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Abstract

We consider an analogue of the Robinson–Schensted correspondence for skew oscillating
tableaux and we propose a geometric version of this correspondence, extending similar con-
structions for standard (Combinatoire et repr-esentation du groupe sym-etrique, Lecture Notes in
Mathematics, Vol. 579, Springer, Berlin, 1977, pp. 29–58) and oscillating tableaux (Formal
Power Series and Algebraic Combinatorics, FPSAC’99, Univ. Politecnic9a de Catalunya, 1999,
pp. 141–152). We deduce from this geometric construction new proofs of some combinatorial
properties of this correspondence. c© 2002 Published by Elsevier Science B.V.

1. Introduction

The Robinson–Schensted correspondence is a classical combinatorial construction re-
lating permutations and pairs of standard tableaux having the same shape, de<ned inde-
pendently by Robinson [10] and Schensted [16]. The paper of Schensted was followed
by numerous works dealing with the combinatorial properties of this correspondence.
We can cite, for example, papers of Sch?utzenberger [17,18], Knuth [9], Viennot [20]
and Beissinger [1]. In Sagan’s book [14, Chapter 3], the interested reader can <nd
a complete exposition of the Robinson–Schensted correspondence, its combinatorial
properties and the connection between tableaux, the symmetric group and the theory of
symmetric functions. More recently, people have been interested in the extension of this
correspondence to various generalizations, in the Young poset, of standard tableaux,
like skew (and generalized skew) tableaux [15], oscillating tableaux (related to the
representations of the symplectic group) [19,4,12], skew oscillating tableaux [5,12,11],
shifted tableaux [21,13,1] and generalized tableaux [9].

In this article we consider of the extension of this correspondence to the family
of skew oscillating tableaux, de<ned independently <rst by Roby [12,11], and later
by Dulucq and Sagan [5], and we de<ne an analogue of the geometric construction
due to Viennot [20] which allows us to give geometric (and intuitive) proofs of some
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combinatorial properties of this correspondence. In particular, we prove a new result
about the number of odd height columns in the <nal shape of a skew oscillating
tableau, which extends similar results for standard tableaux [18,1] and skew tableaux
[15].

In the following two sections, we give basic de<nitions about biwords, permutations
and tableaux, and we brieIy recall the correspondence for skew oscillating tableaux.
Next, we describe our extension of the geometric construction of Viennot and its
implications.

2. De�nitions and notations

We use the notation �= (�1; : : : ; �k) for both a partition and the corresponding Fer-
rers diagram. 1 If � and � are two Ferrers diagrams such that � ⊆ �, the corresponding
skew shape �=� is the set of cells belonging to � but not to �. If |�=�|= n, then we
write �=� � n.

A partial tableau T of shape �=� is a labeling of the cells of the skew shape �=�
such that the columns and rows are strictly increasing (from bottom to top and left
to right) and the labels are distinct. The tableau is called standard if the labels are
1 through n= |�=�|. We denote by T (i; j) the label of the cell in the ith row (from
the bottom) and jth column (from the left), so that c∈T means c=T (i; j) for some
i; j. The sets of partial and standard tableaux of shape �=� will be denoted by PT(�=�)
and ST(�=�), respectively. The set of labelings of the cells of the skew shape �=�
with columns and rows strictly decreasing (from bottom to top and left to right) will
be denoted by PT(�=�). For example, if �= (5; 3) and �= (2; 1), the following three
tableaux belong to PT(�=�), ST(�=�) and PT(�=�), respectively.

2 9
4 6 8

2 5
1 3 4

4 1
5 3 2

A skew oscillating tableau T of length n, initial shape �, and <nal shape  is a
sequence of Ferrers diagrams (�= �0; �1; : : : ; �n = ), where �k is obtained from �k−1

by adding or removing a cell. If �= ∅, T is called an oscillating tableau. We denote
by SOn(�; ) the set of skew oscillating tableaux of length n, initial shape � and <nal
shape . For example, if �= (3; 1) and = (3; 2), the following tableau belongs to
SO5(�; ).

1 We display Ferrers diagram in “French” notation (the smallest part �k in the top row).
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The family of skew oscillating tableaux generalizes the families of standard
and oscillating tableaux. Indeed, a skew oscillating tableau of SOn(�; �) in which,
for 16 k6 n; �k is obtained from �k−1 by adding a cell in a standard tableau
of ST(�=�), the label of a cell being given by the step of creation of this
cell.

By convention, we denote by Sn the set of the permutations of [n] = {1; 2; : : : ; n} and
by In the set of the involutions of [n], and, for a permutation �, we denote its inverse
by �−1.

A biword � on [n] is a set of vertical pairs of positive integers of [n] which

are pairwise disjoint, �=
(
i1
j1
i2
j2
:::
:::
ik
jk

)
. Here, we consider biwords such that il ¿ jl, for

16 l6 k. We write such biwords with the convention i1 ¿i2 ¿ · · ·¿ik and we de-
<ne �̂= {i1; : : : ; ik} and �̂= {j1; : : : ; jk}. We denote the set of these biwords on [n] by
BWn. The inverse �−1 of a biword � is obtained by changing every pair (il; jl) to
(n+ 1 − jl; n+ 1 − il). Moreover, we can represent a biword � on [2n] with a graph
denoted G(�) formed with two parallel lines of n vertices such that the n vertices
of the bottom (resp. top) line are labeled by 1; : : : ; n (resp. 2n; : : : ; n + 1 ) and the
edges are given by the pairs of �. It follows that G(�−1) is obtained from G(�) by a
horizontal symmetry.

Remark 2.1. If a biword � of BW2n has n pairs of integers (il; jl) such that n +
16 il6 2n and 16 jl6 n, it is equivalent to the permutation �= jn jn−1 : : : j1 of Sn,
and the biword �−1 is equivalent to the permutation �−1.

3. The correspondence for skew oscillating tableaux

In [16], Schensted describes an algorithm which associates to a permutation � of Sn
a pair of standard tableaux (P;Q) having the same shape � (�= ∅) such that � � n.
In [12,11], Roby introduces a similar result for pairs of skew oscillating tableaux
having the same length, initial shape and <nal shape (see Theorem 3.6 below). This
result also appears in a paper by Dulucq and Sagan [5]. In the rest of this section,
we present the algorithm of Dulucq and Sagan, which relies on three notions of in-
sertion in a partial tableau (see Example 3.1 below). Let P be a partial tableau of
shape �=�.

(1) External insertion inserts an integer x in P as de<ned by Schensted (see [16] or
[14]). We denote the new tableau obtained by this process by ExtIns(P; x).
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(2) Internal insertion was de<ned by Sagan and Stanley in [15]. Let P(u; v) be a
cell of P such that the cells P(u − 1; v) and P(u; v − 1), if they exist, belong
to �. The internal insertion of the cell P(u; v) removes from its label x from
this cell and inserts this integer x into the row (u + 1) of P using the exter-
nal insertion algorithm. We denote the new tableau obtained by this process by
IntIns(P; u; v).

(3) Empty insertion adds an empty cell P(u; v), where the cells P(u − 1; v) and
P(u; v − 1), if they exist, belong to �. We denote the new tableau obtained by
this process by EmptyIns(P; u; v).

Conversely, the deletion of the cell P(u; v), denoted by Del(P; u; v), can be an empty
deletion if the cell is an empty cell, an internal deletion if the process (this is
the classical process of deletion de<ned by Schensted [16]) ends in <lling a cell
of �, or an external deletion if the process ends with the removal of an integer
from P.

Example 3.1.

P =
2 6

3 8
; ExtIns(P; 5) =

2 6 8
3 5

; Del(P; 2; 3) =
2

6 8
;

P =
4

2 6
3 8

; ExtIns(P; 1; 3) =
4 6

2 3
8
; Del(P; 3; 1) =

4 6
2 3 8

;

P = 6
3
; EmptyIns(P; 3; 2) = 6

3
; Del(P; 3; 1) =

6
3
:

The correspondence for skew oscillating tableaux (Theorem 3.6) relies on the following
algorithms � and �−1 relating the triples (�; T; U ) of BWn ×

⋃
�⊆�∩ [PT(=�) ×

PT(�=�)], such that �∪̇T ∪̇U = [n] (where ∪̇ denotes the disjoint union), to the skew
oscillating tableaux P of SOn(�; ).

Algorithm 1. �(�; T; U )

(1) Let Pn =T .
(2) For i from n to 1:

(a) if there is a cell Pi(u; v) = i, then remove this cell to obtain Pi−1,
(b) else if the pair (i; x)∈ �, then Pi−1 = ExtIns(Pi; x),
(c) else if U (u; v) = i and Pi(u; v) exists, then Pi−1 = IntIns(Pi; u; v),
(d) else (U (u; v) = i, Pi(u; v) does not exist), Pi−1 = EmptyIns(Pi; u; v).

(3) The tableaux Pi have respective shapes �i=�i and P= (�0; : : : ; �n).
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Example 3.2. Let (�; T; U ) be the following triple:

�=
(

8 6
4 3

)
; T =

10
1 9

; U =
5
7 2

:

The execution of �(�; T; U ) produces the following sequence of tableaux:

10
1 9

P10

1 9

P9

1

P8

1 4

P7

1
4

P6

1 4
3

P5

1
4
3

P4

1

3

P3

1

P2

1

P1 P0

.

Remark 3.3. It is easy to verify the property of the shapes of the partial tableaux Pi
that, for i∈{0; : : : ; n}, � ⊆ �i.

Algorithm 2. �−1(P) (Suppose P= (�= �0; : : : ; �n = ).)

(1) Let �= ∅, T0 = � and U0 = �.
(2) For i from 1 to n:

(a) if �i = �i−1 + (u; v), then add in Ti−1 a cell in position (u; v) with label i to
obtain Ti, Ui =Ui−1,

(b) else (�i = �i−1 − (u; v)) Ti = Del(Ti−1; u; v):
(i) if this deletion is external (the integer x is evacuated from Ti−1), then

add the pair (i; x) to �, Ui =Ui−1.
(ii) else if it is an internal deletion (the cell Ti−1(u′; v′) becomes labeled),

then label the cell Ui−1(u′; v′) with i to obtain Ui,
(iii) else (it is an empty deletion), label the cell Ui−1(u; v) with i to obtain

Ui.
(3) Finally, T =Tn and U =Un.

Theorem 3.4 (Dulucq and Sagan [5] and Roby [12]). Let � and  be two partitions
and n an integer. � is a bijection from triples (�; T; U ) of BWn×

⋃
�⊆�∩ [PT(=�)×

PT(�=�)] such that �∪̇T ∪̇U = [n] to tableaux P of SOn(�; ).

Remark 3.5. If the skew oscillating tableau P is a skew tableau of shape =�, then
�−1(P) = (∅; P; �).

Theorem 3.6 (Dulucq and Sagan [5] and Roby [12]). Let � be a partition and n=
2m an even integer. There is a bijection RSSO from triples (�; T; U ) of BWn ×⋃
�⊆� [PT(�=�) × PT(�=�)] such that �∪̇T ∪̇U = [n] to pairs of tableaux (P;Q) of⋃
 [SOm(�; ) × SOm(�; )].
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This result follows immediately from Theorem 3.4 and the fact that (�0(= �); : : : ;
�m(= ); : : : ; �n(= �)) is equivalent to the pair (P;Q) of skew oscillating tableaux with
P= (�0; �1; : : : ; �m) and Q= (�n; �n−1; : : : ; �m).

Remark 3.7. If P and Q are two standard tableaux, the tableaux U and T are empty
and the biword � is equivalent to a permutation of Sm (Remark 2.1), which is the
permutation obtained with the classical Schensted algorithm.

4. Analogue of the geometric construction of Viennot

In this section, we consider a triple (�; T; U ) and a skew oscillating tableau P of
length n as de<ned in Theorem 3.4, with the condition �=  (hence n is even and
we write n= 2m), and we denote by Pn; : : : ; P0 the partial tableaux produced by the
algorithm � (see Example 3.2). We describe an alternative algorithm allowing us to
derive the tableaux Pn; : : : ; P0 from the triple (�; T; U ), based on a geometric represen-
tation of such a triple in the subset {0; : : : ; m} × {0; : : : ; m} of the discrete plane. This
construction is an extension (to the correspondence for skew oscillating tableaux) of
the work of Viennot [20].

In our algorithm, we associate to the triple (�; T; U ) a subset of {0; : : : ; m}×{0; : : : ; m},
called the valid domain of (�; T; U ) (De<nition 4.1) and a list (A1; B1); : : : ; (Ak; Bk) of
pairs of sets of points of {0; : : : ; m} × {0; : : : ; m} (this list is computed by Algorithm
3). Next, to each pair (Ai; Bi) we associate a set of paths in {0; : : : ; m} × {0; : : : ; m},
called the shadow lines 2 of (Ai; Bi) (De<nition 4.2), and we derive the partial tableaux
Pn; : : : ; P0 from these sets of shadow lines and from the valid domain (Theorem 4.5).
First, we de<ne the notion of valid domain (see Example 4.4 for an illustration).

De�nition 4.1. Let X be the decreasing mapping from {0; : : : ; m} to U ∪̇�̂∪̇{n+1} such
that X (j) is the jth greatest element of U ∪̇�̂∪̇{n + 1}, and let Y be the increasing
mapping from {0; : : : ; m} to T ∪̇ S�∪̇{0} such that Y (j) is the jth lowest element of
T ∪̇ S�∪̇{0}. The valid domain of (�; T; U ) is the set of points (x; y) (with 06 x; y6m)
such that X (x)¿Y (y).

Now, given two sets A and B of points of {0; : : : ; m} × {0; : : : ; m}, we de<ne the
notion of shadow lines of the pair (A; B). We call the points of A (resp. B) the A-points
(resp. B-points).

De�nition 4.2. Let A= {(x1; y1); : : : ; (xp; yp)} and B= {(xp+1; yp+1); : : : ; (xp+q; yp+q)}
be two sets of points of {0; : : : ; m} × {0; : : : ; m} such that for every pair of distinct
integers (i; j) (16 i; j6p+ q), xi �= xj and yi �=yj.

2 We use the terminology of Viennot, although it is not really accurate in our extension of his work.
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• The shadow S(A; B) of (A; B) is the set of points (x; y) (x; y¿ 0), such that either
there is an A-point (xi; yi) with xi6 x and yi6y, or there is a B-point (xi; yi) with
xi6 x or yi6y.

• The shadow lines of (A; B) are de<ned recursively. The <rst shadow line L1 is
the boundary of S(A; B). To construct the shadow line Li+1, remove the A-points
belonging to Li and the B-point having the smallest ordinate (if such a B-point
exists) and construct the shadow line of the remaining points. This procedure ends
when there is no remaining point.

• The NE-corners of a shadow line are the points (x; y) on the shadow line such that
(x + 1; y) and (x; y + 1) do not belong to this shadow line.

• The SW-corners of a shadow line are the A-points belonging to this line.

Example 4.3. In the following example, where the A-points are represented by circles,
the B-points by triangles, and the NE-corners by squares, we have two shadow lines
L1 and L2.

We can now give the algorithm computing the list (A1; B1); : : : ; (Ak; Bk) of pairs of
sets of points associated to the triple (�; T; U ).

Algorithm 3. Let (�; T; U ) be a triple as de<ned in Theorem 3.4, with �= .

(1) Let A1 = {(x; y) | (X (x); Y (y))∈ �}.
(2) Let B1 = {(x; y) |X (y) (resp. Y (x)) is the label of the cell U1(1; k) (resp. T1(1; k)),

for all the k such that U1(1; k) is labeled}.
(3) Denote by L1 the set of shadow lines L1

1; : : : ; L
1
l associated to (A1; B1).

(4) Let i= 2.
(5) While Ai−1 �= ∅ and Bi−1 �= ∅:

(a) Let Ai = {(x; y) | (x; y) is a NE-corner of a shadow line of Li−1 and (x; y)
belongs to the valid domain of (�; T; U )}.

(b) Let Bi = {(x; x) |X (y) (resp. Y (x)) is the label of the cell U1(i; k) (resp.
T1(i; k)), for all the k such that U1(i; k) is labeled}.

(c) Denote by Li the set of shadow lines associated to (Ai; Bi).

Example 4.4. In the following <gure, representing the successive steps in the con-
struction of the shadow lines associated to the triple (�; T; U ) given in Example 3.2,
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the valid domain consists of all the points of {0; : : : ; m} × {0; : : : ; m} below the thin
dotted line, and the A-points (resp. B-points) are represented by circles (resp.
triangles).

In the following theorem, the main result of this section, we show how we can easily
derive the tableaux Pn; : : : ; P0 from the shadow lines associated to the triple (�; T; U ).
We recall that for i∈{0; : : : ; n}, if Pi has shape �i=�i, then � ⊆ �i (Remark 3.3). We
call the kth step the transformation of the tableau Pk into the tableau Pk−1.

Theorem 4.5. Following; from left to right; the shadow line Lij associated to (�; T; U )
describes the states of the (�i + j)th cell of the ith row of the tableaux Pn; : : : ; P0 in
the following way:

(1) if (0; y) belongs to the line; for some y∈ [m]; then the cell is present in Pn; with
label Y (y);

(2) if the line leaves the valid domain through (x; y); the cell is removed during the
step Y (y);

(3) if the SW-corner (x; y) belongs to the line; during the step X (x) the cell is labeled
with Y (y) (resp. created with label Y (y)); if the point (x; y′) on the line having
maximal y′6m is in (resp. not in) the valid domain;

(4) if (x; 0) belongs to the line; during the step X (x) the label of the cell is removed
(resp. the cell is created with no label); if the point (x; y′) on the line having
maximal y′6m is in (resp. not in) the valid domain.

Example 4.6. Consider the triple (�; T; U ) of the Example 3.2 and the associated
shadow lines given in Example 4.4. We can illustrate the previous theorem with the
shadow line L1

2, which describes the third cell of the <rst row of the tableaux Pn; : : : ; P0

(�= (1; 1)). The point (0; 4) belongs to L1
2, with Y (4) = 9, and the cell has label 9 in

P10. Immediately, the line leaves the valid domain through (0; 4) and during step 9,
the cell is removed. Next, the SW-corner (1; 3) belongs to the line and the cell is
created during the step 8 with label 4 (X (1) = 8 and Y (3) = 4). Then the SW-corner
(3; 2) belongs to this line and we can verify that during the step 6, the label of the cell
is changed to 3 (X (3) = 6 and Y (2) = 3). Lastly, it leaves the valid domain through
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(4; 2) and goes through (5; 0) and the cell is removed during step 3 (Y (2) = 3) and
added again, as an empty cell, during step 2 (X (5) = 2).

In order to prove Theorem 4.5 we follow the scheme of the proof of the result of
Viennot given by Sagan [14, Section 3:8] and we focus on the <rst row of the tableaux
Pn; : : : ; P0 and on the shadow lines of L1.

Lemma 4.7. Let 06 k6m be an integer. Applying the rules (1); (2); (3) and (4)
of Theorem 4:5 to the restriction of the shadow lines of L1 to the points having an
abscissa lower than or equal to k describes the behavior of the cells of the :rst row
of the tableaux Pn; : : : ; PX (k)−1. Moreover; if the shadow line L1

j intersects the line
x= k in the valid domain and the lowest point of intersection between these two lines
is (k; yj); then the (�1 + j)th cell of the :rst row of the tableau PX (k)−1 is labeled by
Y (yj) (resp. unlabeled) if yj ¿ 0 (resp. yj = 0).

Proof. We prove this lemma by induction on k. If k = 0, it follows from Algorithm 3
and the de<nition of B1 that the shadow line L1

j intersects the line x= 0 on the point
(0; yj) (which lies in the valid domain) if and only if the (�1 +j)th cell of T is labeled
by Y (yj). The result for k = 0 follows from this observation, the rule (1), and from
the fact that, by de<nition of �; Pn =T . Now we assume that the result holds for the
line x= k (06 k ¡m) and we consider the line x= k + 1.

(a) First, we consider what happens in steps X (k)−1; : : : ; X (k+1)+1. We can notice
that, by de<nition of the mapping X , none of the integers X (k) − 1; : : : ; X (k + 1) + 1
appears in �̂ or as the label of a cell of U . It follows from the de<nition of �
that during the steps X (k) − 1; : : : ; X (k + 1) + 1, the only operations performed by
� are the suppressions of the cells having these integers for labels. On the other
hand, a shadow line L1

j leaves the valid domain, through a point (k; yj), if and only
if X (k + 1)¡Y (yj)¡X (k). Hence, it follows from the rule (2) that the result holds
for the tableaux Pn; : : : ; PX (k+1).

(b) Now, it remains to consider the step X (k + 1). First, we can deduce
from Algorithm 3 that the line x= k + 1 intersects at most one shadow line of
L1 on a vertical segment, the other shadow lines of L1 intersecting x= k + 1 on a
horizontal segment. For every shadow line L1

j , we denote by (k; zj) (resp. (k + 1; yj))
its lowest intersection point with the line x= k (resp. x= k+1), if such a point exists.

(b.1) If x= k+1 intersects no shadow line of L1 on a vertical segment, the rules of
Theorem 4.5 imply that no cell of the <rst row of PX (k+1) is modi<ed. On the other
hand, it follows from the de<nition of the shadow lines that there is no A-point of A1

or B-point of B1 on the line x= k + 1, which implies that X (k + 1) �∈ �̂ and that no
cell of the <rst row of U is labeled by X (k + 1). We deduce from this fact and from
the de<nition of � that during the step X (k + 1), no cell of the <rst row of PX (k+1) is
modi<ed, and the lemma holds in this case.

(b.2) Now, we assume that the line x= k + 1 intersects the shadow line L1
j on a

vertical segment. This implies that (k + 1; yj) lies in the valid domain and that, for
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l �= j, if zl ¿ 0, then yl = zl. First, we can deduce from the induction hypothesis and
from (a) that

(i) the <rst row of the tableau PX (k+1) has at least �1 + j − 1 cells, and exactly
j − 1 cells if and only if L1

j enters into the valid domain through a point
(k + 1; y),

(ii) the (�1 + j− 1)th cell of this row (if j¿ 1) is either unlabeled (if L1
j−1 does not

intersect the line x= k + 1) or labeled by Y (yj−1)¡Y (yj),
(iii) the (�1 + j)th cell of this row (if it exists) is labeled by Y (zj)¿Y (yj).

If (k + 1; yj) is an A-point (i.e. a SW-corner of L1
j ), it follows from the de<nition of

� that the pair (X (k + 1); Y (yj))∈ � and that PX (k+1)−1 = ExtIns(PX (k+1); Y (yj)). On
the other hand, we deduce from (i), (ii) and (i–ii) that the external insertion of Y (yj)
in PX (k+1) labels the (�1 + j)th cell of the <rst row with Y (yj), creating it if and only
if L1

j enters into the valid domain through a point (k +1; y), and according to rule (3)
the result holds in this case.

If (k + 1; yj) is not an A-point, it follows from the de<nition of the shadow lines
and from the Algorithm 3 that yj = 0, that B1 contains at least j B-points, and that the
jth B-point (x; y) of B1 satis<es x= k+1 and y¿ zj, which implies that the (�1 + j)th
cell of the <rst row of U is labeled by X (k + 1). Hence, during the X (k + 1)th step
of �, the (�1 + j)th cell of the <rst row of PX (k+1) is modi<ed by an internal insertion
(if this cell exists), that remove its label, or an empty cell insertion if this cell does
not exist in PX (k+1), and, according to rule (4) and points (i) and (ii), the result holds
in this case. Finally, we can notice that this cell will not be modi<ed by the last steps
of �, which agrees with the rules of Theorem 4.5.

Proof of Theorem 4.5. The proof of the theorem for all the rows of the tableaux
Pn; : : : ; P0 is based on the same principle as the proof of the <rst row and on the
following facts:

• In �, a label removed from a cell of the <rst row by an internal or an external
insertion labels a cell of the second row.

• All the NE-corners of the shadow lines of Li−1 belonging to the valid domain are
the A-points used to de<ne the shadow lines of Li.

• The B-points of Bi being given by the ith rows of T and U .

Remark 4.8. In the case where P is equivalent to a pair of standard tableaux hav-
ing the same shape, our result is equivalent to the result of Viennot, as described
in [14].

Now, we deduce from the previous theorem some combinatorial properties of the
Robinson–Schensted correspondence for skew oscillating tableaux. One of the beautiful
properties of the Robinson–Schensted correspondence for standard tableaux relies on
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the exchange of the tableaux P and Q. Sch?utzenberger showed [17] that if (P;Q) is
in bijection with a permutation �, then (Q; P) is in bijection with �−1, and so, the
Robinson–Schensted correspondence is a bijection between involutions and standard
tableaux. Later Viennot [20] proved these results using simple properties of its ge-
ometric construction. In the same way, with our construction we can prove similar
results for skew oscillating tableaux.

De�nition 4.9. Let n be an integer and P a tableau belonging to PT(�=�)
(resp. PT(�=�)), such that all these labels are less than or equal to n. We de<ne the
tableau Pc of PT(�=�) (resp. PT(�=�)) by Pc(u; v) = n + 1 − P(u; v) for each
cell (u; v)∈ �=�.

De�nition 4.10. We denote ICn the set of involutions on [n] such that every cycle
(a; b) (a �= b) and every <xed point (a) can be of two types (colors), called bold or
normal.

The following property of the shadow lines associated to a triple (�; T; U ) is a
direct consequence of the previous de<nitions and of the de<nition of the shadow
lines.

Claim 4.11. The shadow lines of (�−1; U c; T c) and its valid domain are obtained from
those of (�; T; U ) by re;ecting in the line y= x.

Theorem 4.12 (Dulucq and Sagan [5]). Let n= 2m be an integer and (�; T; U ) a
triple of BWn×PT(�=�)×PT(�=�). If RSSO(�; T; U ) = (P;Q) then RSSO(�−1; U c; T c)
= (Q; P).

Proof. This result follows in a straightforward way from Claim 4.11 and
Theorem 4.5.

Proposition 4.13. There is a bijection , : {�∈BW2n|�= �−1} → ICn.

Example 4.14.

We then have ,(�) = (3)(2; 4)(1; 5)(6): the cycle (2; 4) and the <xed point (3) are bold,
the cycle (1; 5) and the <xed point (6) are normal.

As an immediate consequence of Theorem 4.12 and Proposition 4.13, we have the
following result.
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Corollary 4.15 (Dulucq and Sagan [5]). Let n= 2m. RSSO induces a bijection between
the skew oscillating tableaux of SOm(�; ) and the pairs (�; T ) such that �∈ ICm;
T ∈PT(�=�) and ,−1(�)∪̇T ∪̇Tc = [n].

Furthermore, with the bijection between involutions and standard tableaux,
Sch?utzenberger [18] proved that the number of odd height columns in a standard
tableau is the number of <xed points of the involution corresponding to this tableau, a
result which has a direct geometric proof using the construction of Viennot. Sagan
and Stanley [15] give an analogous result in the case of the correspondence for skew
tableaux. To conclude this section, we extend these results to the case of skew
oscillating tableaux. For a given Ferrers diagram �, we denote by odd(�) the number
of odd height columns in �.

Theorem 4.16. Let � be an involution of ICm; T ∈PT(�=�) and P ∈SOm(�; ); such
that (�; T ) corresponds to P as in Corollary 4:15. Then odd() = odd(�) + <xN(�);
where <xN(�) the number of normal :xed points in �.

In order to prove this result, we need the following lemma.

Lemma 4.17. The ith row of the tableau Pm has exactly �i + k cells if and only if
exactly k shadow lines belonging to Li intersect the line y= x in the valid domain.

Proof. The proof is divided into two cases (we recall that n= 2m).
(a) If during the mth step a cell is added to Pm, there is l∈ [m] such that X (l) =m.

It follows from Theorem 4.5 that the number of cells in the ith row of Pm is �i plus
the number of shadow lines of Li whose intersection with x= l is entirely in the valid
domain or whose termination point is (x; 0) with x¡ l. Let yVD be the minimal height
of the boundary of the valid domain at x= l. If X (l) =m, then there are l− 1 strictly
positive ordinates yi such that Y (yi)¡m. It follows that x= l intersects x=y at the
point (l; yVD + 1). Thus, every shadow line intersecting x= l in the valid domain or
leaving it through a point (x; 0) such that x6 l intersects the line x=y in the valid
domain and conversely.

(b) Else, during the mth step, a cell is removed from Pm, which implies that there is
l∈ [m] such that Y (l) =m, and l′ ∈{0; : : : ; m} such that X (l′)¿m and X (l′ + 1)¿m
or l′ =m. Following Theorem 4.5, the number of cells in the ith row of Pm is �i
plus the number of shadow lines of Li whose intersection with x= l is entirely in
the valid domain or whose termination point is (x; 0) with x¡ l. We can notice that
the point (l′; l′) is in the valid domain, the point (l′ + 1; l′) (if l′¡m) is not in the
valid domain and it follows that the line x=y intersects the boundary of the valid
domain on a vertical segment of this boundary. Hence, a shadow line of Li intersects
x=y in the valid domain if and only if it intersects the line x= l′ (we recall that we
consider the lowest intersection) on a point (x; y) such that y6 l′, which implies
the result.
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Proof of Theorem 4.16. Let �, T and P be as de<ned in Theorem 4.16. First, for a
positive integer j, we denote by kj the greatest integer i such that the set Li of shadow
lines has at least j lines. Next, we de<ne an operation of extension of a Ferrers diagram
� in the following way: if i is a positive integer, then ext(�; i) is the diagram obtained
by adding a cell at the end of every row �j of � such that 16 i6 kj. For example, if
k1 = 2, then

�= ⇒ ext(�; 1) = :

If this operation adds k cells to �, we have odd(ext(�; i)) − odd(�) = k mod 2. In-
deed, for any odd integer i, adding a cell at the end of rows i and i + 1 of �
does not modify the number of odd height columns. Moreover, if we remark that
�= ext((: : : ext(ext(�; 1); 2); : : :); |L1|) (where |L1| denotes the number of lines of L1),
it remains to show that the number of j∈ [k1], such that kj is odd, is the number of
normal <xed points of �. For this, we <rst deduce from the symmetry of the shadow
diagram corresponding to (�; T ) (Claim 4.11) that every shadow line has a SW-corner
or a NE-corner on the line x=y. Next, we remark that a normal <xed point (x) of �
corresponds to a pair (n+1−x; x) in � and that the point (X−1(n+1−x); Y−1(x)) lies
on the line x=y, which implies a one-to-one correspondence between the SW-corners
of the lines belonging to L1 and the normal <xed points of �. Finally, it suTces to
remark that

• a NE-corner of Lij in the valid domain and on the line y= x induces a SW-corner
in the valid domain and on the line y= x of Li+1

j ,
• a SW-corner of Lij in the valid domain and on the line y= x induces either no corner

of Li+1 on the line x=y or a NE-corner of Li+1
j in the valid domain and on the line

y= x (and, by the previous point, a SW-corner of Li+2
j in the valid domain and on

the line y= x).

5. Conclusion

In this paper, we gave extensions of classical combinatorial properties of the
Robinson–Schensted correspondence for the family of skew oscillating tableaux: the
geometric construction of Viennot, the algorithm of Beissinger and a property concern-
ing the number of odd columns in the <nal shape of a skew oscillating tableau.

There are other properties of this correspondence that can be extended to the families
of oscillating and skew oscillating tableaux. For example, in [3,2], we extend the
notion of Knuth class (de<ned by Knuth [9]) to the family of oscillating tableaux and,
partially, to the family of skew oscillating tableaux, and the algorithm of Beissinger,
which gives us an alternative proof of Theorem 4.16. Moreover, all the results presented
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here and in [3,2] can easily be extended to the family of generalized oscillating and
generalized skew oscillating tableaux (see [8,12] for the notions of generalized insertion
and generalized suppression and [12] for a description of a correspondence for the
family of generalized skew oscillating tableaux).

We should note that in [12,11], Roby describes a geometric version of the work of
Fomin [7], and then a geometric version of the Robinson–Schensted correspondence
for skew oscillating tableaux. It would be interesting to relate his construction to our
construction.

Finally, there are some combinatorial properties of the Robinson–Schensted corre-
spondence that we could not extend to the family of skew oscillating tableaux, like the
“Jeu de taquin” of Sch?utzenberger [18] or his “vidage-remplissage” [17,6] (although
an analogue of this construction has been de<ned for the family of oscillating tableaux
in [4]). On the other hand, it could be interesting to study the families of shifted
oscillating and shifted skew oscillating tableaux (see [13,21] for the notion of shifted
tableaux).
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