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a b s t r a c t

Let S be a connected graphwhich contains an induced path of n−1
vertices, where n is the order of S. We consider a puzzle on S.
A configuration of the puzzle is simply an n-dimensional column
vector over {0, 1} with coordinates of the vector indexed by the
vertex set S. For each configuration u with a coordinate us = 1,
there exists a move that sends u to the new configuration which
flips the entries of the coordinates adjacent to s in u.We completely
determine if one configuration can move to another in a sequence
of finite steps.

© 2010 Published by Elsevier Ltd

1. Introduction

Let S be a simple connected graph with vertex set S = {s1, s2, . . . , sn}. By a flipping puzzle on
S, we mean a set of configurations of S and a set of moves on the configurations defined below. The
configuration of the flipping puzzle is S, together with an assignment of white or black state to each
vertex of S. A move applied to a configuration u in the puzzle is to select a vertex si which has a black
state, and then flip the states of all neighbors of si in u. For convenience we use the set F n2 of column
vectors over F2 := {0, 1}, coordinates indexed by S, to denote the set of configurations of S. Precisely,
for a configuration u ∈ F n2 , usi = 1 iff u has a black state in the vertex si. Then for a configuration u
with usi = 1 for some si ∈ S, we can apply a move to u by changing u into u + Ãsi, where Ãsi is the
column indexed by si in the adjacency matrix A of S. A flipping puzzle is also called a lit-only σ -game
in [19]. The study of flipping puzzles is related to the representation theory of Coxeter groups [8] and
Lie algebras [1,2,4,5,11].
Two configurations in the flipping puzzle on S are said to be equivalent if one can be obtained from

the other by a sequence of selected moves. Let P denote the partition of F n2 according to the above
equivalent relation. A general question in solving the flipping puzzle on S is to realize that for a given
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pair of configurations u, v ∈ F n2 , whether v can be obtained from u by a sequence of selected moves
or not. This can be done if P is completely determined.
In this paper we are mainly concerned about the class of graphs, each of which contains an

induced path on {s1, s2, . . . , sn−1}. This class of graphs includes the simply-lacedDynkin diagrams and
simply-laced extended Dynkin diagrams with exceptions D̃n and Ẽ6. In each case of such graphs we
determine P .
For u ∈ F n2 let

w(u) := |{si ∈ S | usi = 1}|

denote the Hamming weight of u, and for an orbit O ∈ P ,

w(O) := min{w(u) | u ∈ O}

is called the weight of the orbit O. The number

M(S) := max{w(O) | O ∈ P }

is called themaximum-orbit-weight of the graph S. A consequence of our result onP we findM(S) ≤ 2
and we give a necessary and sufficient condition for M(S) = 1. We also determine the cardinality of
P . A summary of our results is given in a table of Section 7. Besides these results, a byproduct is
Theorem 3.9.
If S is a tree with ` leaves, Wang,Wu [19] andWu, Chang [20] independently proveM(S) ≤ d`/2e.

For each case of Dynkin diagrams and extended Dynkin diagrams, P is completely determined by
Chuah and Hu [4,5]. The study of flipping puzzles is related to a rich research subject called ‘‘groups
generated by transvections’’. We will provide this connection in Appendix.

2. Matrices representing the puzzle

Let S be a simple connected graph with n vertices. Let F2 denote the 2-element finite field with
addition identity 0 and multiplication identity 1, and let F n2 denote the set of n-dimensional column
vectors over F2 indexed by S. We shall embed the graph S in F n2 canonically. For s ∈ S, let s̃ denote
the characteristic vector of s in F n2 ; that is s̃ = (0, 0, . . . , 0, 1, 0, . . . , 0)t, where 1 is in the position
corresponding to s. The set {̃s | s ∈ S} is called the standard basis of F n2 . In this setting, for T ⊆ S the
vector∑

s∈T

s̃

represents the configuration with black states in T in the flipping puzzle on S as stated in the
introduction. We shall assign each move as an n × n matrix that acts on F n2 by left multiplication.
Let Matn(F2) denote the set of n× nmatrices over F2 with rows and columns indexed by S.

Definition 2.1. For s ∈ S, we associate a matrix s ∈ Matn(F2), denoted by the bold type of s, as

sab =
{
1, if a = b, or b = s and ab ∈ R;
0, else,

where a, b ∈ S and R is the edge set of S. The matrix s is called the flipping move associated with
vertex s.

It is easy to check that for s, b ∈ S,

s̃b =

b̃, if b 6= s;
b̃+

∑
ab∈R

ã if b = s.

Hence if a configuration u ∈ F n2 with us = 1 then su is the new configuration after the move to select
the vertex s. Note that if us = 0, we have su = u, so we can view the action of s on u as a feigning move
on u which is not originally defined as a move in the flipping puzzle. Note that s is an involution and
hence is invertible for s ∈ S.
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Fig. 1. The graph S.

Definition 2.2. Let W denote the subgroup of GLn(F2) generated by the set {s | s ∈ S} of flipping
moves.W is called the flipping group of S.

The flipping groups of simply-laced Dynkin diagrams are studied in [8]. The flipping group of the
line graph of a treewith n vertices is isomorphic to the symmetric group Sn on n elements if n ≥ 3 [21].
However, we do not need the information of the flipping groupW of S in this paper.

3. The setsΠ ,Π0 andΠ1

For the remaining of the paper, the following assumption is assumed.

Assumption 3.1. Let S be a simple connected graph with n vertices s1, s2, . . ., sn, and suppose that the
sequence s1, s2, . . . , sn−1 is an induced path, among them, sj1 , sj2 , . . . , sjm the neighbors of sn, where
1 ≤ j1 < j2 < · · · < jm ≤ n− 1. See Fig. 1.

In the remaining of this paper, we always assume n ≥ 2 and set

1 = s̃1, i+ 1 = sisi−1 · · · s11 for 1 ≤ i ≤ n− 1. (3.1)

Set

Π = {1, 2, . . . , n}, (3.2)

Π0 = {i ∈ Π |< i, s̃n >= 0}, (3.3)
Π1 = Π −Π0, (3.4)

where 〈, 〉 is the dot product of vectors. From (3.1) and the construction,

Π0 = {i | i = s̃i−1 + s̃i, 1 ≤ i ≤ n− 1 or i = s̃n−1}, (3.5)

Π1 = {i | i = s̃i−1 + s̃i + s̃n, 1 ≤ i ≤ n− 1 or i = s̃n−1 + s̃n}, (3.6)

where s̃0 = 0. Note that 1 ≤ |Π0|, |Π1| ≤ n− 1 and |Π0| + |Π1| = n. Precisely,

Π0 = {i ∈ Π | i ∈ (0, j1] ∪ (j2, j3] ∪ · · · ∪ (j2k, j2k+1]} (3.7)

Π1 = {i ∈ Π | i ∈ (j1, j2] ∪ (j3, j4] ∪ · · · ∪ (j2k−1, j2k]} (3.8)

where k = dm2 e, jt := n if t > m and (a, b] = {x | x ∈ Z, a < x ≤ b}. In particular we have the
following proposition.

Proposition 3.2.

|Π1| =

d
m
2 e∑
k=1

j2k − j2k−1. �
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From (3.5) and (3.6), we immediately have the following lemma.

Lemma 3.3. For 1 ≤ i ≤ n− 1,

1+ 2+ · · · + i =
{̃
si + s̃n, if |[i] ∩Π1| is odd;
s̃i, if |[i] ∩Π1| is even,

and

1+ 2+ · · · + n =
{̃
sn, if |Π1| is odd;
0, if |Π1| is even,

where [i] := {1, 2, . . . , i}. �

From Lemma 3.3 and (3.7) we have the following lemma.

Lemma 3.4.
∑
i∈Π0

i =
∑m
k=1 s̃jk . �

From (3.1) we have the following lemma.

Lemma 3.5. sii = i+ 1, sii+ 1 = i and si fixes other vectors inΠ − {i, i+ 1} for 1 ≤ i ≤ n− 1. �

From Lemma 3.5, si acts on Π as the transposition (i, i+ 1) in the symmetric group Sn of Π for
1 ≤ i ≤ n − 1. LetW denote the flipping group of S. By aW-submodule of F n2 we mean a subspace U
of F n2 such thatWU ⊆ U .

Corollary 3.6. The subspace U spanned by the vectors inΠ is aW-submodule of F n2 .

Proof. From Lemma 3.5, U is closed under the action of s1, s2, . . . , sn−1. Note that for i ∈ Π we have

sni =

i, if i ∈ Π0;
i+

∑
j∈Π0

j, if i ∈ Π1

∈ U

by Lemma 3.4. �

Proposition 3.7. The subspace U in Corollary 3.6 has the basis{
Π, if |Π1| is odd;
Π − {j}, if |Π1| is even

for any j ∈ Π .Moreover s̃n 6∈ U if |Π1| is even.

Proof. By Lemma3.3, 1, 2, . . . , n− 1 are linearly independent and henceU has dimension at least n−
1. Since s̃n 6∈ Span{1, 2, . . . , n− 1}, the proposition follows from the second case of Lemma 3.3. �

LetWP denote the subgroup ofW generated by s1, s2, . . ., sn−1. From Lemma 3.5, Proposition 3.7
and the fact G̃sn = s̃n for G ∈ WP , we have the following corollary.

Corollary 3.8. The subgroupWP of W is isomorphic to the symmetric group Sn onΠ . �

Let S ′ be another graph satisfying Assumption 3.1, s′n be the correspondingmatrix in Definition 2.1
and Π ′,Π ′0,Π

′

1 be the corresponding sets of vectors in (3.2)–(3.4). For this moment we suppose
|Π1| = |Π

′

1|. Let f : Π ∪ {̃sn} → Π ′ ∪ {̃s′n} be a bijection such that f (̃sn) = s̃
′
n and f (Π1) = Π ′1.

Then

s′nf (̃sn) = f (̃sn)+
∑
j∈Π0

f (j)
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and

s′nf (i) =

f (i), if i ∈ Π0;
f (i)+

∑
j∈Π0

f (j), if i 6∈ Π0

are corresponding to the way that sn acts on Π ∪ {̃sn}. From Corollary 3.8 and the above arguments
we have the following theorem.

Theorem 3.9. W is unique up to isomorphism among all the graphs satisfying Assumption 3.1with a given
cardinality |Π1| computed from (3.2). �

The flipping group W of a simply-laced Dynkin diagram S is isomorphic to the quotient group
W/Z(W ) of the Coxeter group W of S by its center Z(W ) [8], and the study of Coxeter groups W is
notoriously interesting. With this in mind, one might expect the flipping groups are very different on
different graphs. Theorem 3.9 is surprising since up to isomorphism the number of flipping groups is
at most n− 1, which is much less than the number of graphs satisfying Assumption 3.1.

4. Simple basis∆ of Fn
2

To better describe the orbits in P later, we need to choose a new basis of F n2 . Set

∆ :=

{
Π, if |Π1| is odd;
Π ∪ {n+ 1} − {n}, if |Π1| is even,

where n+ 1 := s̃n.With referring to Proposition 3.7,∆ is a basis of F n2 . To distinguish from the standard
basis {̃s1, s̃2, . . . , s̃n} of F n2 , we refer∆ to the simple basis of F

n
2 . For each vector u ∈ F

n
2 , u can be written

as a linear combination of elements in∆, so let∆(u) be the subset of∆ such that

u =
∑
i∈∆(u)

i,

set sw(u) := |∆(u)|, and we refer sw(u) to be the simple weight of u. Note that for 1 ≤ i ≤ n− 1, the
vector 1+ 2+ · · · + i has simple weight i, but has weight

w(1+ 2+ · · · + i) =
{
1, if |[i] ∩Π1| is even;
2, if |[i] ∩Π1| is odd

(4.1)

by Lemma 3.3.
The following notation will be used in the sequel. For V ⊆ F n2 and T ⊆ {0, 1, . . . , n},

VT := {u ∈ V | sw(u) ∈ T },

and for shortness Vt1,t2,...,ti := V{t1,t2,...,ti}. Let odd be the subset of {1, 2, . . . , n} consisting of odd
integers.

5. The case |Π1| is odd

In this section we assume |Π1| to be odd and the counter part is treated in the next section. Note
that∆ = {1, 2, . . . , n} is a basis of U = F n2 in this case. From Lemma 3.3, for 1 ≤ i ≤ n− 1,

s̃i =
{
1+ 2+ · · · + i, if |[i] ∩Π1| is even;
i+ 1+ i+ 2+ · · · + n, if |[i] ∩Π1| is odd,

and

s̃n = 1+ 2+ · · · + n.
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Hence, for 1 ≤ i ≤ n− 1,

sw(̃si) =
{
i, if |[i] ∩Π1| is even;
n− i, if |[i] ∩Π1| is odd,

and sw(̃sn) = n. In other words, there exists a vector with simple weight i and weight 1 if and only if
|[i] ∩Π1| is even, i = n or |[n− i] ∩Π1| is odd. Set

I := {i ∈ [n] | |[i] ∩Π1| is even, i = n or |[n− i] ∩Π1| is odd},
where [n] := {1, 2, . . . , n}. Note thatw(Ui) ≤ 2 by Lemma 3.3, and

w(Ui) = 1 if and only if i ∈ I (5.1)
for 1 ≤ i ≤ n.

Lemma 5.1. For u ∈ F n2 , we have

snu =


u, if |∆(u) ∩Π1| is even;
u+

∑
i∈Π0

i, else.

In particular,

sw(snu) =
{
sw(u), if |∆(u) ∩Π1| is even;
n− |Π1| + 2k− sw(u), else,

where k = |Π1 ∩∆(u)|.
Proof. If |∆(u)∩Π1| is even then 〈u, s̃n〉 = 0 and snu = u by construction. If |∆(u)∩Π1| is odd, then

snu = u+
m∑
k=1

s̃jk

= u+
∑
i∈Π0

i

by Lemma 3.4, and sw(snu) = |∆(u) ∩Π1| + (|Π0| − |∆(u) ∩Π0|) = n− |Π1| + 2k− sw(u). �

The following lemma follows from Corollary 3.8 and∆ = Π .

Lemma 5.2. The nontrivial orbits of F n2 under WP are Ui for 1 ≤ i ≤ n. �

The following theorem solves the flipping puzzle when 3 ≤ |Π1| ≤ n− 3.

Theorem 5.3. Suppose 3 ≤ |Π1| ≤ n−3. Then the nontrivial orbits of F n2 underW are UA1 ,UA2 ,UA3 ,UA4 ,
where

Ai := {j ∈ [n] | j ≡ i, n+ |Π1| − i (mod 4)}.

In particular the number of orbits (including the trivial one) of F n2 under W is

|P | =

{
3, if n is even;
4, else,

and the maximum-orbit-weight M(S) of S is

M(S) =
{
1, if Ai ∩ I 6= ∅ for all i;
2, else.

Proof. Fix an integer 1 ≤ i ≤ n. By Lemma 5.2, Ui is contained in an orbit of F n2 underW. To put two
orbits underWP to an orbit underW is only by the action of sn. Hence Ui and Un−|Π1|+2k−i are in the
same orbit by Lemma 5.1, where k runs through possible odd integers |Π1 ∩ ∆(u)| for u ∈ Ui. In fact
k is any odd number that satisfies k ≤ |Π1| and 0 ≤ i− k ≤ |Π0|; equivalently

max{1, i+ |Π1| − n} ≤ k ≤ min{|Π1|, i}. (5.2)



H.-w. Huang, C.-w. Weng / European Journal of Combinatorics 31 (2010) 1567–1578 1573

Such an odd integer k exists for any 1 ≤ i ≤ n, and note that

n− |Π1| + 2k− i ≡ n+ |Π1| − i (mod 4)

since k and |Π1| are odd integers. To see the orbits as stated in the theorem, it remains to show that
Ui and Ui+4 are in the same orbit underW for 1 ≤ i ≤ n− 4. Set k to be the least odd integer greater
than or equal to max{1, i + |Π1| − n + 2}. For this k, (5.2) holds and then Ui and Un−|Π1|+2k−i are in
the same orbit. Here we use the assumption |Π1| ≤ n− 3 to guarantee the existence of such k. Note
that if we use (n− |Π1| + 2k− i, k+ 2) to replace (i, k) in (5.2), we have

max{1, 2k− i} ≤ k+ 2 ≤ min{|Π1|, n− |Π1| + 2k− i}. (5.3)

The above k and the assumption 3 ≤ |Π1| guarantee the Eq. (5.3). Since n− |Π1| + 2(k+ 2)− (n−
|Π1| + 2k − i) = i + 4, we have Un−|Π1|+2k−i and Ui+4 in the same orbit. Putting these together, Ui
and Ui+4 are in the same orbit. The remaining statements of the theorem are obtained from the orbits
description immediately and by using (5.1). �

The following theorem does the remaining cases.

Theorem 5.4. Suppose |Π1| = 1, n− 2 or n− 1. Then the nontrivial orbits of F n2 under W are{Ui,n+1−i, if |Π1| = 1;
Uodd,U2j, if |Π1| = n− 2;
U2i−1,2i, if |Π1| = n− 1

for 1 ≤ i ≤ dn/2e and 1 ≤ j ≤ (n − 1)/2. In particular the number of orbits (including the trivial one)
of F n2 under W is

|P | =

{
d(n+ 2)/2e, if |Π1| = 1;
(n+ 3)/2, if |Π1| = n− 2;
(n+ 2)/2, if |Π1| = n− 1,

and the maximum-orbit-weight M(S) of S is at most 2. Moreover M(S) = 1 if and only if{
{i, n+ 1− i} ∩ I 6= ∅ for all 1 ≤ i ≤ dn/2e, if |Π1| = 1;
odd ∩ I 6= ∅ and U2j ∩ I 6= ∅ for all 1 ≤ j ≤ bn/2c, if |Π1| = n− 2;
{2i− 1, 2i} ∩ I 6= ∅ for all 1 ≤ i ≤ dn/2e, if |Π1| = n− 1.

Proof. As the proof in Theorem 5.3, Ui and Un−|Π1|+2k−i are in the same orbit underW, where k needs
to satisfy (5.2). In the case |Π1| = 1, k = 1 is the only possible choice and hence Un+1−i is the only
orbit underWP been put together with Ui to become an orbit underW. In the case |Π1| = n− 2, we
have k = i− 2 or i if i is odd; k = i− 1 if i is even. In the case |Π1| = n− 1, we have k = i if i is odd;
k = i− 1 if i is even. In each of the remaining the proof follows similarly. �

Example 5.5. Let S be an odd cycle of length n, i.e. n is odd, m = 2, j1 = 1 and j2 = n − 1. Then
Π0 = {1, n} andΠ1 = {2, 3, . . . , n− 1}. Note that |Π1| = n− 2 is odd, and I = {1, 3, . . . , n}. Hence
Theorem 5.4 applies. We have

P = {Uodd,U0,U2,U4, . . . ,Un−1}.

In particular, |P | = (n+ 3)/2, andM(S) = 2.

6. The case |Π1| is even

In this section we assume |Π1| to be even. Recall that in this case ∆ = Π ∪ {n+ 1} − {n} and
∆− {n+ 1} are bases of F n2 and U respectively. Recall that

1+ 2+ · · · + n = 0. (6.1)
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Let U := F n2 − U , and note that U = n+ 1 + U,U1 = {n+ 1} and Un = ∅. From Lemma 3.3, for
1 ≤ i ≤ n− 1,

s̃i =
{
1+ 2+ · · · + i ∈ U, if |[i] ∩Π1| is even;
1+ 2+ · · · + i+ n+ 1 ∈ U, if |[i] ∩Π1| is odd,

and

s̃n = n+ 1 ∈ U .

Moreover, for 1 ≤ i ≤ n− 1,

sw(̃si) =
{
i, if |[i] ∩Π1| is even;
i+ 1, if |[i] ∩Π1| is odd,

and sw(̃sn) = 1. In other words, there exists a vector in U with simple weight i and weight 1 if and
only if |[i] ∩ Π1| is even; there exists a vector in U with simple weight i and weight 1 if and only if
|[i− 1] ∩Π1| is odd or i = 1. Set

I = {i ∈ [n− 1] | |[i] ∩Π1| is even}

and

J = {i ∈ [n] | |[i− 1] ∩Π1| is odd or i = 1}.

Note thatw(Ui), w(U j) ≤ 2, and

w(Ui) = 1 if and only if i ∈ I;

w(U j) = 1 if and only if j ∈ J
(6.2)

for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n.

Lemma 6.1. For u ∈ F n2 , let k = |Π1 ∩∆(u)|. Then the following (i), (ii) hold

(i) For u ∈ U, we have

snu =


u, if |∆(u) ∩Π1| is even;
u+

∑
i∈Π0

i, else.

In particular, the simple weight sw(snu) of snu is{sw(u), if |∆(u) ∩Π1| is even;
n− |Π1| + 2k− sw(u), if |∆(u) ∩Π1| is odd and n ∈ Π1;
sw(u)+ |Π1| − 2k, else.

(ii) For u ∈ U, we have

snu =


u, if |∆(u) ∩Π1| is odd;
u+

∑
i∈Π0

i, else.

In particular, the simple weight sw(snu) of snu is{sw(u), if |∆(u) ∩Π1| is odd;
n− |Π1| + 2k+ 2− sw(u), if |∆(u) ∩Π1| is even and n ∈ Π1;
sw(u)+ |Π1| − 2k, else.

Proof. The proof is similar to the proof of Lemma 5.1, except that at this time since the choice of
simple basis∆ is different, the action of sn on a vector is a little different, and we need to use (6.1) to
adjust the simple weight of a vector. �
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By Corollary 3.6 the orbits of F n2 underW (resp. underWP ) are divided into two parts, one in U and
the other in U .

Lemma 6.2. The nontrivial orbits of F n2 under WP are U1, U i+1,n+1−i and Ui,n−i for 1 ≤ i ≤ bn/2c. �

Proof. By construction,U1 = {̃sn} is an orbit underWP . By Corollaries 3.6 and 3.8,Ui is contained in an
orbit of F n2 underWP and U i is contained in another one for 1 ≤ i ≤ n−1. The Eq. (6.1) and our choice
of∆ imply that Ui and Un−i are in the same orbit of F n2 underWP ; U i+1 and Un+1−i are in another one
for 1 ≤ i ≤ n− 1. Since no other ways to put these sets together, we have the lemma. �

Theorem 6.3. Suppose 4 ≤ |Π1| ≤ n − 3. Then the nontrivial orbits of F n2 under W are
UB1 ,UB2 ,UB3 ,UB4 ,UC1 ,UC2 ,UC3 ,UC4 , where

Bi = {j ∈ [n− 1] | j ≡ i, i+ |Π1| − 2, n− i, n− i+ |Π1| − 2 (mod 4)}

and

Ci = {j ∈ [n] | j ≡ i, i+ |Π1|, n+ 2− i, n+ 2− i+ |Π1| (mod 4)}.

In particular the number of orbits (including the trivial one) of F n2 under W is

|P | =

{
6, if n is even;
4, else,

and the maximum-orbit-weight M(S) of S is

M(S) =
{
1, if Bi ∩ I 6= ∅ and Ci ∩ J 6= ∅ for all i;
2, else.

Proof. Firstly we determine the orbits of U under W. By Lemma 6.2, Ui,n−i is contained in an orbit
underW for 1 ≤ i ≤ n−1.We suppose n ∈ Π0 and the case n ∈ Π1 is left to the reader. In this case Ui
and Ui+|Π1|−2k are in the same orbit of F

n
2 underW by Lemma 6.1(i), where 1 ≤ i+ |Π1| − 2k ≤ n− 1

and k runs through possible odd integers |Π1 ∩ ∆(u)| for u ∈ Ui. In fact k is any odd number that
satisfies k ≤ |Π1| − 1 and 0 ≤ i− k ≤ |Π0| − 1; equivalently

max{1, i+ |Π1| − n+ 1} ≤ k ≤ min{|Π1| − 1, i}. (6.3)

Such an odd k exists for any 1 ≤ i ≤ n− 3, and note that

i+ |Π1| − 2k ≡ i+ |Π1| − 2 (mod 4).

To determine the orbits of U underW in this case, it remains to show that Ui and Ui+4 are in the same
orbit underW for 1 ≤ i ≤ bn/2c. Suppose 4 ≤ |Π1| ≤ 6. Set k = 1 to conclude Ui and Ui+2 in an orbit
if |Π1| = 4; Ui and Ui+4 in an orbit if |Π1| = 6. Suppose |Π1| ≥ 8. Then n ≥ 11 and bn/2c ≤ n−6. Set
k to be the least odd integer greater than or equal to max{1, i+ |Π1| − n+ 3}. For this k, (6.3) holds
and then Ui and Ui+|Π1|−2k are in the same orbit. Here we use the assumption |Π1| ≤ n− 3. Note that
if we use (i+ |Π1| − 2k, |Π1| − k− 2) to replace (i, k) in (6.3), we have

max{1, i+ 2|Π1| − 2k− n+ 1} ≤ |Π1| − k− 2 ≤ min{|Π1| − 1, i+ |Π1| − 2k}. (6.4)

The above k, the assumption 4 ≤ |Π1| and i ≤ n− 6 guarantee the Eq. (6.4). Since (i+ |Π1| − 2k)+
|Π1|−2(|Π1|−k−2) = i+4, we haveUi+|Π1|−2k andUi+4 in the same orbit. Putting these together,Ui
and Ui+4 are in the same orbit. Then the orbits of U underW are UB1 , UB2 , UB3 , UB4 as in the statement.
Secondly, we determine the orbits of U underW. Since the proof is similar to the above case, we

only give a sketch. By Lemma 6.2, U i,n+2−i is contained in an orbit for 2 ≤ i ≤ n. We suppose n ∈ Π1
and leave the case n ∈ Π0 to the reader. By Lemma 6.1(ii), we have Ui and Un−|Π1|+2k+2−i in an orbit,
where k = |∆(u)∩Π1| is an even number for some u ∈ Ui and 1 ≤ i ≤ n−4. From the same argument
with k been replaced by k+ 2, we find Un−|Π1|+2k+2−i and Ui+4 in an orbit to finish the proof.
The remaining statements of the theorem are obtained from the orbits description. �
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The following theorem determine the nontrivial orbits of F n2 underW in the remaining cases.

Theorem 6.4. Suppose |Π1| = 2, n− 2 or n− 1. Then with referring to the notation in Theorem 6.3, the
nontrivial orbits of F n2 under W areUi,n−i,UC1 ,UC2 , if |Π1| = 2;

Uodd,U2j,n−2j,Uodd,U2t,n+2−2t , if |Π1| = n− 2;
U2j−1,2j,n−2j,n+1−2j,U2t−1,2t,n+2−2t,n+3−2t , if |Π1| = n− 1,

for 1 ≤ i ≤ bn/2c, 1 ≤ j ≤ d(n−2)/4e and 1 ≤ t ≤ dn/4e. In particular the number of orbits (including
the trivial one) of F n2 under W is

|P | =

{
(n+ 6)/2, if |Π1| = 2 and n is even, or |Π1| = n− 2;
(n+ 3)/2, if |Π1| = 2 and n is odd, or |Π1| = n− 1,

and the maximum-orbit-weight M(S) of S is at most 2. Moreover M(S) = 1 if and only if

{i, n− i} ∩ I 6= ∅ and UCj ∩ J 6= ∅ for 1 ≤ j ≤ 2, if |Π1| = 2;
odd ∩ I 6= ∅, {2j, n− 2j} ∩ I 6= ∅
for all 1 ≤ j ≤ d(n− 2)/4e,
odd ∩ J 6= ∅, {2t, n+ 2− 2t} ∩ J 6= ∅
for all 1 ≤ t ≤ dn/4e,

if |Π1| = n− 2;


{2j− 1, 2j, n− 2j, n+ 1− 2j} ∩ I 6= ∅
for all 1 ≤ j ≤ d(n− 2)/4e,
{2t − 1, 2t, n+ 2− 2t, n+ 3− 2t} ∩ J 6= ∅
for all 1 ≤ t ≤ dn/4e,

if |Π1| = n− 1.

Proof. The proof is similar to the proof of Theorem 5.4 that follows from the proof of Theorem 5.3.
At this time, to determine the orbits of U we check what values of odd k occur in (6.3) in each case of
|Π1| ∈ {2, n− 2, n− 1}. To determine the orbits of U underW, we do similarly as in the second part
of the proof of Theorem 6.3. �

Example 6.5. Let S be an even cycle of length n, i.e. n is even, m = 2, j1 = 1 and j2 = n − 1. Then
Π0 = {1, n} andΠ1 = {2, 3, . . . , n− 1}. Note that |Π1| = n−2 is even and I = J = {1, 3, . . . , n−1}.
Hence Theorem 6.4 applies. We have

P = {Uodd,U0,U2,n−2,U4,n−4, . . . ,U2j,n−2j,Uodd,U2,n,U4,n−2, . . . ,U2t,n−2t+2},

where j = d(n− 2)/4e and t = dn/4e. In particular

|P | = d(n− 2)/4e + dn/4e + 3 = (n+ 6)/2,

andM(S) = 2.

7. Summary

We list the main results as follows. Let S be a connected graph with n vertices s1, s2, . . . , sn that
contains an induced path s1, s2, . . . , sn−1 of n − 1 vertices, and sn has neighbors sj1 , sj2 , . . . , sjm with
1 ≤ j1 < j2 · · · < jm ≤ n − 1. Let s̃1, s̃2, . . . , s̃n denote the characteristic vectors of F n2 and let
s1, s2, . . . , sn denote the flipping moves associated with s1, s2, . . . , sn respectively.
Set

1 = s̃1, i+ 1 = sisi−1 · · · s11 (1 ≤ i ≤ n− 1), n+ 1 := s̃n
and consider the following three sets

Π = {1, 2, . . . , n},
Π0 = {i ∈ Π | 〈i, s̃n〉 = 0},
Π1 = Π −Π0.
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Table 1
The summary.

|Π1| n Nontrivial O ∈ P (might be repeated) |P |

3 ≤ |Π1| ≤ n− 3,
|Π1| is odd

Even UAj 3

3 ≤ |Π1| ≤ n− 3,
|Π1| is odd

Odd UAj 4

4 ≤ |Π1| ≤ n− 3,
|Π1| is even

Even UBj ,UCj 6

4 ≤ |Π1| ≤ n− 3,
|Π1| is even

Odd UBj ,UCj 4

|Π1| = 1 Ut,n+1−t d(n+2)/2e
|Π1| = 2 Even Ui,n−i,UC1 ,UC2 (n+ 6)/2
|Π1| = 2 Odd Ui,n−i,UC1 ,UC2 (n+ 3)/2
|Π1| = n− 2,
|Π1| is odd

Odd Uodd,U2i (n+ 3)/2

|Π1| = n− 2,
|Π1| is even

Even
Uodd,U2h,n−2h,
Uodd,U2g,n+2−2g

(n+ 6)/2

|Π1| = n− 1,
|Π1| is odd

Even U2t−1,2t (n+ 2)/2

|Π1| = n− 1,
|Π1| is even

Odd
U2h−1,2h,n−2h,,n+1−2h,
U2g−1,2gn+2−2g,n+3−2g

(n+ 3)/2

where 1 ≤ j ≤ 4, 1 ≤ t ≤ dn/2e, 1 ≤ i ≤ bn/2c, 1 ≤ h ≤ b(n− 2)/4c, 1 ≤ g ≤ dn/4e.

By using the graph structure we can compute the following value

|Π1| =

d
m
2 e∑
k=1

j2k − j2k−1

as shown in Proposition 3.2. Let

∆ :=

{
Π, if |Π1| is odd;
Π ∪ {n+ 1} − {n}, if |Π1| is even

be the simple basis of F n2 as shown in the beginning of Section 4. For a vector u ∈ F
n
2 let sw(u) denote

the simple weight of u, i.e. the number nonzero terms in writing u as a linear combination of elements
in∆. Let U be the subspace spanned by the vectors inΠ . For V ⊆ F n2 and T ⊆ {0, 1, . . . , n},

VT := {u ∈ V | sw(u) ∈ T },

and for shortness Vt1,t2,...,ti := V{t1,t2,...,ti}. Let odd be the subset of {1, 2, . . . , n} consisting of odd
integers. Set

Ai = {j ∈ [n] | j ≡ i, n+ |Π1| − i (mod 4)},
Bi = {j ∈ [n− 1] | j ≡ i, i+ |Π1| − 2, n− i, n− i+ |Π1| − 2 (mod 4)},
Ci = {j ∈ [n] | j ≡ i, i+ |Π1|, n+ 2− i, n+ 2− i+ |Π1| (mod 4)}.

Let P denote the set of orbits of the flipping puzzle on S. Then the set P and its cardinality |P | are
given in Table 1 according to the different cases of the pair (|Π1|, n) in the first two columns.

Appendix

We are indebted to a referee for the information in this section. Let S be a simple connected graph
with n vertices and adjacency matrix A. The adjacency matrix defines an alternating form 〈, 〉A on F n2
by

〈u, v〉A = utAv

and a quadratic form q on F n2 that satisfies q(̃s) = 1 and

q(u+ v) = q(u)+ q(v)+ 〈u, v〉A
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for all vertices s ∈ S and u, v ∈ F n2 . For a vertex s ∈ S, the associatingmatrix s in Definition 2.1 satisfies

sAst = A. (A.1)

Hence st is an element of the symplectic group S(n, F2) [18, p. 69], and therefore the transpose group
Wt of the flipping groupW of S is a subgroup of S(n, F2). MoreoverWt preserves q in the sense that
q(wtu) = q(u) for anywt ∈ Wt and any u ∈ F n2 . Note that from Definition 2.1,

stu = u+ 〈s̃, u〉As̃ (A.2)

for s ∈ S and u ∈ F n2 . Such an st is called a transvection in the literature. The study of arbitrary
groups generated by transvections was largely instituted by McLaughlin [12,13]. Hamelink’s work
on Lie algebras led to a question about groups generated by symplectic transvections over F2 [7].
Hamelink’s question was answered by Seidel, as reported and generalized by Shult in his Breukelen
lectures [15,17]. Graphical notation is implicit in this earlier work and explicit in that of Brown and
Humphries [3,10]. A survey of related work, a brief discussion of Humphries results, and a discussion
of the isomorphism types of groups occurring are given by Hall [6]. More recent results are in [14,16].
Let P ′ denote the set of orbits under the action ofWt on F n2 . Several of the papers discussed above

(or referenced therein) also focus on and discuss orbit lengths for P ′. As before let P be the set of
orbits under the action ofW on F n2 (the set of orbits of the flipping puzzle on S). By (A.1) and using
s2 = I , the map

O→ AO

is a map from P ′ into P , where AO = {Au | u ∈ O}. In particular if A is nonsingular over F2, this
map is a bijection. But when A is singular, the orbit structures can presumably differ. See [9] for more
connections between P ′ and P .
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