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1. Introduction

Let Cm×n
r and Cn denote the class of m × n complex matrices of rank r and the n-dimensional

complex vector space, respectively. For a nonsingular matrix A ∈ Cn×n
n and a vector b ∈ Cn, the

solution x = (x1, x2, . . . , xn)
T to the system of linear equations

Ax = b (1)

can be expressed in terms of determinants

xi = det(A(i → b))/ det(A), i = 1, 2, . . . , n, (2)

where X(i → v) denote the matrix obtained from X by replacing the ith column of X with a vector v.

This is the well-known Cramer’s rule. Among many proofs of Cramer’s rule in the literature, the one
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given by Robinson [10] seems simplest. Robinson’s proof is based on the fact that the system of linear

equations (1) can be rewritten as

A I(i → x) = A(i → b) (3)

where I is the identity matrix of order n. By taking determinant on both sides of (3), together with the

fact that det(I(i → x)) = xi, we have

det(A) xi = det(A) det(I(i → x)) = det(A I(i → x)) = det(A(i → b))

which immediately leads to the Cramer’s rule in (2).

ACramer’s rule for theminimum-norm least-squares solutionof the linear system(1)with ageneral

rectangular matrix A ∈ Cm×n
r was obtained in 1982 by Ben-Israel and Verghese [1,12]. This Cramer’s

rule is based on the results of Blattner [3] that the bordered matrix

⎡
⎣ A V̂

V∗ 0

⎤
⎦

is nonsingular for V ∈ C
n×(n−r)
n−r , V̂ ∈ C

m×(m−r)
m−r such that R(V) = N(A), R(V̂) = N(A∗) and its inverse

is

⎡
⎣ A† V∗†

V̂ † 0

⎤
⎦

where X† is the Moore–Penrose inverse of X . Ben-Israel and Verghese [1,12] then applied the classic

Cramer’s rule in (2) to the following system of linear equations

⎡
⎣ A V̂

V∗ 0

⎤
⎦

⎡
⎣ x

y

⎤
⎦ =

⎡
⎣ b

0

⎤
⎦ (4)

and proposed the first Cramer’s rule for the minimum-norm least-squares solution x = (x1, x2,
. . . , xn)

T of the linear system (1)

xi =
det

⎡
⎣ A(i → b) V̂

V∗(i → 0) 0

⎤
⎦

det

⎡
⎣ A V̂

V∗ 0

⎤
⎦

, i = 1, 2, . . . , n. (5)

Since 1982, the research on Cramer’s rule has been very active and is mainly focused either on the

extension to various other linear systems or on more condensed form of the rule for the linear system

(1) [16,7,13,11,14,6,9,15,8,5]. In particular,Werner in [16] derived different extensions of the Cramer’s

rule, one of which is a Cramer’s rule for the weighted minimum-norm least-squares solution. Just in

the case when both weights are being chosen as identity matrices of proper sizes, Werner’s extension

particularly reduces to the form of

xi = det ((A∗A + VV∗)(i → A∗b))
det(A∗A + VV∗)

, i = 1, 2, 3, . . . , n, (6)
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for the minimum-norm least-squares solution. This formula can also be obtained through an explicit

expression of Moore–Penrose inverse of matrix A [8]. Through an alternative explicit expression, an-

other condensed Cramer’s rule was also presented in [8]:

xi =
m∑

l=1

āli det
(
(AA∗ + V̂ V̂∗)(l → b)

)

det(AA∗ + V̂ V̂∗)
, i = 1, 2, 3, . . . , n, (7)

where āli is the conjugate of ali.

Observe that formulas in (5), (6), and (7) involve determinants ofmatrices of orderm+n− r, n, and

m, respectively.We also observe that in order to determine a single component xi of the solution vector

x, formula (7) needsm determinants of different square matrices of orderm for its numerator and one

determinant of different square matrix of orderm for its denominator. But thesem + 1 determinants

are also used for the computation of other components of the solution x. Thus, onlym+1 determinants

of matrices of orderm are needed for the solution vector x altogether. In contrast, n + 1 determinants

of matrices of order n are needed for the same solution vector xwith (6). Therefore, Werner’s formula

becomes attractive when m > n. But the Cramer’s rule in (7) has better computational advantage

over other two formulas when m < n though nm additional multiplications are required for the

computation of x through (7) from them ratios of determinants.

In this paper, we will give an easy and direct proof of the condensed Cramer’s rule of Werner (6)

from the one of Ben-Israel and Verghese (5). With a similar argument, wewill develop a new Cramer’s

rule for the minimum-norm least-squares solution to Ax = b. Just like the one in (7), our new formula

will also involve determinants of matrices of orderm. The new formula requires three determinants of

different matrices of orderm for each component of x with a total of 2n + 1 determinants of matrices

of orderm for the solution vector x altogether. In contrast to (7), the new one has a simpler format but

it may involve more determinants of matrices of order m.

2. A new condensed Cramer’s rule

It is seen from R(V̂) = N(A∗) that A∗V̂ = 0. Hence, we have

⎡
⎣ A∗ V

V̂∗ 0

⎤
⎦

⎡
⎣ A V̂

V∗ 0

⎤
⎦ =

⎡
⎣ A∗A + VV∗ 0

0 V̂∗V̂

⎤
⎦ (8)

and

⎡
⎣ A∗ V

V̂∗ 0

⎤
⎦

⎡
⎣ A(i → b) V̂

V∗(i → 0) 0

⎤
⎦ =

⎡
⎣ A∗(A(i → b)) + V(V∗(i → 0)) 0

V̂∗(A(i → b)) V̂∗V̂

⎤
⎦ . (9)

One can easily show that

A∗(A(i → b)) + V(V∗(i → 0)) = (A∗A)(i → A∗b) + (VV∗)(i → 0)

= (A∗A + VV∗)(i → A∗b)

which, together with (9), implies

⎡
⎣ A∗ V

V̂∗ 0

⎤
⎦

⎡
⎣ A(i → b) V̂

V∗(i → 0) 0

⎤
⎦ =

⎡
⎣ (A∗A + VV∗)(i → A∗b) 0

V̂∗(A(i → b)) V̂∗V̂

⎤
⎦ . (10)
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In view of (8) and (10), together with the fact that V̂∗V̂ is nonsingular, the Cramer’s rule in (5) can be

expressed as

xi =
det

⎡
⎣ A∗ V

V̂∗ 0

⎤
⎦ det

⎡
⎣ A(i → b) V̂

V∗(i → 0) 0

⎤
⎦

det

⎡
⎣ A∗ V

V̂∗ 0

⎤
⎦ det

⎡
⎣ A V̂

V∗ 0

⎤
⎦

= det((A∗A + VV∗)(i → A∗b))
det(A∗A + VV∗)

, (11)

for i = 1, 2, . . . , n. Thus, we have derived the condensed Cramer’s rule of Werner directly from the

one of Ben-Israel and Verghese [1,12].

TheCramer’s rule in (11) onlydependsonA,V , andb. Next,wewill develop a formulawhichdepends

only on A, V̂ , and b.

Let ei denote the ith column of identity matrix I for each i, 1 � i � n. Then the ith column of V∗ is

V∗ei and the ith column of the bordered matrix

⎡
⎣ A(i → b) V̂

V∗(i → 0) 0

⎤
⎦

can be written as

⎡
⎣ b

V∗ei

⎤
⎦ −

⎡
⎣ 0

V∗ei

⎤
⎦ .

From the properties of determinants, we have

det

⎡
⎣ A(i → b) V̂

V∗(i → 0) 0

⎤
⎦ = det

⎡
⎣ A(i → b) V̂

V∗ 0

⎤
⎦ − det

⎡
⎣ A(i → 0) V̂

V∗ 0

⎤
⎦ . (12)

From R(V) = N(A), we have AV = 0 and thus,

⎡
⎣ A V̂

V∗ 0

⎤
⎦

⎡
⎣ A∗ V

V̂∗ 0

⎤
⎦ =

⎡
⎣ AA∗ + V̂ V̂∗ 0

0 V∗V

⎤
⎦ , (13)

⎡
⎣ A(i → b) V̂

V∗ 0

⎤
⎦

⎡
⎣ A∗ V

V̂∗ 0

⎤
⎦ =

⎡
⎣ (A(i → b))A∗ + V̂ V̂∗ (A(i → b))V

0 V∗V

⎤
⎦ , (14)

and

⎡
⎣ A(i → 0) V̂

V∗ 0

⎤
⎦

⎡
⎣ A∗ V

V̂∗ 0

⎤
⎦ =

⎡
⎣ (A(i → 0))A∗ + V̂ V̂∗ (A(i → 0))V

0 V∗V

⎤
⎦ . (15)

In view of (12)–(15), together with the fact that V∗V is nonsingular, we can rewrite the Cramer’s rule

in (5) as follows
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xi =
det

⎡
⎣ A(i → b) V̂

V∗(i → 0) 0

⎤
⎦ det

⎡
⎣ A∗ V

V̂∗ 0

⎤
⎦

det

⎡
⎣ A V̂

V∗ 0

⎤
⎦ det

⎡
⎣ A∗ V

V̂∗ 0

⎤
⎦

=

⎛
⎝det

⎡
⎣ A(i → b) V̂

V∗ 0

⎤
⎦ − det

⎡
⎣ A(i → 0) V̂

V∗ 0

⎤
⎦

⎞
⎠ det

⎡
⎣ A∗ V

V̂∗ 0

⎤
⎦

det

⎛
⎝

⎡
⎣ A V̂

V∗ 0

⎤
⎦

⎡
⎣ A∗ V

V̂∗ 0

⎤
⎦

⎞
⎠

=
det

⎛
⎝

⎡
⎣ A(i → b) V̂

V∗ 0

⎤
⎦

⎡
⎣ A∗ V

V̂∗ 0

⎤
⎦

⎞
⎠ − det

⎛
⎝

⎡
⎣ A(i → 0) V̂

V∗ 0

⎤
⎦

⎡
⎣ A∗ V

V̂∗ 0

⎤
⎦

⎞
⎠

det(AA∗ + V̂ V̂∗) det(V∗V)

= det((A(i → b))A∗ + V̂ V̂∗) − det((A(i → 0))A∗ + V̂ V̂∗)
det(AA∗ + V̂ V̂∗)

, i = 1, 2, . . . , n.

In summary, we have derived the following result.

Theorem 1. Let A ∈ Cm×n
r and let V̂ ∈ C

m×(m−r)
m−r be a matrix such that R(V̂) = N(A∗). Then the

minimum-norm least-squares solution x = (x1, x2, . . . , xn)
T of Ax = b is given by

xi = det((A(i → b))A∗ + V̂ V̂∗) − det((A(i → 0))A∗ + V̂ V̂∗)
det(AA∗ + V̂ V̂∗)

, i = 1, 2, . . . , n. (16)

When A is of full row rank, i.e., r = m, the matrix V̂ in our derivation will disappear. In such a case,

the result in (16) is reduced to the one in [9]:

xi = det((A(i → b))A∗) − det((A(i → 0))A∗)
det(AA∗)

, i = 1, 2, . . . , n. (17)

We comment that Ax = b is always consistent and may have multiple solutions when r = m. It

is only shown by Lakshminarayanan et al. [9] that their Cramer’s rule in (17) gives a solution to the

linear system Ax = b. However, it is indeed the minimum-norm solution according to Theorem 1.

Furthermore, if m = n = r, then

det((A(i → 0))A∗) = det(A(i → 0)) det(A∗) = 0

since det(A(i → 0)) = 0. Due to the facts that det(AA∗) = det(A) det(A∗) and

det((A(i → b))A∗) = det(A(i → b)) det(A∗),

the formula in (17) immediately becomes the Cramer’s rule in (2).

Though a special case has been in the literature for a few years, the general result as stated in

Theorem 1 seems new to us.
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