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A B S T R A C T

In the present study the glycosylation pattern of the middle ear mucosa (MEM) of guinea pigs, an
approved model for middle ear research, was characterized with the purpose to identify bioadhesive
ligands which might prolong the contact time of drug delivery systems with the middle ear mucosa
(MEM). To assess the utility of five fluorescein labeled plant lectins with different carbohydrate
specificities as bioadhesive ligands, viable MEM specimens were incubated at 4 �C and the lectin binding
capacities were calculated from the MEM-associated relative fluorescence intensities. Among all lectins
under investigation, fluorescein-labeled wheat germ agglutinin (F-WGA) emerged as the highest
bioadhesive lectin. In general, the accessibility of carbohydrate moieties of the MEM followed the order:
sialic acid and N-acetyl-D-glucosamine (WGA) >>mannose and galactosamine (Lens culinaris aggluti-
nin) >N-acetyl-D-glucosamine (Solanum tuberosum agglutinin) > fucose (Ulex europaeus isoagglutinin
I) >> terminal mannose a-(1,3)-mannose (Galanthus nivalis agglutinin). Competitive inhibition studies
with the corresponding carbohydrate revealed that F-WGA-binding was inhibited up to 90% confirming
specificity of the F-WGA–MEM interaction. The cilia of the MEM were identified as F-WGA binding sites
by fluorescence imaging as well as a z-stack of overlays of transmission, F-WGA- and nuclei-stained
images of the MEM. Additionally, co-localisation experiments revealed that F-WGA bound to acidic
mucopolysaccharides of the MEM. All in all, lectin-mediated bioadhesion to the MEM is proposed as a
new concept for drug delivery to prolong the residence time of the drug in the tympanic cavity especially
for successful therapy for difficult-to-treat diseases such as otitis media.

ã 2015 Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Otitis media (OM) is one of the most common inflammatory
diseases of children and therefore the third most common reason
for antibiotic therapy in pediatrics (Holstiege et al., 2013).
Although specific antibiotics are administered, the overall clinical
effectiveness is limited due to low penetration of the drug to the
middle ear mucosa (MEM) (Coates et al., 2008), inaccessibility of
the bacteria within the grown biofilm (Post et al., 2004) as well as

low symptomatic amendment within the first 24h (Glasziou et al.,
2004; Rovers et al., 2006). To increase the therapeutic outcome and
to prolong the contact time of the drug with the infected tissue
drug loaded formulations such as thermosensitive hydrogels (Lee
et al., 2004; Li et al., 2014; Honeder et al., 2014), ototopical drops
(Kutz et al., 2013), implants (Goycoolea et al., 1992; Goycoolea and
Muchow, 1994; Nether et al., 2004), micropumps (Lehner et al.,
1997), intranasal drug delivery systems (Chandrasekhar and
Mautone, 2004), coated middle ear prostheses (Lensing et al.,
2013; Ehlert et al., 2013; Hesse et al., 2013), and pellets (Daniel
et al., 2012) were developed. Although there are many different
therapeutic approaches, a local intratympanic therapy seems to be
most beneficial for the treatment of OMas a decrease in side effects
provoked by systemic therapy as well as an increase in compliance
of the young patients will be expected. Nevertheless, the local
intratympanic therapy is limited by unfavorable anatomical
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conditions. The nasopharynx is connected with the tympanic
cavity that can lead to rapid drainage of intratympanally
administered solutions and suspensions. To avoid Eustachian
drainage and to concurrently prolong the contact time of the drug
we propose bioadhesive carrier systems interactingwith theMEM.
As the middle ear is lined with a modified respiratory epithelial
layer (Hentzer, 1984) and comprises, among others, ciliated,
secretory as well as goblet cells (Lim and Shimada, 1972), the
carbohydrates of the glycocalyx at the membrane of these cells
might be exploited as bioadhesive sites for glycotargeted delivery.
Carbohydrate-binding proteins such as plant lectins interacting
with certain sugar residues on the cell surface can function as a
ligand. This bioadhesion concept of lectin-mediated targeting has
been already reported for overcoming several biological barriers
(Bies et al., 2004; Wirth et al., 2002), such as the intestinal
epithelium (Gabor et al., 1998), the urothelium (Plattner et al.,
2008; Neutsch et al., 2013), the blood–brain barrier (Plattner et al.,
2010), and the lymphoid tissue (Diesner et al., 2012).

As a first step toward putting this concept into practice the
glycosylation pattern of theMEMhas to be elucidated, which is not
reported until now to the best of our knowledge. To identify
accessible carbohydrate moieties and vice versa appropriate
bioadhesive ligands, the interaction of MEM isolated from guinea
pigs with a panel of fluorescent labeled lectins with different
carbohydrate specificities was investigated: the wheat germ
agglutinin (WGA) from Triticum vulgare binding to N-acetyl-D-
glucosamine and sialic acid (Goldstein and Poretz,1986), the lectin
from furze seeds (Ulex europaeus isoagglutinin I, UEA-I) which
interacts with a-L-fucose-containing carbohydrates (Gürtler,
1978), the a-1,3-mannose-specific Galanthus nivalis agglutinin
(GNA) (Van Damme et al., 1987), the Solanum tuberosum lectin
(STA) from potato tubers binding toN-acetyl-D-glucosamine (Allen
and Neuberger,1973), and the lentil lectin from Lens culinaris (LCA)
recognizing galactosaminyl-/mannosyl-residues (Flika et al.,1978).
Ongoing from cytoadhesion experiments at 4 �C and cytoinvasion
assays at 37 �C, the specificity of interaction will be described.
Additionally, co-localisation of lectin-interacting carbohydrates
and acidic mucopolysaccharides was applied to identify the lectin
binding sites at the MEM.

All in all, this study is aimed to roughly characterize the
carbohydrate pattern of the MEM and to identify ligands for
glycotargeting as a basis for the development of bioadhesive
antibiotic formulations.

2. Materials and methods

2.1. Materials

The fluorescein-labeled lectins from T. vulgare (WGA; wheat
germ agglutinin, molar ratio fluorescein/protein (F/P) = 4.5),
S. tuberosum (STA; F/P = 3.0), U. europaeus (UEA-I, isoagglutinin I;
F/P =2.9), G. nivalis (GNA; F/P = 5.5), and Lens culinaris (LCA;
F/P =3.4) were purchased from Vector Laboratories (Burlingame,
CA, USA). Hoechst 33342 trihydrochloride trihydrate was obtained
from Invitrogen (Vienna, Austria). Alcian blue and N,N0,N0 0-
triacetyl-chitotriose were from Sigma–Aldrich (Vienna, Austria).
Fluorescein-labeled a-lactalbumin was acquired from Molecular
Probes (Eugene, Oregon, USA). All other chemicals were bought
from Sigma–Aldrich and were of analytical grade.

2.2. Lectin-binding capacity of the MEM

Immediately after sacrificing the guinea pig the bullas were
dissected and opened carefully. After rinsing the MEM with 0.9%
NaCl the bullas were mounted with the auditory canal upside and

the mucosa was incubated with 500ml solution of fluorescein-
labeled lectins (500pmol/ml 0.9% NaCl) for 30min at 4 �C or 37 �C.
Unbound lectin was removed by washing the cell layer 5 times
with 500ml saline and the nuclei were stained by incubation with
500ml solution of Hoechst 33342 (0.1mg/ml 0.9% NaCl) for 10min
at 37 �C. The specimen was washed again thoroughly and the
staining pattern of the MEM was fixed by incubation in ice-cold
MeOH at�20 �C for 20min. After rehydration in 0.9% NaCl at room
temperature for another 20min, the MEM was carefully removed
from the bulla and mounted on a slide in FluorSaveTM for
visualization and quantification. To allow comparability of the
data, different issues were considered for calculation: (i) since the
degree of fluorescein-substitution differs between the lectins, the
MFI of each lectin was related to an apparent conjugation number
of 1mol fluorescein per mol lectin according to the fluorescein/
protein ratio. (ii) As the size of the specimens is different and
sometimes parts of the collected MEM were overlapping, the
highest MFI of squares with stained nuclei was set 100% and only
squares were considered with a MFI higher than the autofluor-
escence of the cells. (iii) Only the MFI of cell-associated lectins of
nuclei positive squares was considered, related to the MFI of the
stained nuclei in these squares, and expressed as a percentage.

As a control to estimate nonspecific binding, samples prepared
as described above were treated with a solution of F-lactalbumin
instead of the lectins.

2.3. Specificity of lectin-binding

To investigate the specificity of the F-WGA–cell interaction
competitive inhibition experiments using the complementary
carbohydrate N,N0,N0 0-triacetyl-chitotriose were performed. After
washing the bulla with 0.9% NaCl the MEM was incubated with a
freshly prepared mixture of 250ml solution of the complementary
carbohydrate (0–500nmol/ml) and 250ml solution of F-WGA
(500pmol/ml) for 30min at 4 �C. After removal of non-bound
lectin and soluble carbohydrate–lectin complexes by thorough
washings and preparation of theMEM, the cell-bound fluorescence
was determined as described below.

2.4. Lectin-uptake by the MEM

In order to find out, whether the MEM-bound lectin is taken up
into the cells, a pulse-chase protocol was performed: theMEMwas
incubated with 500ml solution of fluorescein-labeled lectins
(500pmol/ml 0.9% NaCl) for 30min at 4 �C followed by removal
of unbound lectin by washing 5 times with saline. The cell-bound
lectins were allowed to be internalized during the chase period at
37 �C for another 60min. Subsequently, the mean MEM-associated
fluorescence intensity (MFI) was determined as described below.

2.5. Staining of acidic components of the mucosa

After fixing the ear with the auditory canal in an upright
position, the bulla was filled with 500ml 3% acetic acid and
incubated for 3min. This solution was replaced by 500ml alcian
blue solution (10mg/ml in 3% acetic acid) and removed after
30min incubation at room temperature (Sheehan and Hrapchak,
1980; Bancroft and Stevens, 1982). The MEM was washed 5 times
with aqueous 0.9% NaCl solution and after staining with F-WGA as
described above the lectin binding capacity was visualized by
microscopy.

2.6. Semi-quantitative determination of fluorescence intensity

The relative cell-layer-associated fluorescence intensity of the
fluorescein-labeled lectins and the Hoechst 33342 stained nuclei
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was determined by reading the fluorescence (TECAN, Infinite
M200, Austria) at an excitation/emission wavelength of 485/
525nm and 365/450nm, respectively. The slides were fixed in a
frame and the laser was adjusted to read one 3�3mm square after
another throughout the whole area of the fixed slide. Cell-layers
incubated with buffer served as a control for autofluorescence of
cells and slides.

To guarantee comparability of the results and to consider the
influence of uneven and sometimes folded surfaces on the
quantum yield, the MFI of the nuclei stained with Hoechst
33342 was chosen as a measure for the amount of tissue in each
sample. The fluorescein-readouts were related to this area and
expressed as a percentage.

2.7. Microscopy

To visualize adhesion of the different lectins to the MEM,
fluorescence images of the prepared slideswere acquired at 20� or
63� magnification with a Zeiss Axio Observer.Z1 microscopy
system equipped with the LED illumination system “Colybri”
(Zeiss, Göttingen, Germany). For comparability of the images, the
excitation exposure time of each lectin was related to an apparent
conjugation number of 1mol fluorescein per mol of lectin by
considering the F/P-ratio.

Histological images were obtained using a Nikon Eclipse 50i
microscope equipped with an EXFO X-Cite 120 fluorescence
illumination system (Nikon, Germany). The images of the FITC-
labeled lectins at an excitation/emission wavelength of 465–495/
515–555nm as well as the transmitted light images were acquired
at 40�magnification and processed using Lucia G v5.0 software for
evaluation.

2.8. Statistics

The integrated analysis tools of Microsoft Excel1 were used to
carry out statistical analyses. The hypothesis test was made by
comparing twomeans from independent samples, among twodata
sets (t-test). Values of p<0.05 were considered as significant. All
experiments were performed at least three times.

3. Results

To guarantee that the upcoming experiments are performed
with viable MEM cells different preparation techniques were
tested in preliminary assays using propidium iodide staining of
nuclei as a selection criterion (data not shown). In general,
incubation in presence of PBS resulted in immediate loss of
viability up to 80%. Additionally, detachment of the MEM from the
bone matrix followed by incubation with ligands yielded non-
utilizable specimens due to folding of the tissue and uneven
staining. Only incubation of the bone attached mucosa in presence
of saline at 4 �C or 37 �C and subsequent isolation of the MEM just
before analysis yielded reliable results with more than 90% viable
cells.

3.1. Lectin-binding capacity

Preliminary studies were aimed at selection of appropriate
concentration ranges for the lectin binding studies.Whereas F-WGA
seemed to over-saturate the MEM-specimens at concentrations
higher than 1000pmol/ml, 500pmol/ml were still sufficient to
saturate potential binding sites. Thus this concentrationwas applied
to investigate the glycosylationpatternof theMEMfromguineapigs
byuse offivefluorescein-labeled lectinswithdifferent carbohydrate
specificities.

Upon incubation at 4 �CWGA exhibited the highest binding rate
with 2.32�0.6% MFI and F-GNA the lowest one close to the
autofluorescence of the MEM (Fig. 1A). The intensity of the other
lectins was similar amounting to about 0.5%MFI, so that the MEM-
associated fluorescence intensities followed the order: WGA>>
LCA> STA>UEA-I >>GNA. Besides, the interaction of WGA and all
other lectins as well as that between GNL and UEA-I, STA as well as
LCA was significantly different (p<0.05). At 37 �C the highest
MEM-association capacity was again observed in case of WGA
amounting to 2.55�0.7% MFI (Fig. 1B). Nevertheless, this
interaction was only significantly different to that of GNA. At the
mean, some places changed in the ranking in comparison to 4 �C
resulting in the following order: WGA>UEA-I > STA> LCA>GNA.

3.2. Microscopical visualization of the binding pattern

The microscopic visualization of the lectin-MEM interaction
confirmed the results of the quantitative assay at both temper-
atures as the MFI of the images decreased according to the ranking
described above (Fig. 2). Interestingly, differences in the staining
pattern were observed: the N-acetyl-D-glucosamine interacting
lectins WGA and STA yielded colored clusters but only WGA
showed additional less intense as well as diffuse staining. LCA
was rather evenly distributed throughout the MEM-surface and
UEA-I-binding was lowest but still visible. In contrast, the binding
of GNA could not be observed microscopically.

As WGA proved to highly interact with the MEM, this
interaction was elucidated in more detail. The overlay of
differential interference contrast (DIC) images and fluorescence
images revealed that the WGA-binding pattern coincides with the
ciliated cell surface (Fig. 3). Although the exposure time was
extended to 3 s binding of F-LCA and F-GNA to ciliated areas was
not detectable. To get some further evidence for WGA-binding to
the cilia, a z-stack of imageswas collected. At the level of the nuclei
(Fig. 4A) no fluorescence of boundWGAwas observed. Moving the
focus plane 6mmhigher toward the apical face (Fig. 4B), the nuclei
were still visible and a rather weak scattered diffuse fluorescence
of WGA was detectable. Analyzing the image acquired another
6mmhigher revealed diffuse blue fluorescence but a sharp F-WGA
staining of finger-like structures of the MEM (Fig. 4C), which
disappeared again by further rising the focus plane (Fig. 4D). This
confirms that WGA predominantly interacts with protruding
elements of the MEM such as the cilia. Additionally, as displayed
in Fig. 5, co-localization of acidic glycans and the binding site of
WGA by co-staining with alcian blue and F-WGA revealed a
punctuate pattern on the MEM indicative for acidic polysacchar-
ides as lectin binding sites on the cilia of the MEM.

3.3. Specificity of the lectin-binding

Contribution of non-specific protein–protein interactions to the
lectin–MEM interaction was investigated by binding studies with
F-lactalbumin (Permyakov, 2005). Even in presence of high
amounts of lactalbumin up to 2000pmol/ml, no interaction could
be detected. Similarly, the double amount of fluorescein as
contained in the highest concentration of F-WGA applied
contributed only to 0.02% of MFI.

As only WGA considerably interacted with the mucosa, the
specificity of the interaction was elucidated by competitive
inhibition of lectin binding sites at the mucosa by addition of
the best fitting complementary carbohydrate N,N0,N0 0-triacetyl-
chitotriose. The MFI of MEM-bound WGA decreased with
increasing amounts of the corresponding carbohydrate up to
90% (Fig. 6). The values were significantly different (p<0.05) and
confirm high specificity of the WGA–MEM interaction since the
adhesion was inhibited by a defined molecule.
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[(Fig._2)TD$FIG]

Fig. 2. Microscopical visualization and comparison of the lectin binding pattern and intensity of F-WGA (A), F-LCA (B), F-STA (C) and F-UEA-I (D) after incubation at 4 �C by
overlaying fluorescence and DIC images. For comparability, the exposure time was correlated to the F/P-ratio of the lectins. Images were acquired at 20� magnification.

[(Fig._1)TD$FIG]

Fig. 1. Association of lectins with the MEM at 4 �C (A) or 37 �C (B). For comparability, the cell-associated fluorescein intensity was related to an apparent F/P-ratio of 1 as well
as to the fluorescence intensity of stained nuclei (mean� SD, n =3).
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[(Fig._5)TD$FIG]

Fig. 5. Co-staining of the acidic mucopolysaccharides with alcian blue (A) and sialyl- as well as N-acetyl-glucosaminyl residues with F-WGA (B) of the MEM. Images were
acquired at 40� magnification.

[(Fig._3)TD$FIG]

Fig. 3. Identification of cilia as a binding site for WGA by fluorescence imaging (A) DIC-imaging (B) and overlay of both (C). Images were acquired at 63� magnification.

[(Fig._4)TD$FIG]

Fig. 4. Z-stack of DIC (1), nuclei (2, stained blue) and F-WGA (3, green) at different levels of theMEM: 0mm(A), 6mm(B),12mm(C) and 18mm(D). Imageswere acquiredwith
63� magnification. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.4. Uptake of WGA into MEM-cells

According to the observation that the meanMFI of MEM-bound
WGAwas slightly, but not significantly, higher at 37 �C than at 4�C
the lectin might be bound and taken up into the cell. For that
purpose,first, the lectinwas bound to the cell-membrane at 4 �C. At
this temperature the fluidity of the cell membrane and the
metabolism is reduced and energy consuming mechanisms like
active transport are repressed. After removal of non-bound lectin,
the cells were incubated in a second step at 37 �C to allow for
energy dependent uptake processes. Due to shielding of the
fluorescence of internalized ligand, the MFI is expected to
decrease. Although the MFI was 2.32�0.6% after incubation at
4 �C and decreased to 1.71�0.6% after incubation at 37 �C for
60min, again the differences were not significant (data not
shown). Thus, internalization ofmembrane-associated lectin could
not be confirmed.

4. Discussion

In an effort to identify bioadhesive or even cytoinvasive ligands
for improved drug delivery in the middle ear, the glycosylation
pattern of the MEM from guinea pigs, an approved model for
research of OM (Zak and Sande, 1999), was systematically
characterized via detailed analysis of the binding capacities of
selected fluorescein-labeled lectins with different carbohydrate
binding specificities.

For quantitation of the lectin-binding rate and comparability
of results, the fluorescein density of the lectins as well as
the fluorescein intensity of stained nuclei as a measure for the
tissue were considered for calculation. According to the results,
the glycocalyx of the MEM contains highest numbers of accessible
sialic acid and N-acetyl-D-glucosamine moieties and minor
amounts of fucosyl- or mannosyl-residues. In case of 37 �C,
however, the glycosylation pattern changed following the order:
sialic acid and N-acetyl-D-glucosamine > fucose >N-acetyl-D-glu-
cosamine >mannose and galactosamine> terminal mannose
a-(1,3)-mannose. The different glycosylation pattern at the two
temperatures might be due to temperature-dependent viscosity of
the mucus (Snary et al., 1973) which seems to influence the
accessibility of the carbohydrate residues. At body temperature the
MEM contains about 3.17-fold higher amounts of fucose and
terminal mannose a-(1,3)-mannose as well as 1.73-fold more
N-acetyl-D-glucosamine residues. The amounts of sialic acid and
N-acetyl-D-glucosamine or mannose and galactosamine moieties

were comparable with those at 4 �C increasing only 1.10- and 1.15-
fold, respectively. Since both, WGA and STA interact with N-acetyl-
D-glucosamine, butWGA additionallywith sialic acid, the 3.27-fold
higher binding rate of WGA is indicative for presence of high
amounts of sialyl-residues. This observation was additionally
confirmed microscopically by co-localisation of WGA binding sites
and acidic mucopolysaccharides.

For drug delivery to themiddle ear not only the binding rate but
also the specificity of the interaction is another important
parameter. According to competitive inhibition studies WGA
specifically interacted with the MEM as indicated by up to 90%
inhibition. Additionally, non-specific protein–protein interactions
negligibly contribute to lectin–MEM binding. Out of these reasons
WGA is an interesting ligand for a lectin-mediated drug delivery to
the middle ear. Although the MFI of WGA decreases by 25% only at
the mean by increasing the temperature from 4 �C to 37 �C,
cytoinvasion of the bioadhesive ligand could not be confirmed. It
should be considered, however, that in case of OM the drug should
preferably interact after local administration in the tympanic
cavity with the cause of disease, the bacteria. Nevertheless, uptake
into the MEM-cells might be beneficial to combat also bacteria
hidden in the cytoplasm.

The quantitation of lectin binding-efficiency is confirmed
qualitatively by fluorescence microscopy revealing the sialyl-
and N-acetyl-D-glucosamine specific WGA as the most efficient
ligand. According to the literature, the composition of the
glycocalyx is altered during OM due to upregulation of mucin
genes (Ohashi et al., 1989). Since mucin genes encode among
others for sialic acid (Lin et al., 2001), the number of potential
WGA-binding sites might increase even in case of inflammation
and improve the residence time in the tympanic cavity and the
efficiency of WGA-grafted formulations.

Histologically, the MEM consists of epithelial-, secretory- and
goblet cells, whereas the luminal intratympanic face additionally
contains ciliated areas without nuclei (Hentzer, 1984). Applying
double staining techniques, those cilia of the MEM surface are
identified as a binding site forWGA. This aspectmight be beneficial
for lectin-mediated drug delivery since mucociliary clearance
might decrease the efficacy of non-adhesive formulations.
However, according to the literature the ciliary motion is
diminished (Ogasawara et al., 2007) during inflammation and
might not influence the lectin–MEM interaction.

Another aspect to be considered for use of WGA-functionalized
carrier systems for OM-therapy is the formation of a biofilm
consisting of bacteria, which overlays the MEM (Post et al., 2004).
Consequently, the biofilm can limit accessibility of the MEM and
block the docking sites for WGA so that the carrier cannot interact.
However, former studies demonstrate that the biofilm is stained
with WGA (Thornton et al., 2013). Thus, even the biofilm might be
an additional potential bioadhesive site for WGA-grafted drug
delivery systems for therapy of OM.

5. Conclusion

All in all, the screening of the glycosylation pattern of the MEM
by use of lectins with different carbohydrate specificity revealed
that sialic acid and N-acetyl-D-glucosamine are the most abundant
and accessible binding sites of the MEM. Consequently, among the
lectins under investigation, WGA emerged as the most promising
ligand for drug carrier systems interacting with the cilia of the
MEM. Thus, the concept of lectin-mediated bioadhesive drug
delivery is proposed as a platform for local intratympanic therapy,
which offers prolonged residence time, shortened diffusional
pathways and increased concentration gradient that altogether
should result in improved efficacy of drugs.

[(Fig._6)TD$FIG]

Fig. 6. Competitive inhibition ofWGA-binding to theMEMbyaddition of increasing
amounts of the complementary carbohydrate.

E. Engleder et al. / International Journal of Pharmaceutics 484 (2015) 124–130 129



Acknowledgement

This study was supported by the Austrian Science Fund (FWF
grant P 24260-B19).

References

Allen, A.K., Neuberger, A., 1973. The purification and properties of the lectin from
potato tubers, a hydroxproline-containing glycoprotein. Biochem. J. 135, 307–
314.

Bancroft, J., Stevens, A.,1982. Theory and Practice of Histological Techniques, 2nd ed.
Churchill Livingstone, New York, pp. 194–198.

Bies, C., Lehr, C.M., Woodley, J.F., 2004. Lectin-mediated drug targeting: history and
applications. Adv. Drug Deliv. Rev. 56, 425–435.

Chandrasekhar, S.S., Mautone, A.J., 2004. Otitis media: treatment with intranasal
aerosolized surfactant. Laryngoscope 114, 472–485.

Coates, H., Thornton, R., Langlands, J., Filion, P., Keil, A.D., Vijayasekaran, S.,
Richmond, P., 2008. The role of chronic infection in children with otitis media
with effusion: evidence for intracellular persistence of bacteria. Otolaryngol.
Head Neck Surg. 138, 778–781.

Daniel, M., Chessman, R., Al-Zahid, S., Richards, B., Rahman, C., Ashraf, W., McLaren,
J., Cox, H., Qutachi, O., Fortnum, H., Fergie, N., Shakesheff, K., Birchall, J.P.,
Bayston, R.R., 2012. Biofilm eradication with biodegradable modified-release
antibiotic pellets. Arch. Otolaryngol. Head Neck Surg. 138, 942–949.

Diesner, S.C., Wang, X.Y., Jensen-Jarolim, E., Untersmayr, E., Gabor, F., 2012. Use of
lectin-functionalized particles for oral immunotherapy. Ther. Deliv. 3, 277–290.

Ehlert, N., Mueller, P.P., Stieve, M., Lenarz, T., Behrens, P., 2013. Mesoporous silica
films as a novel biomaterial: applications in the middle ear. Chem. Soc. Rev. 42,
3847–3861.

Flika, K., Coupek, J., Kocourek, J., 1978. Studies on lectins. XL. O-glycosyl derivatives
of spheron in affinity chromatography of lectins. Biochim. Biophys. Acta 539,
518–528.

Gürtler, L.G., 1978. The fucosyl specific lectins of Ulex europaeus and Sarothamnus
scoparius. Biochemical characteristics and binding properties to human B-
lymphocytes. Biochim. Biophys. Acta 544, 593–604.

Gabor, F., Stangl, M., Wirth, M., 1998. Lectin-mediated bioadhesion: binding
characteristics of plant lectins on the enterocyte-like cell lines Caco-2 HT-
29 and HCT-8. J. Control. Release 55, 131–142.

Glasziou, P.P., Del Mar, C.B., Sanders, S.L., Hayem, M., 2004. Antibiotics for acute
otitis media in children. Cochrane Database Syst. Rev. 1:CD000219.

Goldstein, I.J., Poretz, R.D., 1986. Isolation, physiocochemical characterization and
carbohydrate-binding specificity of lectins. In: Liener, I.E., Sharon, N., Goldstein,
L.J. (Eds.), The Lectins: Properties, Functions, and Applications in Biology and
Medicine. Academic Press, Orlando, USA, pp. 33–247.

Goycoolea, M.V., Muchow, D.D., 1994. Sustained release of antimicrobials in the
middle ear using a biodegradable support. Ann. Otol. Rhinol. Laryngol. Suppl.
163, 46–48.

Goycoolea, M.V., Muchow, D.D., Sirvio, L.M.,Winandy, R.M., Canafax, D.M., Hueb, M.,
1992. Extended middle ear drug delivery: a new concept; a new device. Acta.
Otolaryngol. Suppl. 493, 119–126.

Hentzer, E., 1984. Ultrastructure of themiddle ear mucosa. Acta. Otolaryngol. Suppl.
414, 19–27.

Hesse, D., Badar, M., Bleich, A., Smoczek, A., Glage, S., Kieke,M., Behrens, P., Müller, P.
P., Esser, K.H., Stieve, M., Prenzler, N.K., 2013. Layered double hydroxides as
efficient drug delivery system of ciprofloxacin in the middle ear: an animal
study in rabbits. J. Mater. Sci. Mater. Med. 24, 129–136.

Holstiege, J., Schink, T., Molokhia, M., Mazzaglia, G., Innocenti, F., Oteri, A., Bezemer,
I., Poluzzi, E., Puccini, A., Ulrichsen, S.P., Sturkenboom, M.C., Trifirò, G., Garbe, E.,
2013. Systemic antibiotic use among children and adolescents in germany: a
population-based study. Eur. J. Pediatr. 172, 787–795.

Honeder, C., Engleder, E., Schöpper, H., Gabor, F., Reznicek, G., Wagenblast, J.,
Gstoettner, W., Arnoldner, C., 2014. Sustained release of triamcinolone
acetonide from an intratympanically applied hydrogel designed for the delivery
of high glucocorticoid doses. Audiol. Neutrootol. 9, 193–202.

Kutz Jr., J.W., Roland, P.S., Lee, K.H., 2013. Ciprofloxacin 0.3% +dexamethasone 0:1%
for the treatment for otitis media. Expert Opin. Pharmacother. 14, 2399–2405.

Lee, S.H., Lee, J.E., Baek, W.Y., Lim, J.O., 2004. Regional delivery of vancomycin using
pluronic F-127 to inhibit methicillin resistant Staphylococcus aureus (MRSA)
growth in chronic otitis media in vitro and in vivo. J. Control. Release 96, 1–7.

Lehner, R., Brugger, H., Maassen, M.M., Zenner, H.P., 1997. A totally implantable drug
delivery system for local therapy of the middle and inner ear. Ear Nose Throat J.
76, 567–570.

Lensing, R., Bleich, A., Smoczek, A., Glage, S., Ehlert, N., Luessenhop, T., Behrens, P.,
Müller, P.P., Kietzmann, M., Stieve, M., 2013. Efficacy of nanoporous silica
coatings onmiddle ear prostheses as a delivery system for antibiotics: an animal
study in rabbits. Acta Biomater. 9, 4815–4825.

Li, C., Gu, J., Mao, X., Ao, H., Yang, X., 2014. Preparation of levofloxacin thermo-
sensitive gel and clinical application in the treatment of suppurative otitis
media. Acta Otolaryngol. 134, 468–474.

Lim, D.J., Shimada, T., 1972. Distribution of ciliated cells in the human middle ear:
electron and light microscopic observations. Ann. Otol. Rhinol. Laryngol. 81,
203–211.

Lin, J., Tsuprun, V., Kawano, H., Paparella, M.M., Zhang, Z., Anway, R., Ho, S.B., 2001.
Characterization of mucins in human middle ear and eustachian tube. Am. J.
Physiol. Lung Cell. Mol. Physiol. 280, L1157–L1167.

Nether, A., Nagl, M., Prieskorn, D., Mitchell, A., Brown, N., Schrott-Fischer, A., Miller,
J., 2004. Tolerability of N-chlorotaurine in the guinea pig middle ear: a pilot
study using an improved application system. Ann. Otol. Rhinol. Laryngol. 113,
76–81.

Neutsch, L., Wambacher, M., Wirth, E.M., Spijker, S., Kählig, H., Wirth, M., Gabor, F.,
2013. UPEC biomimickry at the urothelial barrier: lectin-functionalized PLGA
microparticles for improved intravesical chemotherapy? Int. J. Pharm. 450,163–
176.

Ogasawara, Y., Namai, T., Yoshino, F., Lee, M.C., Ishii, K., 2007. Sialic acid is an
essential moiety of mucin as a hydroxyl radical scavenger. FEBS Lett. 581, 2473–
2477.

Ohashi, Y., Nakai, Y., Furuya, H., Esaki, Y., Ikeoka, H., Kato, S., Kato, M., 1989.
Mucociliary disease of the middle ear during experimental otitis media with
effusion induced by bacterial endotoxin. Ann. Otol. Rhinol. Laryngol. 98, 479–
484.

Permyakov, E.A., 2005. a-Lactalbumin. Nova Science Publishers Inc., New York, pp.
82–86.

Plattner, V.E., Wagner, M., Ratzinger, G., Gabor, F., Wirth, M., 2008. Targeted drug
delivery: binding and uptake of plant lectins using human 5637 bladder cancer
cells. Eur. J. Pharm. Biopharm. 70, 572–576.

Plattner, V.E., Germann, B., Neuhaus, W., Noe, C.R., Gabor, F., Wirth, M., 2010.
Characterization of two blood-brain barriermimicking cell lines: distribution of
lectin-binding sites and perspectives for drug delivery? Int. J. Pharm. 387, 34–41.

Post, J.C., Stoodley, P., Hall-Stoodley, L., Ehrlich, G.D., 2004. The role of biofilms in
otolaryngologic infections. Curr. Opin. Otolaryngol. Head Neck Surg. 12, 185–
190.

Rovers,M.M., Glasziou, P., Appelman, C.L., Burke, P., McCormick, D.P., Damoiseaux, R.
A., Gaboury, I., Little, P., Hoes, A.W., 2006. Antibiotics for acute otitis media: a
meta-Analysis with individual patient data. Lancet 368, 1429–1435.

Sheehan, D., Hrapchak, B., 1980. Theory and Practice of Histotechnology, 2nd ed.
Battelle Press, Ohio pp. 163, 173–174.

Snary, D., Allen, A., Pain, R.H., 1973. The effect of temperature on gel formation in
pig-gastric mucus. Eur J. Biochem. 36, 72–75.

Thornton, R.B., Wiertsema, S.P., Kirkham, L.A., Rigby, P.J., Vijayasekaran, S., Coates, H.
L., Richmond, P.C., 2013. Neutrophil extracellular traps and bacterial biofilms in
middle ear effusion of children with recurrent acute otitis media – a potential
treatment target. PLoS One 8, e53837.

Van Damme, E.J.M., Allen, A.K., Peumans, W.J., 1987. Isolation and characterization
of a lectin with exclusive specificity towards mannose from snowdrop
(Galanthus nivalis) bulbs. FEBS Lett. 215, 140–144.

Wirth, M., Gerhardt, K., Wurm, C., Gabor, F., 2002. Lectin-mediated drug delivery:
influence of mucin on cytoadhesion of plant lectins in vitro? J. Control. Release
79, 183–191.

Zak, O., Sande, M.A.,1999. Handbook of AnimalModels of Infection. Academic Press,
London, UK, pp. 403–408.

130 E. Engleder et al. / International Journal of Pharmaceutics 484 (2015) 124–130

http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0005
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0005
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0005
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0010
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0010
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0015
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0015
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0020
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0020
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0025
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0025
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0025
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0025
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0030
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0030
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0030
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0030
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0035
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0035
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0040
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0040
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0040
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0045
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0045
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0045
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0050
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0050
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0050
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0055
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0055
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0055
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0060
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0060
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0065
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0065
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0065
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0065
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0070
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0070
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0070
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0075
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0075
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0075
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0080
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0080
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0085
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0085
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0085
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0085
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0090
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0090
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0090
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0090
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0095
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0095
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0095
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0095
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0100
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0100
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0105
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0105
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0105
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0110
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0110
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0110
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0115
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0115
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0115
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0115
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0120
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0120
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0120
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0125
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0125
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0125
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0130
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0130
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0130
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0135
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0135
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0135
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0135
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0140
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0140
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0140
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0140
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0145
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0145
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0145
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0150
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0150
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0150
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0150
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0155
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0155
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0160
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0160
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0160
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0165
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0165
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0165
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0170
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0170
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0170
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0175
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0175
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0175
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0180
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0180
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0185
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0185
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0190
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0190
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0190
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0190
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0195
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0195
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0195
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0200
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0200
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0200
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0205
http://refhub.elsevier.com/S0378-5173(15)00174-X/sbref0205

	Determination of the glycosylation-pattern of the middle ear mucosa in guinea pigs
	1 Introduction
	2 Materials and methods
	2.1 Materials
	2.2 Lectin-binding capacity of the MEM
	2.3 Specificity of lectin-binding
	2.4 Lectin-uptake by the MEM
	2.5 Staining of acidic components of the mucosa
	2.6 Semi-quantitative determination of fluorescence intensity
	2.7 Microscopy
	2.8 Statistics

	3 Results
	3.1 Lectin-binding capacity
	3.2 Microscopical visualization of the binding pattern
	3.3 Specificity of the lectin-binding
	3.4 Uptake of WGA into MEM-cells

	4 Discussion
	5 Conclusion
	Acknowledgement
	References


