since
e € Iy, the vertices (k) and (k + 1) lie in the same connected component
of the graph I'y, and hence are connected by a path s in the forest 7.
Furthermore, r; and sr, ! are paths in the tree T connecting the vertices
(k) and Vj,; consequently, r, =sr,'. Thus, e =sr,%,r, and h, =
h(s)h(r,)~h(c,)h(r,). The unknown h(e,) (1 <i < m) can occur in the
right-hand side of the expression obtained (written in the basis ¥, a)
only in A(r,) and at most once. Moreover, the sign of this occurrence
(if it exists) depends only on the orientation of the edge e; with respect
to the root V, of the tree T. If r, = rye;*'r;, then all the occurrences
of the unknown #A(e;) in the words &, written in the basis X, a, with
h, € 2, are contained in the occurrences of words of the form
h(e) " *h((ry)~tc,ry)h(e)*?, ie., in occurrences of the form
h(e;)) " *h(c)h(e;))*1, where c is a certain cycle of the graph I starting at
the initial vertex of the edge e/ . The system Q* is equivalent to the
following system: we introduce new variables ) = {u, le & T}, z\V =
{z;,,1 <i <m,e & T}and add to Q* equations

Uje =h(r(VO’I/i)_lcer(V0’I/i))’ (22)
h(ei)_luieh(ei) = Zier (23)
=1, (24)

[uie1 uzcz



IRREDUCIBLE AFFINE VARIETIES 549

where e runs over the list of edges not belonging to 7' and i is fixed.
Because h(e;) does not belong to the right part of (22), we can rewrite Q*
in the form ¢ ®(x, 2, @) = 1, such that h(e,) does not occur in @,
Include now all the variables except /(e;) into the list Z and also all the
variables ") except some fixed u,, . Let ¢ consist of the equations ¢®
and those equations (22), (24) which do not contain this u;, . 6 consists of
(23) and the rest of (22), and (24).

We write u = u,, , w = h(e), Uy = h(r(Vo, V)" e r(Vo, V), Uy = z,,,
and let pairs <U, V') be pairs {u,,, z;,) (e # ep).

Then we have a presentation

wltuw = Uy(z,a), u=1U, (25)
and several pairs
w lUw =V, [u,U] = 1. (26)

Canonical automorphisms have the form u — u, w - u'w.

Now let H be a solution of the generalized equation Q periodic with
respect to some period P, (£, R) a connected component of the structure
2(H, P), and let the solution H be minimal with respect to the group of
automorphisms P,. Without loss of generality, we can assume that §(1;)
= AP. Then, by Lemma 12, there is a homomorphism +y: Z — Z such that
for every cycle ¢ € (T, V) the condition H(c) = P holds. Let us first
verify that if for some variable h, €»

d(H,) = 2p%d(P), (27)

then y(Z) contains a certain n such that 1 < n < 2p (p is the number of
unknowns in the equation Q).
To verify this, let us construct a chain

(Q,ﬁ) — (QO,E(O)) - (Qllﬁ(l)) NN (Q“ﬁ(z))’ (28)

in which every term is obtained from the previous one by extending a
certain boundary through a certain base u €% with the help of the (E5)
transformation. The construction of the chain (28) terminates when all
boundaries intersecting bases from £ turn out to be extended through
these bases. Let () be the equation obtained from (), by deleting all
boundary connections. It is obvious that the solution H® of the equation
Q) is periodic with respect to the period P. Denote by (&, R;) the
perlodlc structure 2(H®, P) of the equation ()} restricted to the closed
sections of 2, and by T, Z®) . the correspondlng graph, abelian group
of cycles and homomorphism Z(” — Z, respectively.



550 KHARLAMPOVICH AND MYASNIKOV

If (P, u, q> (n €P)is a boundary connection of the equation Q; (1 <
i <t), then 8(p) = 8(q); therefore, all the graphs I'®, T® ... T® have
the same set of vertices, whose cardinality does not exceed p. The solution
H® of the equation Q, is minimal with respect to the trivial group of
automorphisms. Suppose that for some unknown £, lying on a closed
section from 2 the inequality d(H("”) > 2d(P) holds. In the vector H®,
replace all the components that are graphically equal to (H”)*! and
correspond to the unknowns lying on the closed sections from 2, by a
letter u** of the alphabet =, not participating in the solution H®. The
resulting vector obviously satisfies the conditions of nonemptiness and
irreducibility. It satisfies all basic equations of the generalized equation (2,
with numbers pu € % and all the corresponding boundary equations, since
in the equation (2, all the boundaries from % are extended through all
possible boundaries. If, on the other hand, u & .2, then for every unknown
h, € n of the equation Q lying on a closed section from 2, we have
h, &2 and, consequently, d(H,) < 2d(P). In particular, this inequality
holds for the unknowns #, € u of the equation (),; therefore, such
unknowns have not been replaced in the vector H”. Consequently, the
vector constructed is a solution to the equation (2,, which contradicts the
minimality of the solution H®.

Thus we have established the fact that d(H ") < 2d(P), if h, lies on a
closed section from 2. In particular, the unknown #, of the equation
for which inequality (27) holds was divided during the transition to the
equation , into at least p distinct unknowns. Since the graph T'”
contains at most p vertices, in the equation (), we can choose boundaries
[ and I’ such that [ <I', (1) = ("), and I' — [ < p. The word A[l,I'] is a
label of a cycle ¢, of the graph T'” for which 0 < d(H(c,)) < 2pd(P), i.e.,
y(Z(’)) contains a number n with the property 1 <n < 2p. By 7;; (0 <i
<j <t) we denote from now on the homomorphism G(QF) — G(Q*)
defined by the sequence (28). It remains to prove the existence of a cycle
¢, of the graph T for which 7, (h(c,)) = h(c)).

To do this, it suffices to show that for every path r, . ;: V— V' in the
graph TU*D there exists a path r;: V- V' in the graph T'” such that
;v 1(h(r)) = h(r; ). In turn, it sufflces to verify the latter statement for
the case where r;,, is the edge e. If the unknown h(e) of the equation
Q,;., is also an unknown of the equation (), then this is obvious.
Otherwise one should use the formulas

mba(h) = h[a(A( ), q] "hla(w), pl,

m bR = hla(r), p] "hle(A(R)),q + 1],
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defining the inverse isomorphism to =, ;. ,, and notice that the right-hand
sides of these formulas are labels of paths in ', since (a(w)) =
(a(ACw))). -

Thus, we have deduced from (27) that y(Z) is a nonzero subgroup in Z
whose generator n, satisfies the inequality |ny| < 2 p. Assume first that, let
rk(A ® Q) = 1. Then the regularity of the equation Q implies that for all
e & T with h(e) €2 we have H(c,) =1, ie, y(¢,) = 0. Since H is a
solution, it follows that_y(b,) = 0 (u €2). Therefore, y(B) = 0. By
(2.54) we obtain that y(Z,) = 0 and, consequently, y(Z) is generated by
the single element y(¢{?). Therefore, |y(¢{?)| < 2p. By the representation
(15), one can effectively construct an expression ¢, = n,c? + 2z (ZV €
Z,) of the elements ¢, (e & T) in terms of the basis elements. Hence
ly(@)l = |n,y(T®)| < 2pn,, and we finally obtain

7 (2.) <8(Q, 2. R), (29)

where g, is a computable function. L

Now let us analyze the case rk(4 ® Q) =0, i.e,, Z =Z,. As we have
already seen in the proof of Lemma 13, the cycle ¢, (e & T, h(e) & P) is
conjugate to a certain cycle of the graph T, and d(H(c,)) < 2pd(P).
Hence, |y(Z,)| < 2p for h(e) & . Because (Z: B) < «, for every e, & T
one can effectively construct a valid equality of the form rzeo'c“eD =

iy » M.C, + X, e p n,b,, which implies

|7('c"eo)| < |V(neo'é'eo)| < Y Iny(@)l<2p- Y In,l
h(e)EP h(e)EP
Thus, in this case we have also demonstrated the estimate (29) for a
certain computable function g,.
Let 6((k)) = P{FP{¥. Denote by t(c, h,) the number of occurrences of
the edge with label /4, in the cycle ¢, calculated taking into account the
orientation. Finally, let

H, = PYOP™PE+D (30)

(h, lies on a closed section from ), where the equality in (30) is graphic
whenever i, € 2. Direct calculations show that

H(C) — PZkt(c,hk)(n,(Jrl). (31)
Since y(Z) # 0, eo & T can be chosen in such a way that y(c, ) # 0. Let
ni = ly(c,lm; + r,, where 0 <r, <|y(c, )l. Equation (31) implies that
the vector {m|h, €%} is a solution to the following system of Diophan-
tine equations in variables {z,|h, € %}:

Y (e h)(Iv(E,)lze +re + 1) + X (e, ) (n + 1) = ¥(E,)
h P h &P

(e T). (32)
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Note that the number of unknowns and coefficients of the system (32) are
bounded from above (this follows from (29), the simplicity of the cycles c,,
and the inequality |n,| < 2p (h, &.9)) by a certain computable function
of ), &, and R.

A solution {m,} of a system of linear Diophantine equations is called
minimal [14], if m, > 0 and there is no other solution {m;} such that
0 <m; <m, forall k, and that at least one of the inequalities m; < m,
is strict. Let us verify that the solution {m,|h, €.} of the system (32) is
minimal.

Indeed, let {m;} be another solution to the system (32) such that
0 < m; < m, for all k, and at least for one k the inequality is strict. Let

= ly(c,)Im; + r,. Form a vector H*, putting H = H, if h, €2,
and Hf = Ppripk+v if <. Since the words H; and Hk start
(and end) W|th the same letter, it follows that

T(H") =T(H). (33)

Obviously, the vector H* satisfies all the coefficient equations and the
basic equations with numbers w & . Since {m;’} is a solution of the
system (32), H*(c,) = P" = H(c,). Therefore, for every cycle ¢ we have
H*(c) = H(c) and, in particular, H*(b ) = H(b,) = 1. Thus the vector
H* is a solution of the system Q.

The vector H* satisfies the condition of nonemptiness, and by (33) it
also satisfies the condition of irreducibility. Since for every w it is true that

H* [a(p), B(w)]H [a(A(n)). B(A(m)] " =

and the words H*[a(w), B(w)], H [ a(A(w)), B(A(w))] are irreducible;
it follows that H*[a( ), B(w)] = H [a(A( ), B(A(w))]. Thus, H is a
solution to the generalized equation ().

Denote by 6, the generator of the group of automorphisms P,
constructed above In the basis X, a the map §;, acts in the following Way

e 1(e) = h(r(Vy, V)" c 0r(VO,V))h(e) (the other unknowns remain
unchanged) Therefore, if 77 = 778, and h(e;) = h, €2, then H; =
P{OPrty@pktD and all the other components of H' (in the basis ¥, 2)
are the same as in H. Denote & = [17, 62!, where h(e,) = hy, Ay = (my

IE’

— my ) - sgn(y(€p)). Let us verify the equallty
Tg+= 77175. (34)

Let w78 = mzo. Then, by construction, H® = P{Op™i pk+b = [
for all &, that are labels of edges from T\ T,. If the edge with label #,
lies in T}, or h, does not lie on a closed section from &, then h;, & % and
HY = H, = H". Finally, note that for every e & T, H"(c,) = H(c,) =
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H*(c,). Since cx, = ryer,, Where ry,r, are paths in the tree T, and for
every unknown #h, which is a label of an edge from T, the equality
H = H;" has already been established, it follows that H®(e) = H*(e).
This proves (34).

From (33) and (34) it follows that H* <p, H, which contradicts the
minimality of the solution H with respect to the group P,. Consequently,
the solution {m,|h, € %} of the system of linear Diophantine equations
(32) is minimal.

Lemma 1.1 from [14] states that the components of the minimal solution
{m,lh, €2} can be bounded from above by a recursive function depend-
ing on the parameters of the system. Since the parameters of the system
(32), as was mentioned earlier, are bounded from above by a computable
function depending on Q, £, and R, we have the estimate m, <
g,(Q, 2, R). The conclusion of Lemma 14 holds if we put

£(Q, 2 R)=g,(0,2, R)2p+1). 1

7. CONSTRUCTION OF T,(Q)

We assign to some vertices v of the tree T({) the groups of automor-
phisms of groups F ). We also assign for some paths v — w homomor-
phisms from Fp o) into Fg )« Where s, is some system of equations
over Fygx, With a solution in Fp o« and s, = Q.

For each vertex v such that p(v) = 14, s, and s, are defined as in
Case 14.

For each vertex v such that 7 < p(v) < 10 we assign the group of
automorphisms invariant with respect to the kernel; in this case s, is an
empty system over Fy o).

For each vertex v such that sp(v) = 15 and the transformation of Case
14 is not applicable (because it gives an isomorphism 7: Fygx) = Fp(g))
systems s, and s, are those that are defined in the description of Case 14.
Take the group P described in Case 14 as the group of automorphisms of
Fpqax) assigned to v.

For each vertex v such that #p(v) = 15, and there are outcoming
auxiliary edges from v, assign a group generated by the groups of automor-
phisms constructed in Lemma 14 that applied to ), and all possible
periodic structures of this equation with respect to which €, is regular.
For each periodic structure {%., R;) there is a natural homomorphism of
the group Fp o, into a free extension of a centralizer of the element
U, € Fgeox, from Eq. (25), sending w into a minimal solution w, of Q,
with respect to the automorphism group P; of Fg o« from Lemma 14.
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Let tp(v) = 2. Equation Q, will be called nontrivial, if it has a closed
section containing at least one base and not containing variables from the
coefficient equations. From the construction it follows that (2, is nontriv-
ial if and only if the path from v, to v contains an auxiliary edge,
corresponding to the Case 15.1. If all the auxiliary edges correspond to the
Cases 4,5, then the equation Q, is trivial.

LemmA 15 [19, Lemma 3.3]. Let v, 2 v, = =+ = v, — -+ be an
infinite path in the tree T(Q), and 7 < tp(v,) < 10 for all k. Then among
{Q,} some generalized equation occurs infinitely many times. If Q, = Q,,
then 7(v,,v,) is an isomorphism invariant with respect to the kernel.

Proof. By Lemma 10, 7, < 71 and v, < v} for all k. Hence, we can
suppose 7, = 7; and v, = v; for all k. These equalities imply that all the
transformations (E5) introduce a new boundary.

_ For all_k, Ker({, ) have the same bases. Indeed, consider equations
Q, and Q, . Because we do not have Cases 3,4, the working part of
does not contain coefficient equations. _

If tp(v,) =7,8,10, then O, can be obtained from (, by cutting
some u eliminable in Q and then by deletion of one of the new bases
(which is also ellmlnable by item (a)) in the definition of the eliminable
base. But the rest of the base w will also be eliminable by item (b). So the
set of bases from the kernel does not change.

_ Let tp(v,) = 9. By similar reasoning one can show that all the bases of
Q,, ., obtained from u, by cutting do not belong to the kernel. If we cut

v

bases p; and p, in all boundaries that are continued in the equation Q,

through both these bases, then we can suppose that the section [}, j,]
does not contain closed boundaries of the equation Q s, hence is closed in
this equation. Construct some sequence (7) for the equation Q and take
the first equation (};, such that one of the bases obtained by cuttlng from
My Moy Ay, A, 1S eliminated in this equation. Denote it by v. This base
v cannot be obtained from w,, u,. In addition, if » is eliminable in the
equation Q; using item (b), then either a(v) € {a(A( ), a(A(u,))} or
B(v) € { B(A(uy)), B(A(u,))}. We can start the construction of the se-
quence (7) for ﬁ _ by deletion of the same first i bases as was done for

ﬁL,A. Then some base v' obtained by cutting from pu,, A( ,uz) of the
equation €,  will become eliminable. But after deletion of »' one can
subsequently delete all the other bases obtained from w, by cutting, using
item (b) of the definition since all the boundaries, touching these bases

(except a( w,), B(w,)) were not continued through A(uy) in the equation

), , and hence do not touch any other bases of Q . So, all the bases of
equatlon Q ,» obtained from u, do not belong to ‘the kernel.
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We have shown that the number of bases is the same in all the
equations Ker(QL.k). We denote this number by »n". We will now prove the
inequality

n, <37 +6n" + 1. (35)
Indeed, if k& is the first number for which it fails, then
n,_, <3t +6n" +1, n, > 37" +6n" + 1. (36)

By Lemma 10, #p(v,_,) = 10. Hence we cannot apply transformations of
Cases 5-9 to the equation , . Hence every working section of
either contains at least three bases or contains some base of the equatlon
Ker(Q D Hence uk L+ Wi, <3n,_,+n" and by (10), 7' =n,_
2w}€_1 uk . = 31, _, — 2n", which contradicts (36). Now (10) and (35)
imply that ) + w, <n), <37 +6n"+1and p, < v, +u} +w, +1<
37’ + 6n" + v' + 2. Hence the set {Q, |k € N} is finite and some gener-
alized equation occurs in this set |nf|n|tely many times.

Let now Q, = Q, Ker(Q ,,) is obtained from Ker(Q ) by cutting
some variables and deletlon of some variables not belonglng to Ker(Q ).
So the number of variables belonging to the bases and coefficient equa-
tions of Ker(Q) can only increase, but Q, = ; hence this number is
the same for all the vertices v,,v, 4, .. u, Thus (v, v,)(h;) = h; for
any such variable. |

Let the tree T,(Q)) be obtained from 7(Q) by replacing the infinite path
in 7(Q) corresponding to the case 7 < p(v,) < 10 by a finite initial
subpath r such that every generalized equation with p variables in the set
{Q, } occurs in r not more than once. For each vertex v in r assign an
extra edge v — w, where Q,, = (Q,), is the kernel of Q, (see Lemma 7).
Then for w we have Case 1.

Introduce the new parameter

no_ 1 o
™ =T + P Py

where p is the number of variables in the initial equation (1, p; the
number of variables belonging to the constant sections of the equation €,
We have p) < p, hence 7/ > 0. In addition if v, — v, is an auxiliary edge,
then 75 < 77.

Define by the joint induction on 7’ a finite subtree T,(Q,) and a
natural number s(Q,). The tree T,(Q,) will have v as a root and consist of
some vertices and edges of 7,(Q)) that lie higher than v. Let 7, = 0; then
in T,(Q) there cannot be auxiliary edges and vertices of type 15 higher
than v. Hence a subtree T,(Q,) consisting of vertices of 7,(Q,) that are
higher than v is finite.
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Let now
s(Q,) = max,, maX, , gy P, (2, Z#, R), (37)

where w runs through all the vertices of T,, for which sp(w) = 2and Q, is

nontrivial, (., R) is the set of periodic structures of the equation ﬁw,
such that Q, is regular with respect to (%, R), and f, is a function
appearing in Lemma 14.

Suppose now that 7 > 0 and that for all v, with 7/ <] the tree
To(Q,) and the number s(Q),) are already defined. We begin with the
consideration of the paths

T=0, 0, > vt DU, (38)
where tp(v;) = 15 (1 <i < m). We have 7 = 7/
Denote by u, the carrier base of the equatlon Q . The path (38) will be

called u-reducing if w, = w and either there are no auxiliary edges from

the vertex v, and w occurs in the sequence u,..., u,,_, at least twice, or
there are auxiliary edges v, = wy,v, = w,...,v, = w, from v, and u
occurs in the sequence u,,..., u, _, at least max1<,<k s(Q,, ) times.

The path (38) will be called prohibited, if it can be represented in the
form

F=r8; o rsr, (39)

such that for some sequence of bases m,,...,m, the following three
properties hold:

(1) every base occurring at least once in the sequence wy,..., &, _;
occurs at least 40n% + 20n + 1 times in the sequence 7, ..., n,, where n
is the number of pairs of bases in €, ;

(2) the path r; is m-reducing;

(3) every transfer base of some equation of path r is a transfer base
of some equation of path r’.

The property of path (38) of being prohibited is algorithmically decidable.
Every infinite path (38) contains a prohibited subpath. Indeed, let o be
the set of all bases occurring in the sequence w,,...,u,,, ... infinitely
many times, and o the set of all bases, that are carrier bases of infinitely
many equations (2, . If one cuts out some finite part in the beginning of
this infinite path, one can suppose that all the bases in the sequence
i, -y s - - DElONG to @ and each base that is a carrier base of at least
one equation, belongs to w. Such an infinite path for any u € @ contains
infinitely many non-intersecting u-reducing finite subpaths. Hence it is
possible to construct a subpath (39) of this path, satisfying the first two
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conditions in the definition of a prohibited subpath. Making r’ longer one
obtains a prohibited subpath.

Let T,(Q,) be a subtree of T,(Q,) consisting of the vertices v, for
which the path from v to v, in T(Q) contains neither prohibited subpaths
nor vertices v, with 7 < 7/, except perhaps v,. So the terminal vertices of
T,(Q,) are elther vertices v, such that 77 < 7/, or terminal vertices of
T,(Q,). A subtree T,(Q,) can be effectlvely constructed. T,(Q,) is ob-
tained by attaching 7,((2, ) (already constructed by the induction hypothe-
sis) to those terminal vertices v, of T,(Q,) for which 7/ < 7. The
function s(Q,) is defined by (37). Let now T, (Q) To(2, ).

Notice that if (p(v) > 6and v > w,,...,v > w,, is the list of principal
outgoing edges from v, then the generalized equations Q... Q, are
obtained from Q, by the application of several elementary transforma-
tions. Denote by ¢ a function that assigns a pair (Q,, H(i)) to the pair
(Q,, H). For tp(v) = 4,5 this function is identical.

If tp(v) = 15 and there are auxiliary edges from the vertex v, then the
carrier base w of the equation ), intersects A( w). For any solution H of
the equation (), one can construct a solution I7’_of the equation (. by
H, ., = H[1, B(A(w)] Let e'(Q,, H) = e(Q,,, H").

Let H be a solution of the equation Q with quadratic part [1,j + 1].
Define the numbers

ay(H) = L d(H), (40)
d(H) = T d(H[a(m), B(w)]). (41)

where w is a constant base.

LEMMA 16. If in Case 14, m: Fgox) = Fg(y,_is an isomorphism, then
for any solution H of (), there is another solution H*, which is an automor-
phic image of H with respect to the canonical group of automorphtsms defined
in the beginning of this section, such that

di(H") <d,(H").

Proof. If & is an isomorphism, then every base (except one constant
base) in the quadratic part can be transferred to the nonquadratic working
part with the use of some constant base as a carrier base. This means that
the length of the transferred base is equal to the length of the part of the
constant carrier base, which will then be deleted. |
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LEMMA 17.  For any solution H of a generalized equation ) there exists a
path vy = v, = -+ v, = winto a terminal vertex w of the tree Ty({)) having
type 1 or 2, and a solution H™ of a generalized equation Q,, such that

1) 75 = mwgwma, - oym(vy, v)) oy, where  is an endomorphism of
a free group and o, is an automorphism in the canonical group of automor-
phisms ofFR(Q:Z).

(2) If p(w) = 2 and the equation Q,, is nontrivial, then there exists a
primitive cyclically reduced word P such that H" is periodic with respect to P
and the equation (), is singular with respect to the periodic structure P(H", P).

(3) Let s,; be a linear or quadratic equation corresponding to the
edge v, = v;,, described in the beginning of Section 6, and FR(m+1
Fr(sy) Then there is a natural homomorphism v,: Frias —

R(s10 U 11U - s100— 1, U o= U Foy 18 the factor-group of Fp g over the inter-
section of the kernels of all the homomorphisms from Fpg. into Fpqx)
corresponding to the path in T,(Q) from v, to w, then the induced homomor-

L N Ui .
phism y: E, = Freo Ui, U sy U san_y)* 1S @ monomorphism.

Proof. Construct a sequence
(Q,H) = (Qvo,ﬁ(m) N (Qvl,ﬁ(l)) S e (QU“,E(M)) S e (42)

in which the v, are the vertices of the tree T(Q) in the following way. Let
v, = v, and let H® be some minimal solution of the equation Q with the
property H > H®. If tp(v;) = 15 and there are auxiliary edges from vertex
vl U = Wy, ..., 0; > w, (the carrier base w intersects with its double
A( ) and there exists a primitive word P such that

H(i)[l,ﬁ(A( M))] =P'Py, P=PP,,r>=max,_;_, S(ij) (43)

(note that in such a case Q is not regular with respect to a periodic
structure (%, R) —<9?’(H(’) P)), then we set (Q, ,H(™V) =

e'(Q,,, H?). In all of the other cases we set (0, , H*Y) =e(Q,, H?)
and H(’*l) is a minimal solution of , with respect to the canonical
group of automorphisms assigned to U . The sequence (42) ends if
p(v;) < 2.

We will show that in the sequence (42), v; € To(Q). It can be proved by
induction on ¢ — p that for p <g solutions H®” and H“ in the
sequence (42) are connected by the equation

771-7(”) = 7T7TI-7<‘1>0-q7T(Uq—l'Uq)o-q—2 W(Up’up+l)o-p' (44)
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Suppose v; & T,(Q), and let i, be the first of such numbers. It follows
from the construction of T,(Q)) that there exists i; < i, such that the path
from v, into v, contains a subpath prohibited in the construction of
T,(Q, ) From the minimality of i, it follows that this subpath goes from
v; (11<12<10)t0 v;,- SO tp(v;) = 15 (i, <i < iy).

Suppose we have a subpath (38) corresponding to the fragment

(Qvl,ﬁ(l)) N (QUZ’ ﬁ(z)) - . (Q H(’")) (45)

of the sequence (42). Here vy, v,,...,v,,_, are vertices of the tree T,(Q),
and for all vertices v; having outcoming auxiliary edges condition (43) does
not hold.

As before, let u,; denote the carrier base of Q, ={ g ey My 1),
and @ denote the set of such bases which are transfer bases for at least
one equation in (45). By w, denote the set of such bases u for which
either u or A( ) belongs to w U @; by w, denote the set of all the other
bases. Let

a(w) =min(min,_, a(p),Jj),

where j is the boundary between working and constant sections. Let
X, =Hla(w), B(w] If (Q,H) is a member of sequence (45), then
denote

a(w)—1
4,(H)= T d(H). (46)
v (H) = X d(X,) - 2d,(H). (47)

Every item &, of the section [1, a(w)] belongs to at least two bases, and
both bases are in w;, hence i, (H) > 0.

Consider the quadratic part of Q which is situated to the left of a(w).
If we apply the transformation of Case 14 to this part, we will get an
isomorphism at the end. The solution H® is minimal with respect to the
canonical group of automorphisms corresponding to this vertex. By Lemma
16 we have

d(HY) < d)(HY). (48)

Using this inequality estimate d(H®) from above.
Denote by y,(w) the number of bases i € w, containing %,. Then

T d(X0) = ¥ d(HO)y (o). (49)

ME wq i=1
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Let I={il<i<alw)—1&y,=2}and J={il<i<alw) —1&y,
> 2}. By (46)

dy(HD) = ¥ d(H®) + ¥ d(H®) = d(AY) + ¥ d(HD). (50)

iel ieJ ieJ

Let (A, A(A)) be a pair of constant bases of the equation ﬁvl, where A
belongs to the nonquadratic part. This pair can only appear from the bases
M € w,. There are two types of constant bases.

Type 1. A is situated to the left of the boundary a(w). Then A is
formed by items {4,|i € J} and hence d(X,) < ¥, ; d(H"). Thus the sum
of the lengths d(X,) + d(X,,,) for constant bases of this type is not more
than 2n’ X, , d(H®).

Type 2. A is situated to the right of the boundary a(w). The sum of
length of the constant bases of the second type is not more than
250 0y AHD)y (o).

i=a(w)

We have

_ P

d,(HV) <2n' ), d(HP) +2 Y, d(H®)y(w). (51)
iel i=a(w)
Now (47) and (49) imply
_ p

U, (HP) = Y d(HY) + X d(HD)y(w). (52)

iel i=a(w)

Inequalities (48), (50), (51), (52) imply
d,(HY) < y,(HY)(2n' +1). (53)

From the definition of Case 15 it follows that all the words H[1, p; + 1]
are the ends of the word H®[1, p, + 1], that is,

HOL, p, + 1] = GHO[L, p, + 1], (54)
On the other hand bases u € w, participate in these transformations
neither as carrier bases nor as transfer bases; hence H Y[ a(w), p; + 1] is

the end of the word H[1, p;, + 1], that is,

HOL, p, + 1] = V;HO[a(w), py + 1]. (55)
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So we have
d,(H?) —d,(H"Y) =d(V;) = d(Vi;,) =d(U,,) - d(U)
= a(x() - (x5 (56)

In_particular (47), (56) imply that y,(H®Y) = y(H®) = - =
Y, (H™) = . Denote the number (56) by §;.

Let the path (38) be u-reducing, that is, either u; = p and v, does not
have auxiliary edges and w occurs in the sequence u,,..., &, _, at least
twice, or v, does have auxiliary edges v, — w,,...v, = w, and the base
occurs in the sequence My eeny Mg at Ieast max,; _; ., s(€2,,) times.
Estimate d(U,) = X",' 8, from below. First notice that if Mi, = Mi, =
p(ip <iyand w; # u for i; <i<1i, then

i—1
Z Sizd(H11+l[1,a(A( /"Li1+l))])' (57)
Indeed, if i, =i, + 1, then § = d(H®™[1, a(A(w)] = d(H"*Y
[1, a(ACw)] If i, > i + 1, then g, ., # pand u is a transfer base in the
equation O, . Hence &, ., + d(H [, a(w))) = d(H @D
[1, aCp; o DD Now (57) follows from
i—1
Z 8 > d(H(i1+2)[1, a( M)])
i=ig+2
So if v, does not have outgoing auxiliary edges, that is, the bases u, and
A( ;) do not intersect in the equation Q,, , then (57) implies that
m—1
Y 8= d(HP[L a(Apy)]) = d(X2) = d(XP) = d(XP) - 5.,
i=1
which implies that
1 1
Z @
> > d(x»). (58)

Z p

Suppose now there are outgoing auxiliary edges from the vertex v,:
Uy > Wy,...,Up > W, The equation €, has some solution. Let
H[1, a(A(w,))] = Q, and P a primitive word (in the final #’s) such that
Q = P*. Then X and X? are beginnings of the word H®[1, B(A(,))],
which is a beginning of P”. By the construction of (42), relation (43) does
not hold for v,; hence

XPEPR, PERRL < o(0,) (9)
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Let w; = pm;, = p; iy <ip; p; # pforip <i <ip. If
d(X (D) = 2d(P) (60)

and H"*Y[1, p, ., + 1] begins with a cyclic permutation of P° then
d(H O[T, a(A( wi,+ 1)) = d(P). Together with (57) this gives Ljz;! 6, >
d(P). The base u occurs in the sequence g, ..., i, 1 at Ieast
max, ., ., s({2,,) times, so either (60) fails for some iy, <m — 1 or
rrnats > (r — 3)d(P).

If (60) fails, then the inequality d(X{*") <d(X['*Y), the definition
(56), and (59) imply that

Y 8= d(X®P) —d(xP) = (r - 2)d(P);

Mig+1

so everything is reduced to the second case.
Let

m—1

Y. 8 = (r—23)d(P).

i=1

Notice that (57) implies for i; = 1, ¥7"' 8, > d(Q) > d(P); so X"71 8, >
d(P)max{l, r — 3}. Together with (59) this implies X' 8, > d(X?)
= :(d(X) - 5,). Finally,

i w0d(X,P). (61)

Comparing (58) and (61) we can see that for the u-reducing path (38)
inequality (61) always holds.

Suppose now that the path (38) is prohibited; hence it can be repre-
sented in the form (39). From definition (47) we have © . d(X“")) > ,;
so at least for one base u € w, the inequality d(X“'”) > (1/2n)¢p holds.
Because X" = (X{{))**, we can suppose that BE WU o. Let m, be
the length of the path r;s, ==~ r;s; in (39). If w € @ then by the third part
of the definition of a prohibited path there exists m; <i < m such that u
is a transfer base of 0, . Hence, d(X")) > d(X") > d(X") > d(X™)
>A/2m)y,. If pe w, then take u instead of J We proved the
existence of a base u € w such that

d(x") = i¢, : (62)
® ) ®

n
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By the definition of a prohibited path, the inequality d(X,ﬁ”) > d(x") (1
<i < my), (61), and (62) we obtain

m-—1 1
Y 5> max{—lpw,l}(40n2 +20n + 1). (63)
-1 20n

By (56) the sum in the left part of the inequality (63) equals d,(H ") —
d,(H); hence

— 1
d,(HY) > max{f%, 1}(40112 + 20n + 1),
n

which contradicts (53).

This contradiction was obtained from the supposition that there are
prohibited paths (45) in the sequence (42). Hence (42) does not contain
prohibited paths. This implies that v, € T,(Q) for all v; in (42). For all i,
v; = v;,, is an edge of a finite tree. Hence the sequence (42) is finite. Let

(Q,,, H") be the final term of this sequence. We show that (Q,, H")
satisfies all the properties formulated in the lemma.

The first property follows from (44).

Let ip(w) = 2 and let Q,, be nontrivial. It follows from the construction
of (42) that if [j, k] is a constant section for Q, then H®[j k] =
HU Y[ k] = -+ = H™)[j, k]. Hence (43) and the definition of s({,)
imply that the word h; --- h, can be subdivided into subwords
hliy,i,),..., hli,_,,i,], such that for any a either H™ has length 1, or
hli, i,,,] does not participate in basic and coefficient equations, or
H"Xi, i,,,]can be written as

H(W)[ia’ia+l] = ParPa,; Pa = P;Pz;/;r = maX(@,ﬂ)ﬂwa(Qw’P’R)’
(64)

where P, is a_primitive word, and (%, R) runs through all the periodic
structures of (), for which €, is regular. Then for a maximal such P,, Q,
is singular, because if it were regular we would have /4, such that
d(H™) > f,(Q,,, P, R). This contradicts the minimality of H™.

The third assertion of the lemma follows by induction from the first and
second assertions, by Lemma 9, and the fact that automorphisms corre-
sponding to Eq. (26) have the form u — u, w - u'w. Thus Lemma 17 is
proved. |
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8. TREE T,(Q)

Let w be the terminal vertex of T,(Q), such that ip(w) = 2 and Q,,
nontrivial. Let {2, R) be a periodic structure such that Q is smgular
and let ¢ be a cycle in T'. There is a homomorphism ¢ from the group
Fra,y In the free extension of a centralizer of the group Fg gy j(c)-1) DY
the element y, where h(c) = h; -+ h; is the label of the cycle from the
set {c,..., ¢} from Lemma 13. Denote by Q, a generalized equation for
the subequation consisting of bases in & and equation h; -+ h, = 1.
Denote the new variables by z. Let the generalized equation Q be
obtained from () by deleting all the bases and variables in . Consider
these two generalized equations ., and Q together on the disjoint sets of
variables. Add the following basic equations: &, = 77 (h,)h, &%), where
the &, in the left side is considered as a variable in _L,, and in the right
side as some section of the generalized equation ;. Denote it by
Q. (%, R, c,T). The homomorphism ¢ induces a homomorphism ¢ from
the group Fr, , in the free extension of a centralizer of the group
Fra, 2 R e, Ty Denote by FR(Q y the factor-group of Fg, ). over the
intersection of the kernels of all the homomorphisms from FR(QW)* into
Frea,(# r.c,Ty~ Which can be obtained as a composition of o € P, and
T+ (Lemma 13). Then ¢ is monic on FR 0,

Add the corresponding edge to the tree T (Q) and denote by T,(Q)) the
tree obtained by using this procedure on each final vertex w of T,(Q),
such that ip(w) = 2 and Q,, is nontrivial. So if w’ (corresponding to the
edge w — w’) is a final vertex of T,(Q), which is not the vertex of T,(Q)
then 7 (vy, w) is not an isomorphism. Finally glue 75(Q),,) to those final
vertices w of T,(Q), for which Q,, is nontrivial, and iterate this process.
Finally we get 7,(Q)). By Lemma 3 it does not contain infinite branches; so
it is finite. The construction of 7,(Q) is effective.

9. THE PROOF OF THEOREMS 2 AND 3

We shall first prove Theorem 3. Consider an irreducible system S = 1.
By Lemma 5, Fp, can be approximated by the homomorphisms in only
one Razborov’s fundamental sequence, corresponding to some path in
T(Q), vy = vy > vy > - Uty = W1 U U 7 "0 Upyy, =Wy "o
Wy1 = Upg = Upp = * D where w;_ , is the terminal vertex of type
2 for the tree T4(w,).

Let §;; be a quadratic equation from the beginning of Section 7

corresponding to the vertex v;; (in case j = n,; S,, corresponds to the

m,l’lm’
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extension of a centralizer). Denote by F, . the factor-group of
Frea, o over the intersection of the kernels of all the homomorphisms
from FR((Q ) into Frq, B corresponding to this sequence. The group
Fra, B is free. It follows from Lemma 17 that F,, .. . isembedded
into FR(S U-US . But Fg, is embedded into F/ O hence Fpg s,
is embedded into Fy ...y S " The system S, U ---U S, s trian-
gular quasi-quadratic.

To prove Theorem 2 we have to follow the process described for the
irreducible system in the proof of Theorem 3. Instead of one branch of the
tree T,(Q) we will have several branches. The construction of T,(]) is
effective, hence this process is effective.

L0

"’”m—l

10. THE PROOF OF THEOREMS 6, 5 AND
COROLLARIES 2-5,6

Proof of Corollary 2. Let G be a finitely generated residually free
group, and (X, S) be a finitely generated presentation for G. Let F =
F(A) be a nonabelian free group with some basis A4 disjoint with X. We
can think of § as a system of equations § =1 over F. The group
FIX]/S =(F+«F(X)IS(X)=1) = F«G is approximated in F by F-
homomorphisms; hence R(S) = ncl(S) and F «G = F[X]/R(S). Thus G
is a free factor of the affine coordinate group Fy ). The variety V() is a
finite union of its irreducible components V(S) = V(Sl) U - U K(S,).
This implies that Fy, is embedded into Fg ) X == X Fg(s ), and each
group FR(Q) is fully residually free. By the theorem, G is embedded into
FAx] % ... w F4x] |

Proof of Theorem 5. Let F = F(A) be a free group, and S(X) be a
system of equations over F which determines an irreducible variety over
F. Then Fp s = F(A U X)/R(S) is a fully residually free group; hence it
is finitely presented. So there are finitely many relations r(A4 U X),
i=1,...,n,such that R(S) = ncl(r,,...,r,). The system S’ = {r,,...,r,}
is equivalent to S and satisfies the Nullstellensatz. ||

Remark. There exists a variety V' (reducible) which cannot be defined
by a finite system satisfying Nullstellensatz.

Indeed, this follows from the existence of finitely generated residually
free and not finitely presented groups.
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Proof of Theorem 6. Let £(X) be a graph of groups.

(1) X is a connected graph;

(2) For every vertex v of X and every edge e groups G, and G, are
defined such that G, = G, (here e is the inverse edge for e);

(3) For every edge e € X, G, < G,,, and there exists a monomor-

eo’!

phism 7: G, = G,_(here eo and er are initial and terminal vertices of e).

The fundamental group =,(£(X)) of a graph of groups £(X) is defined as
follows. Let T be a maximal subtree of X. Then

m(Z(X)) = {(*rcvx)G,) t(e € E(X))lt, = 1(e € T),

t.'gt, =g.(8 €G,), t,t; =1).

It is known that 7 (£(X)) is independent (up to isomorphism) of T.
The group 7,(£(X)) can be obtained from the vertex groups by a tree
product with amalgamation and then by HNN-extensions. Subgroups of
7,(Z(X)) are again fundamental groups of some special graphs of groups
related to £2(X). 1

THEOREM 8 [6]. Let £(X) be a graph of groups, and let H < 7,(Z(X)).
Then H = 1 (Z(Y)) where the vertex groups of (£(Y)) are H N gG, g™ for
all vertices v € X, and g runs over a suitable set of (H,G,) double coset
representatives, and the edge groups are H N gG,g~ ' for all edges e € X,
where g runs over a suitable set of (H, G,) double coset representatives.

Let G be obtained as a union of the finite chain,

F<G, < <G, =G,

n

where G,,, is a free extension of a centralizer of G, We prove the
theorem by induction on n. If n =0 it is obvious, because all finitely
generated subgroups of F are free of finite rank. By induction all finitely
generated subgroups of G,_, satisfy the conclusion of the theorem. The
group G is a free product with amalgamation: G = G, _; #._¢ (C x (1)),
where C = C; _(u) is a centralizer of some element u € G,_,, and Cis
an |somorph|c copy of C. In particular, G is a fundamental group of the
graph of groups with vertex groups G,_, and C X {t), and edge group C.
By Theorem 8, a finitely generated subgroup H of G is a fundamental
group of some graph of groups .#(Y), where the vertex groups of Y are of
the form H N g™ 'G,_,g or Hn g *(C X {t))g and edge groups are of
the form H N g *Cg.
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From general properties of amalgamated products one can deduce (see
[17] for details) that centralizers in G are free abelian groups of finite rank
(< n). Therefore all edge groups in the graph of groups #(Y) are finitely
generated abelian groups. Since H = 7 (#(Y)) and H is finitely gener-
ated, H is an HNN-extension with finitely many stable letters of a free
product with amalgamation of finitely many vertex groups.

Notice, that if amalgamated subgroups are finitely generated and at
least one of the free factors is not finitely generated, then the whole
amalgamated product is not finitely generated (this follows from normal
forms of elements in amalgamated products). Similarly, if the base group is
not finitely generated, and associated subgroups are finitely generated,
then an HNN-extension is not finitely generated. This implies that the
vertex groups H N g 'G,_, g are finitely generated. Therefore, by induc-
tion, the vertex groups can be obtained from free abelian groups of finite
rank by finitely many operations of the types 1-4.

The group G as well as all the subgroups of G are CSA-groups. It was
shown in [7] that if a free product with abelian amalgamation results in a
CSA-group, then at least one of the amalgamated subgroups is maximal
abelian. Similarly, an HNN-extension with abelian associated subgroups is
a CSA-group if and only if this HNN-extension is of type 3 or 4 [7]. 1

Proof of Corollary 4. According to Theorem 6, if all proper centralizers
in a finitely generated subgroup H of F4*! are cyclic, then H is obtained
from cyclic groups by operations 1, 2, 4, which preserve hyperbolicity (see
[10, 15,5D. 1

Proof of Corollary 5. Consider the formula

VxVyVz3u([x,y] =[x, z] = [y. 2]

=1- (xy=u’Vaxz=u®Vyz=u?)).

This formula holds in all subgroups of F#*! in which all centralizers are
cyclic, and does not hold in any other subgroup. Hence every finitely
generated group which is V3-equivalent to a free group is a subgroup of
FZ~1 with all centralizers cyclic. 1

Proof of Corollary 6. The assertion of the corollary follows from Theo-
rem 4 and the results of [16, part 1], where a length function on F4*1 with
many useful properties has been constructed. The corollary can be also
deduced from Theorem 4 and the results of Bass [2]. |
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11. THE PROOF OF THEOREM 6

It is enough to prove the theorem in the case when the variety V:(S) is
irreducible. By the theorem we have an embedding

w: F[X]/Rad(S) — F%*
for some suitable number k. Let u; be the image of the generator x;, € X

under p and U = (uy,...,u,) be the corresponding tuple of parametric
words. Due to [4] the family of specializations

E* = {¢£*1& € Hom(Z%,Z)}

is a discriminating family of F-homomorphisms. In particular, U* is a
subset of V(S). Let us prove that this subset is dense in V(S) in the
Zariski topology on F". Choose an arbitrary point v € V.(S) and an open
basic neighborhood O; = {w € F|f(w) # 1} (here f € F[X] of v. Thus
f(v) # 1 and hence f |s not in Rad(S). Therefore, f defines a nontrivial
element in the affine coordinate group F[X]/Rad(S). Now there exists a
homomorphism ¢ € E* such that f¢ = 1. But this means that the solu-
tion U? € U* belongs to the same neighborhood O;. This shows that U* is
dense in V;(S) in the Zariski topology.

12. AN EMBEDDING THEOREM FOR AFFINE GROUPS

THEOREM 9. Suppose we have a generalized equation w(h) such that w*
is irreducible, and a system v(y,h) =1, w*(h) = 1. Then the following
assertion is true: if for any solution g € F of the system w* there exists a
solution y in F of the system v(y, h) = 1, w* = 1, then there is an embedding
Of Freuey 10 Friu(s, 7, wiiye

Proof.  Suppose first that for any solution g € F of the system w™* there
exists a solution y in F of the system v(y, k) = 1.

Let H be a subgroup generated in Fg,~ ., by the elements h. Then for
any homomorphism «a: Fg,« = F,. = F, this « can be extended to a
homomorphism «’: H — F such that the following diagram is commuta-
tive.

— H — Fro,

FR(M) v)

Here A is a canonical homomorphism A(h) = h (the h’s in Fg,
satisfy w(h) = 1), w is an inclusion, and v(h% ) = 1 in F.
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Freuw is residually F. If some nontrivial element r € Fp ., belongs to
e kernel of A, then there exists some « such that a(r) # 1 in F, but
"o M(r) = 1. This implies that A is an isomorphism. So we have proved
e existence of an embedding. I
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