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We study analytically the fundamental resonances of near-extremal, slowly rotating Kerr–Newman black
holes. We find a simple analytic expression for these black-hole quasinormal frequencies in terms of the
black-hole physical parameters: ω = mΩ − 2iπ TBH(l + 1 + n), where TBH and Ω are the temperature and
angular velocity of the black hole. The mode parameters l and m are the spheroidal harmonic index and
the azimuthal harmonic index of a co-rotating mode, respectively. This analytical formula is valid in the
regime �ω � �ω � M−1, where M is the black-hole mass.

© 2008 Elsevier B.V. All rights reserved.
The statement that black holes have no hair was introduced by
Wheeler [1] in the early 1970’s. The various no-hair theorems state
that the external field of a dynamically formed black hole (or a
perturbed black hole) relaxes to a Kerr–Newman spacetime, char-
acterized solely by three parameters: the black-hole mass, charge,
and angular momentum. This implies that perturbation fields left
outside the black hole would either be radiated away to infinity, or
be swallowed by the black hole.

This relaxation phase in the dynamics of perturbed black holes
is characterized by ‘quasinormal ringing’, damped oscillations with
a discrete spectrum (see, e.g., [2] for a detailed review). At late
times, all perturbations are radiated away in a manner reminis-
cent of the last pure dying tones of a ringing bell [3–6]. Being
the characteristic ‘sound’ of the black hole itself, these free oscilla-
tions are of great importance from the astrophysical point of view.
They allow a direct way of identifying the spacetime parameters
(the mass, charge, and angular momentum of the black hole). This
fact has motivated a flurry of research during the last four decades
aiming to compute the quasinormal mode (QNM) spectrum of var-
ious types of black-hole spacetimes [2].

The dynamics of black-hole perturbations is governed by the
Regge–Wheeler equation [7] in the case of a spherically symmet-
ric Schwarzschild black hole, and by the Teukolsky equation [8]
for rotating Kerr–Newman spacetimes. The black hole QNMs corre-
spond to solutions of the wave equations with the physical bound-
ary conditions of purely outgoing waves at spatial infinity and
purely ingoing waves crossing the event horizon [9]. Such bound-
ary conditions single out a discrete set of black-hole resonances
{ωn} (assuming a time dependence of the form e−iωt ). (In analogy
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with standard scattering theory, the QNMs can be regarded as the
scattering resonances of the black-hole spacetime. They thus cor-
respond to poles of the transmission and reflection amplitudes of
a standard scattering problem in a black-hole spacetime.)

Since the perturbation field can fall into the black hole or ra-
diate to infinity, the perturbation decays and the corresponding
QNM frequencies are complex. It turns out that there exist an infi-
nite number of quasinormal modes, characterizing oscillations with
decreasing relaxation times (increasing imaginary part) [10]. The
mode with the smallest imaginary part (known as the fundamen-
tal mode) determines the characteristic dynamical timescale τ for
generic perturbations to decay.

In this work we determine analytically the fundamental (least-
damped) resonant frequencies of rotating Kerr–Newman black
holes. (For a recent progress in the study of the highly-damped res-
onances, see [11,12].) The spectrum of quasinormal resonances can
be studied analytically in the slow rotation, near-extremal limit
(M2 − Q 2 − a2)1/2 � a � M , where M , Q , and a and the mass,
charge, and angular momentum per unit mass of the black hole,
respectively. In order to determine the black-hole resonances we
shall analyze the scattering of massless scalar and neutrino waves
in the Kerr–Newman spacetime [13].1 The dynamics of a pertur-
bation field Ψ in the Kerr–Newman spacetime is governed by the
Teukolsky equation [8]. One may decompose the field as (we use
natural units in which G = c = h̄ = 1)

Ψslm(t, r, θ,φ) = eimφ Sslm(θ;aω)ψslm(r;aω)e−iωt , (1)

where (t, r, θ,φ) are the Boyer–Lindquist coordinates, ω is the
(conserved) frequency of the mode, l is the spheroidal harmonic

1 It is worth mentioning that all attempts to decouple the gravitational and elec-
tromagnetic perturbations of the Kerr–Newman spacetime have failed so far, see,
e.g., [13].
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index, and m is the azimuthal harmonic index with −l � m � l.
The parameter s is called the spin weight of the field, and is
given by s = ± 1

2 for massless neutrino perturbations, and s = 0 for
scalar perturbations. (We shall henceforth omit the indices s, l,m
for brevity.) With the decomposition (1), ψ and S obey radial and
angular equations, both of confluent Heun type [14,15], coupled by
a separation constant A(aω).

The angular functions S(θ;aω) are the spin-weighted spher-
oidal harmonics which are solutions of the angular equation [8,15]

1

sin θ

∂

∂θ

(
sin θ

∂ S

∂θ

)
+

[
a2ω2 cos2 θ − 2aωs cos θ

− (m + s cos θ)2

sin2 θ
+ s + A

]
S = 0. (2)

The angular functions are required to be regular at the poles
θ = 0 and θ = π . These boundary conditions pick out a dis-
crete set of eigenvalues labeled by an integer l. In the aω � 1
limit these angular functions become the familiar spin-weighted
spherical harmonics with the corresponding angular eigenvalues
A = l(l + 1) − s(s + 1) + O (aω).2

The radial Teukolsky equation is given by

�−s d

dr

(
�s+1 dψ

dr

)
+

[
K 2 − 2is(r − M)K

�

− a2ω2 + 2maω − A + 4isωr

]
ψ = 0, (3)

where � ≡ r2 −2Mr + Q 2 +a2 and K ≡ (r2 +a2)ω−am. The zeroes
of �, r± = M ± (M2 − Q 2 − a2)1/2, are the black hole (event and
inner) horizons.

For the scattering problem one should impose physical bound-
ary conditions of purely ingoing waves at the black-hole horizon
and a mixture of both ingoing and outgoing waves at infinity
(these correspond to incident and scattered waves, respectively).
That is,

ψ ∼
{

e−iωy +R(ω)eiωy as r → ∞ (y → ∞),

T (ω)e−i(ω−mΩ)y as r → r+ (y → −∞),
(4)

where the “tortoise” radial coordinate y is defined by dy = [(r2 +
a2)/�]dr. Here Ω ≡ a

r2++a2 is the angular velocity of the black-

hole horizon. The coefficients T (ω) and R(ω) are the transmission
and reflection amplitudes for a wave incident from infinity. The
discrete black-hole resonances are the poles of these transmission
and reflection amplitudes. (The pole structure reflects the fact that
the QNMs correspond to purely outgoing waves at spatial infinity.)
These resonances determine the ringdown response of a black hole
to outside perturbations.

The transmission and reflection amplitudes satisfy the usual
probability conservation equation |T (ω)|2 + |R(ω)|2 = 1. The cal-
culation of these scattering amplitudes in the low frequency limit,
�ω � �ω � M−1, is a common practice in the physics of black
holes, see, e.g., [13,16,17] and references therein. Define

x ≡ r − r+
r+ − r−

, � ≡ ω − mΩ

4π TBH
, k ≡ ω(r+ − r−), (5)

where TBH = (r+−r−)

4π(r2++a2)
is the Bekenstein–Hawking temperature of

the black hole. Then a solution of Eq. (3) obeying the ingoing
boundary conditions at the horizon (r → r+ , kx � 1) is given by
[18,19]

2 In the small aω limit we shall take A = l(l + 1) − s(s + 1) in Eq. (3), where l is
nearly an integer with a small correction of order O (aω).
ψ = x−s−i� (x + 1)−s+i�
2 F1(−l − s, l − s + 1;1 − s − 2i� ;−x),

(6)

where 2 F1(a,b; c; z) is the hypergeometric function. In the asymp-
totic (r 
 M , x 
 |� | + 1) limit one finds the solution [18,19]

ψ = C1e−ikxxl−s
1 F1(l − s + 1;2l + 2;2ikx)

+ C2e−ikxx−l−s−1
1 F1(−l − s;−2l;2ikx), (7)

where 1 F1(a; c; z) is the confluent hypergeometric function. The
coefficients C1 and C2 can be determined by matching the two
solutions in the overlap region |� | + 1 � x � 1/k. This yields

C1 = (2l + 1)(1 − s − 2i�)

(l − s + 1)(l + 1 − 2i�)
, (8)

and

C2 = (−2l − 1)(1 − s − 2i�)

(−l − s)(−l − 2i�)
. (9)

Finally, the asymptotic form of the confluent hypergeometric func-
tions [18,19] can be used to write the solution in the form given
by Eq. (4). After some algebra one finds

∣∣T (ω)
∣∣2 = �

{[
(l − s)!(l + s)!
(2l)!(2l + 1)!

]2
(l + 1 − 2i�)

(−l − 2i�)
(2ik)2l+1

}
, (10)

for the transmission probability.
The quasinormal frequencies are the scattering resonances

of the black-hole spacetime. They thus correspond to poles of
the transmission and reflection amplitudes. Taking cognizance of
Eq. (10) and using the well-known pole structure of the Gamma
functions [19], one finds the resonance condition l +1−2i� = −n,
where n � 0 is a non-negative integer. This yields a simple formula
for the black-hole resonances:

ω = mΩ − 2iπ TBH(l + 1 + n), (11)

in the near-extremal limit. It is worth emphasizing again that this
formula is valid in the �ω � �ω � M−1 regime. This requires
(M2 − Q 2 − a2)1/2 � a � M and m > 0.3

In summary, we have studied analytically the quasinormal
mode spectrum of near-extremal, slowly rotating Kerr–Newman
black holes. It was shown that the fundamental resonances can
be expressed in terms of the black-hole physical parameters: the
temperature TBH, and the horizon angular velocity Ω .

The fundamental resonances are expected to dominate the re-
laxation dynamics of a perturbed black-hole spacetime. Taking cog-
nizance of Eq. (11), one realizes that in the near-extremal limit
�ω approaches zero linearly with the black-hole temperature TBH
for all modes co-rotating with the black hole (i.e., modes having
m > 0). We therefore conclude that the characteristic relaxation
timescale τ ∼ 1/�ω of the black hole is of the order of O (T −1

BH ).4

3 Taking cognizance of Eq. (10), one finds that the total reflection modes (TRM),
which are characterized by the condition T (ω) = 0, are given by the requirement
1/(−l − 2i�) = 0, that is −l − 2i� = −n. We recall that l, as defined from the
relation A = l(l + 1) − s(s + 1) [where the separation constants {A} themselves are
obtained from Eq. (2)], is nearly an integer with a small correction of order O (aω).
This implies that each quasinormal frequency is separated from a nearby total re-
flection frequency by a small term of order O (aω). Thus, in order to determine the
QNMs in numerical calculations (and distinguish them from the TRMs), one would
have to use numerical schemes of very high precision.

4 We note that a spherically symmetric Schwarzschild black hole has only one
time/length scale—its horizon radius, r+ (or equivalently, its mass M). One therefore
expects to find τ ∼ r+ (and ω ∼ r−1+ ) on dimensional grounds. On the other hand,
Kerr–Newman black holes have an additional lengthscale—the black-hole inverse
temperature T −1

BH . Here we have established that the relevant relaxation timescale

of the perturbed black hole is determined by its inverse temperature, T −1
BH , and

not by its horizon radius r+ . We emphasize that T −1
BH is much larger than r+ in
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It is worth emphasizing that this result, τ ∼ T −1
BH , is in accord

with the spirit of the recently proposed universal relaxation bound
[20,21].
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