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Let G be a finite group, S a subset of G=f1g; and let Cay ðG; SÞ denote the Cayley
digraph of G with respect to S: If, for any subset T of G=f1g; CayðG; SÞ ffi CayðG; T Þ
implies that Sa ¼ T for some a 2 AutðGÞ; then S is called a CI-subset. The group

G is called a CIM-group if for any minimal generating subset S of G; S [ S	1 is a

CI-subset. In this paper, CIM-abelian groups are characterized. # 2002 Elsevier Science

(USA)

Key Words: Cayley digraph; CI-subset; CIM-group.
1. INTRODUCTION

Let G be a finite group and let S be a subset of G=f1g: The Cayley digraph

X ¼ CayðG; SÞ of G with respect to S is defined to have vertex set V ðX Þ ¼ G
and edge set EðX Þ ¼ fðg; sgÞ j g 2 G; s 2 Sg: It is seen that X is connected if
and only if S generates the group G: If S ¼ S	1 then X ¼ CayðG; SÞ; called a
Cayley graph, is viewed as an undirected graph by identifying two oppositely
directed edges with one undirected edge. A subset S of G=f1g is said to be a
CI-subset of G if for any subset T of G=f1g; CayðG; SÞ ffi CayðG; T Þ implies
that there is an automorphism a of G such that Sa ¼ T :

The study of CI-subsets has received considerable attention for more than
30 years. In 1967 !AAd!aam [1] posed the conjecture that each finite cyclic group
is a DCI-group (a finite group G is called a DCI-group if each subset of
1Supported by the NSFC(10071002) and PD154-NJTU.
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G=f1g is a CI-subset). The conjecture was disproved in 1970 by Elspas and
Turner [6] but it is true if the number n of vertices is either a prime [4], or a
product of two primes [17] or satisfies the condition ðn;fðnÞÞ ¼ 1; where f is
Euler’s function [27]. It is known that the conjecture fails if n is divisible by 8
or by an odd square, and P!aaley [27] conjectured that !AAd!aam’s conjecture is
true for all other values of n: This was proved by Muzychuk [25, 26]. Also, a
lot of other important work has been done about DCI-groups [2, 3, 5, 10].
However, DCI-groups are rare and CI-subsets have been investigated under
various additional conditions, for example, m-DCI groups and m-CI-
groups, see [7, 19–24]. This paper is devoted to the study of the following
question posed by the third author [29].

Question 1.1 [29, Problem 6]. Let G be a finite group and let S be a

minimal generating subset of G:

(1) Is S a CI-subset?
(2) Is S [ S	1 a CI-subset?

Here, a minimal generating subset S of G means that S generates G and
for any s 2 S; S=fsg does not generate G: Both questions (1) and (2) were
answered in the affirmative for cyclic groups [13–15] and for abelian groups
with cyclic Sylow 2-subgroups [9]. Also, the question (1) was answered in the
affirmative for minimum generating subsets (minimal generating subsets
with least cardinality) of abelian groups [8]. However, Li and Zhou [24] gave
infinite families of examples which show that the answers to questions (1)
and (2) are negative in general.

Meng and Xu [18] defined the so-called DCIM- and CIM-groups: a finite
group G is called a DCIM- and a CIM-group if for each minimal generating
subset S of G; S and S [ S	1 are CI-subsets, respectively. Meng and Xu [18]
characterized DCIM-abelian groups (see also Li and Zhou [24]), and they
proposed the following question.

Question 1.2 [18, Problem 1]. Characterize CIM-abelian groups.

The purpose of this paper is to give an answer for the above question.

Theorem 1.3. A finite abelian group G is a CIM-group if and only if

Sylow 2-subgroups of G are elementary abelian or have no direct factor

isomorphic to Z2:

Let u be a vertex of an undirected graph X : We denote by X1ðuÞ the
neighborhood of u in X ; that is, the vertices adjacent to u: For the group
theoretic and graph theoretic notation and terminology not defined here we
refer the reader to [12, 16].
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2. PRELIMINARY RESULTS

In this section we give some preliminary results which will be used later.

Proposition 2.1 [18, Theorem 7]. A finite abelian group G is a DCIM-

group if and only if G is a 2-group or G has no direct factor isomorphic to the

type Z2 � Z2p ðp52Þ:

Independently, this proposition was proved by Li and Zhou [24]. The
following is the basic inclusion and exclusion formula (see also [11, Sect.
2.1]).

Proposition 2.2 [28, Chap. 2, Theorem 1.1]. Let A1;A2; . . . ;An be

subsets of S and let r be a non-negative integer. Let f ðn; rÞ denote the number

of the elements of S that belong to exactly r of Ai: Then

f ðn; rÞ ¼
Xn
k¼r

ð	1Þk	r
k

r

 ! X
K�M
jK j¼k

\
i2k

Ai

�����
�����;

where M ¼ f1; 2; . . . ; ng:

Lemma 2.3. Let

pn ¼

	nþ
Pn	 2

2
i¼1 2i

n

2iþ 1

 !
	 2i

n

2i

 !" #
; n even

Pn	 1

2
i¼1 2i

n

2i

 !
	 2i

n

2iþ 1

 !" #
; n odd:

8>>>>>>><
>>>>>>>:

If n52 then pn=0:

Proof. It is easy to check pn=0 for n ¼ 2 and 3. Let n54: We divide the
proof into four cases: n ¼ 4k; 4k þ 2; 4k þ 1; or 4k þ 3 (k a positive
integer). If n ¼ 4k; then
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Similarly, if n ¼ 4k þ 2 then pn ¼ 	2ðn
1
Þ 	 2ðn

3
Þ 	 � � � 	 2ð n

n=2	2
Þ 	 ð nn=2Þ50:

If n ¼ 4k þ 1; then
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¼ ðn	 1Þ2 	 ðn	 5Þ
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By the unimodality of the binomial coefficients, we have pn > 0:
Similarly, if n ¼ 4k þ 3 then pn ¼ ðn	 1Þ2 	

Pðn	3Þ=4
k¼1 ðn	 4k 	 1Þ½ð n

2kÞ	
ð n
2kþ1Þ� > 0: ]

3. PROOF OF MAIN RESULT

In this section, we shall prove Theorem 1.3.

Lemma 3.1. Let G ¼ Z2 � Z2n ¼ hai � hbiðn52Þ; S ¼ fb; b	1; ab2
n	2

;
ðab2

n	2

Þ	1g; and T ¼ fb; b	1; a; ab2
n	1

g: Then CayðG; SÞ ffi CayðG; T Þ and S
is not a CI-subset of G:

Proof. Let X ¼ CayðG; SÞ and Y ¼ CayðG; T Þ: Define a map s :G! G
by

aibj ! aibj	i�2
n	2

; i ¼ 0 or 1; 04j52n:

Remember that for any g 2 G; X1ðgÞ and Y1ðgÞ denote the neighborhoods of
g in X and Y ; respectively. Then we have X1ðaibjÞ ¼ faibjþ1; aibj	1; aiþ1

bjþ2n	2

; aiþ1bj	2n	2

g: By the definition of s; considering i ¼ 0; 1; respectively
we obtain that Y1ððaibjÞ

sÞ ¼ ½X1ðaibjÞ�s; and hence s is an isomorphism from
X to Y : Since there are two involutions in T but not in S; S is not a CI-
subset of G: ]

Hereafter we assume that G is a finite abelian group and S is a minimal
generating subset of G: Let s be an isomorphism from X ¼ CayðG; S [ S	1Þ
to Y ¼ CayðG; T Þ with 1s ¼ 1: Then ðS [ S	1Þs ¼ T : Assume that Sylow 2-
subgroups of G are elementary abelian or have no direct factor isomorphic
to Z2: We shall prove that there exists an a 2 AutðGÞ such that ðS [ S	1Þa ¼
T ; that is, S [ S	1 is a CI-subset of G:
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Lemma 3.2. If Sylow 2-subgroups of G are elementary abelian, then S [
S	1 is a CI-subset of G:

Proof. Define an equivalence relation � on S [ S	1 by the rule

s1 � s2 , s21 ¼ s22; for any s1; s2 2 S [ S	1:

Then the set of all involutions in S [ S	1; say S0; is an equivalence class
under � : If Si is an equivalence class then it is easy to show that S	1

i is also
an equivalence class, and moreover if Si=S0 then S	1

i =Si because G has no
element of order 4. Thus, we may assume that S [ S	1 ¼ S0 [ S1 [ � � � [
S‘ [ S	1

1 [ � � � [ S	1
‘ where S0; S1; . . . ; S‘; S	1

1 ; . . . ; S	1
‘ are all equivalence

classes of � on S [ S	1:
The proof of Lemma 3.2 will be carried out over a series of three

claims. We show ðS	1
i Þs ¼ ðSsi Þ

	1 in Claim 2 and hence we may
assume T ¼ T0 [ T1 [ � � � [ T‘ [ T	1

1 [ � � � [ T	1
‘ where Ti ¼ Ssi : By

Claim 3 we have CayðG; S0 [ S1 [ � � � [ S‘Þ ffi CayðG; T0 [ T1 [ � � � [ T‘Þ:
Note that S0 [ S1 [ � � � [ S‘ is a minimal generating subset of G:
Thus, by Proposition 2.1 there exists an a 2 AutðGÞ such that
ðS0 [ S1 [ � � � [ S‘Þ

a ¼ T0 [ T1 [ � � � [ T‘ and it follows that ðS [ S	1Þa ¼
T ; that is, S [ S	1 is a CI-subset of G: To prove Claim 2 and
Claim 3, we need to know the intersection of the neighborhoods
of gs1 and gs2 for any g 2 G and s1; s2 2 S [ S	1; which will be computed
in Claim 1.

For convenience of statement, we assume that S0; S1; . . . ; Sk are all the
equivalence classes of � on S [ S	1 and let Ti ¼ Ssi ði ¼ 0; 1; . . . ; kÞ; where
S0 has the same meaning as above. Then T ¼ T0 [ T1 [ � � � [ Tk :

Claim 1. Let s1; s2 2 S [ S	1; g 2 G and let s1=s�1
2 : Then we have

(1) X1ðgs1Þ \ X1ðgs2Þ ¼
fg; gs1s2g; s1fs2
fg; gs21; gs1s2; gs1s

	1
2 ¼ gs2s	1

1 g; s1 � s2;

�

(2) Let s1 2 St=S0: Then X1ðgs1Þ \ X1ðgs	1
1 Þ ¼ fgs1sjs 2 S	1

t g ¼ X1ðgs1Þ
\X1ðgS	1

t Þ where X1ðgS	1
t Þ ¼

S
s2S	1

t
X1ðgsÞ:

Proof. If fx1; x2; . . . ; xng is a minimal generating subset of G then fxd11 ;
xd22 ; . . . ; x

dn
n g ðdi ¼ 1 or 	1; i ¼ 1; 2; . . . ; nÞ are also minimal generating

subsets of G: To prove (1), we may assume that S ¼ fs1; s2; . . . ; sng since
s1=s�1

2 :
Assume that for some si; sj 2 S; s1s

di
i ¼ s2s

dj
j ðdi; dj ¼ 1 or 	1). By

the minimality of fsd11 ; s
d2
2 ; . . . ; s

dn
n g; we have i ¼ 1 or 2 and j ¼ 1

or 2. Furthermore, if i ¼ 1 then j ¼ 2 and if i ¼ 2 then j ¼ 1: Thus, it
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follows that

X1ðgs1Þ \ X1ðgs2Þ �
fg; gs1s2g; s21=s22
fg; gs21; gs1s2; gs1s

	1
2 ¼ gs2s	1

1 g; s21 ¼ s22:

(

The inverse inclusion is obvious and (1) follows.
To prove (2), we assume that for some si; sj 2 S; s1s

di
i ¼ s	1

1 sdjj ðdi; dj ¼ 1
or 	1). By the minimality of fsd11 ; s

d2
2 ; . . . ; s

dn
n g; we have i ¼ j: Since s1 2 St

and St=S0; we have s21=1: Thus, sdii ¼ ðsdjj Þ
	1 and s21 ¼ ðsdjj Þ

2; which forces
sdjj 2 St and sdii 2 S	1

t : Therefore, X1ðgs1Þ \ X1ðgs	1
1 Þ � fgs1sjs 2 S	1

t g: The
inverse inclusion is also obvious. Since St=S0; we have St=S	1

t ; which
implies that s1fs	1

t for any st 2 St: By (1), if st=s1 then X1ðgs1Þ \ X1ðgs	1
t Þ ¼

fg; gs1s	1
t g; which is a subset of X1ðgs1Þ \ X1ðgs	1

1 Þ ¼ fgs1sjs 2 S	1
t g: It

follows that X1ðgs1Þ \ X1ðgs	1
1 Þ ¼ fgs1sjs 2 S	1

t g ¼ X1ðgs1Þ \ X1ðgS	1
t Þ: ]

Claim 2. Sj ¼ S	1
i if and only if Tj ¼ T	1

i :

Proof. Assume that Sj ¼ S	1
i : Let i=0 and ti ¼ ssi 2 Ti where si 2 Si: By

i=0; we have that S	1
i =Si and so j=i: Claim 1 tells us that jX1ðsiÞ \

X1ðSjÞj ¼ jfsisjs 2 Sjgj ¼ jSjj and it follows that jY1ðtiÞ \ Y1ðTjÞj ¼ jSjj: Sup-
pose that t	1

i =2 Tj: Then jY1ðtiÞ \ Y1ðTjÞj5jf1; titjt 2 Tjgj ¼ jTjj þ 1: Thus, jTjj
þ14jSjj: However, Tj ¼ Ssj implies that jSjj ¼ jTjj; a contradiction. There-
fore, t	1

i 2 Tj and T	1
i ¼ Tj:Now we have proved that for any i=0; Sj ¼ S	1

i
implies that Tj ¼ T	1

i : Consequently, T0 ¼ T	1
0 :

Assume that Tj ¼ T	1
i : We prove Sj ¼ S	1

i : Suppose to the contrary that
Sj=S	1

i : Then there exists some m ðm=jÞ such that Sm ¼ S	1
i : By the above

proof, we have Tm ¼ T	1
i : It follows that Tm ¼ Tj ¼ T	1

i ; contrary to the fact
that m=j: ]

Claim 3. Let s1; s2; . . . ; sn 2 S and si 2 Ski where 04ki4k ði ¼ 1; 2; . . . ;
nÞ: Then ðs1s2 � � � snÞ

s ¼ ðs1s2 � � � sn	1Þ
stn for some tn 2 Tkn :

Proof. For n ¼ 1 the claim is obvious. Let n52 and set x ¼ s1s2 � � � sn	2

(x ¼ 1 if n ¼ 2). By induction on n; we may assume that ðxsn	1Þ
s ¼ xst0n	1

and ðxsnÞ
s ¼ xst0n for some t0n	1 2 Tkn	1

and t0n 2 Tkn : It suffices to prove that
ðxsn	1snÞ

s ¼ ðxsn	1Þ
stn for some tn 2 Tkn :

Let kn=kn	1: We distinguish two cases: (i) Skn=S	1
kn	1

and (ii) Skn ¼ S	1
kn	1

: In
the first case, we have Tkn=T	1

kn	1
(Claim 2) and so t0n	1t

0
n=1: Since

X1ðxsn	1Þ \ X1ðxsnÞ ¼ fx; xsn	1sng (Claim 1) and Y1ðxst0n	1Þ \ Y1ðxst0nÞ �
fxs; xst0n	1t

0
ng; it follows that ðxsn	1snÞ

s ¼ xst0n	1t
0
n ¼ ðxsn	1Þ

st0n where t
0
n 2 Tkn :

In the second case, Tkn ¼ T	1
kn	1

: Since kn=kn	1; we have kn	1=0: By Claim 1,
we have X1ðxsn	1Þ \ X1ðxSkn Þ ¼ fxsn	1sjs 2 Skng: Clearly, Y1ðxst0n	1Þ\
Y1ðxsTknÞ � fxst0n	1tjt 2 Tkng: Since jSkn j ¼ jTkn j; there exists a tn 2 Tkn such that
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ðxsn	1snÞ
s ¼ xst0n	1tn ¼ ðxsn	1Þ

stn: Combining these two cases, we have
proved that for any kn=kn	1; ðxsn	1snÞ

s ¼ ðxsn	1Þ
stn for some tn 2 Tkn :

Consequently, it is also true for kn ¼ kn	1: ]

Now we are ready to prove Lemma 3.2. Note that S [ S	1 ¼ S0 [ S1 [
� � � [ S‘ [ S	1

1 [ � � � [ S	1
‘ where S0; S1; . . . ; S‘; S	1

1 ; . . . ; S	1
‘ are all equiva-

lence classes of � on S [ S	1: By Claim 2, we may let T ¼ T0 [ T1 [ � � � [
T‘ [ T	1

1 [ � � � [ T	1
‘ where Ti ¼ Ssi for 04i4‘: Set S0 ¼ S0 [ S1 [ � � � [ S‘

and T 0 ¼ T0 [ T1 [ � � � [ T‘: Then S0 is a minimal generating subset of G and
by Claim 3 we have CayðG; S0Þ ffi CayðG; T 0Þ: By Proposition 2.1, S0 is a CI-
subset and so there is an a 2 AutðGÞ such that ðS0Þa ¼ T 0: It follows that
ðS [ S	1Þa ¼ ðS0 [ ðS0Þ	1Þa ¼ T 0 [ ðT 0Þ	1 ¼ T and so S [ S	1 is a CI-subset
of G: ]

Lemma 3.3. If Sylow 2-subgroups of G have no direct factor isomorphic to

Z2; then S [ S	1 is a CI-subset of G:

Proof. Denote by S1 the set of all elements of order 4 in S [ S	1 and set
S2 ¼ ðS [ S	1Þ=S1; T1 ¼ Ss1 and T2 ¼ Ss2 : Clearly, S

	1
1 ¼ S1 and S	1

2 ¼ S2:

First we give an outline of the proof. The proof will also be carried out
over a series of claims. Note that s is an isomorphism from X ¼ CayðG; S [
S	1Þ to Y ¼ CayðG; T Þ with 1s ¼ 1: In Claim 1 we show that the restriction
of s on hS2i; say a; is a group isomorphism from hS2i to hT2i: Hence, to
prove the lemma it suffices to construct a group isomorphism, say b; from
hS1i to hT1i such that Sb1 ¼ T1 and ub ¼ ua for any u 2 hS1i \ hS2i (Claim
4) because the automorphism of G defined by as! absa for any a 2 hS1i
and s 2 hS2i; maps S [ S	1 to T : Since Sylow 2-subgroups of G have no
direct factor isomorphic to Z2; we may show hS1i ¼ ha1i � � � � � haki
where S1 ¼ fa1; a2; . . . ; akg [ fa	1

1 ; a	1
2 ; . . . ; a	1

k g: Thus to construct the
above b such that Sb1 ¼ T1; we need to prove that T1 consists of elements
of order 4 and hT1i ¼ hb1i � hb2i � � � � � hbki where T1 ¼ fb1; b2; . . . ; bkg
[fb	1

1 ; b	1
2 ; . . . ; b	1

k g; which will be proved in Claim 2. For u 2 hS1i \ hS2i;
it is seen that u ¼ x21x

2
2 � � � x

2
m (for i=j; xi=xj) where xi 2 fa1; a2; . . . ; akg; and

ua ¼ y21y
2
2 � � � y

2
m (for i=j; yi=yj) where yi 2 fb1; b2; . . . ; bkg: We call x1; x1;

. . . ; xm ðy1; y2; . . . ; ymÞ the factors of uðuaÞ: To construct the above b such
that ua ¼ ub for any u 2 hS1i \ hS2i; we need to prove that the number of
common factors of u1; u2; . . . ; un is equal to the number of common factors
of ua1; u

a
2; . . . ; u

a
n for any u1; u2; . . . ; un 2 hS1i \ hS2i; which will be proved in

Claim 3.

Claim 1. The restriction of s on hS2i is a group isomorphism from hS2i
to hT2i and the restriction of s on hS1i is a graph isomorphism from

CayðhS1i; S1Þ to CayðhT1i; T1Þ:
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Proof. Let s1; s2 2 S [ S	1 and s1=s2: First we prove that s21=s22; or
oðs1Þ ¼ 4 and s2 ¼ s	1

1 : Let s21 ¼ s22: Then s
	1
1 s2 is an involution. If s1; s2 2 S

then G ¼ hS=fs1g; s	1
1 s2i and G=hS =fs1gi because S is a minimal

generating subset of G; which implies that G has a direct factor isomorphic
to Z2 ðhs	1

1 s2iÞ; contrary to the hypothesis. Thus, s1 and s2 cannot be two
elements of any minimal generating subset of G and so s2 ¼ s	1

1 : By s21 ¼ s22;
we have oðs1Þ ¼ 4:

Let s1; s2 2 S [ S	1 with s1=s2: We have proved that s21=s22; or s2 ¼ s	1
1

and oðs1Þ ¼ 4: With this result, a similar argument to the proof of Claim 1 in
Lemma 3.2 gives rise to the following formula for any g 2 G:

X1ðgs1Þ \ X1ðgs2Þ ¼

fgg; s2 ¼ s	1
1 and oðs1Þ=4

fg; gs21g; s2 ¼ s	1
1 and oðs1Þ ¼ 4

fg; gs1s2g; s2=s	1
1 :

8><
>:

Since jX1ðgs1Þ \ X1ðgs2Þj ¼ 1 if and only if s2 ¼ s	1
1 and oðs1Þ=4; we have

ðs	1Þs ¼ ðssÞ	1 for any s 2 S2: Thus T	1
2 ¼ ðSs2 Þ

	1 ¼ ðS	1
2 Þs ¼ T2 and T	1

1 ¼
T1: By a similar argument to the proof of Claim 3 in Lemma 3.2, we have
that for any s1; s2; . . . ; sn 2 S [ S	1; ðs1s2 � � � snÞ

s ¼ ðs1s2 � � � sn	1Þ
stn where tn

¼ ssn if sn 2 S2 and tn 2 T1 if sn 2 S1: This implies that the restriction of s on
hS2i is a group isomorphism from hS2i to hT2i and the restriction of s on
hS1i is a graph isomorphism from CayðhS1i; S1Þ to CayðhT1i; T1Þ: ]

If S1 is empty then S [ S	1 coincides with S2: By Claim 1, Lemma 3.2 is
true. Thus, from now on we assume jS1j51 and denote by a the
isomorphism from hS2i to hT2i induced by the restriction of s on hS2i:

Let S1 ¼ fa1; a2; . . . ; akg [ fa	1
1 ; a	1

2 ; . . . ; a	1
k g with fa1; a2; . . . ; akg � S:

Then k51: We claim hS1i ¼ ha1i � ha2i � � � � � haki: Otherwise, without
loss of generality, we may suppose that a21 ¼ ðad22 a

d3
3 � � � adkk Þ

2 by the
minimality of S; where di ¼ 0; 1 or 	1 ð24i4kÞ: Clearly, hS1i ¼ ha	1

1 ad22
� � � adkk ; a2; a3; . . . ; aki and hence hS=fa1g; a	1

1 ad22 � � � adkk i ¼ G: Since hS=fa1gi
=G and oða	1

1 ad22 � � � adkk Þ ¼ 2; G has a direct factor isomorphic to
Z2 ðha	1

1 ad22 � � � adkk iÞ; contrary to the hypothesis.

Claim 2. Each element of T1 has order 4 and hT1i ¼ hb1i � hb2i �
� � � hbki where T1 ¼ fb1; b2; . . . ; bkg [ fb	1

1 ; b	1
2 ; . . . ; b	1

k g:

Proof. Since jS1j51; T1 is not empty. Let Xi ¼ CayðhSii; SiÞ and Yi ¼
CayðhTii; TiÞ ði ¼ 1; 2Þ: By Claim 1, Xi ffi Yi ði ¼ 1; 2Þ: If each element of T1
has order 4 then we have hT1i ¼ hb1i � hb2i � � � � hbki because jS1j ¼ jT1j
and jhS1ij ¼ jhT1ij: Thus, in order to prove the claim it suffices to prove that
each element of T1 has order 4. We consider three cases according to the
orders of elements in T1:
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Case I. There is no element of order 3 in T1:
Since X1 has no triangle and X1 ffi Y1; Y1 has no triangle and so T1

contains no element of order 3.

Case II. There is no element of order greater than 4 in T1:
Suppose to the contrary that there exists a b1 2 T1 and oðb1Þ > 4: Let

u 2 V ðX1Þ such that dX1 ð1; uÞ ¼ 2; where dX1
ð1; uÞ denotes the distance

between 1 and u: It is seen that u and 1 lie on a cycle of length 4 in X1

and so do 1 and b21 in Y1: Thus, there exist b2; b3 2 T1 ðb1=b2; b3Þ such that
b21 ¼ b2b3: If b2 ¼ b3 then jY1ðb1Þ \ Y1ðb2Þj5jf1; b21; b1b2gj ¼ 3 and if b2=b3
then jY1ðb1Þ \ Y1ðb2Þ \ Y1ðb3Þj5jf1; b21gj ¼ 2: Both are impossible since for
any a1; a2; a3 2 S1 with ai=aj ði=jÞ; jX1ða1Þ \ X1ða2Þj ¼ 2 and jX1ða1Þ \
X1ða2Þ \ X1ða3Þj ¼ 1:

Case III. There is no element of order 2 in T1:
Suppose to the contrary that V=f is the set of all involutions in T1: Set

U ¼ T1=V : Then T1 ¼ U [ V and each element of U has order 4. Let U ¼
fb1; b2; . . . ; b‘g [ fb	1

1 ; b	1
2 ; . . . ; b	1

‘ g where oðbiÞ ¼ 4 ð14i4‘Þ: Noting that
S1 ¼ fa1; a2; . . . ; akg [ fa	1

1 ; a	1
2 ; . . . ; a	1

k g and jS1j ¼ jT1j; we have k > ‘ since
V=f:

Let S2 ¼ fs1; s2; . . . ; sng; T2 ¼ ft1; t2; . . . ; tng and let sai ¼ ti ði ¼ 1; 2; . . . ;
nÞ: We may assume that si ¼ eiui and ti ¼ fivi such that oðeiÞ; oðfiÞ are
2-powers and oðuiÞ; oðviÞ are odd. Since a is a group isomorphism
from hS2i to hT2i; we have ðeiÞ

a ¼ fi: Denote by G2 the Sylow
2-subgroup of G: Then, G2 ¼ h

Sn
i¼1 feig;

Sk
i¼1 faigi ¼ h

Sn
i¼1 ffig;

S‘
i¼1 fbi

g; V i: Since G has no direct factor isomorphic to Z2; we have V � FðG2Þ
where FðG2Þ is the Frattini subgroup of G2: This implies that G2 ¼
h
Sn
i¼1 ffig;

S‘
i¼1 fbigi: Clearly, G2=h

Sn
i¼1 feig;

Sk
i¼1 faig=fajgi ðj ¼ 1; 2;

. . . ; or kÞ: If en ¼ em1

1 e
m2

2 � � � emn	1

n	1 a for some a 2 hS1i; then a	1 ¼ em1

1 e
m2

2 � � �
emn	1

n	1 e
	1
n 2 hS1i \ hS2i: Since a is an isomorphism from hS2i to hT2i;

we have fn ¼ fm1

1 fm2

2 � � � fmn	1

n	1 a
a where aa 2 hT1i: Thus, G2 ¼ h

Sn	1
i¼1 feig;Sk

i¼1faigi implies that G2 ¼ h
Sn	1
i¼1 ffig;

S‘
i¼1 fbigi: Now we may assume

that G2 ¼ h
Sm
i¼1 feig;

Sk
i¼1 faigi ¼ h

Sm
i¼1 ffig;

S‘
i¼1 fbigi ðm4nÞ such that

f
Sm
i¼1 feig;

Sk
i¼1 faigg is a minimal generating subset of G2: Since any

minimal generating subset of a p-group (p prime) is a minimum generating
subset [16, 3.15 of Chapter III], we have mþ k4mþ ‘; which contradicts
the fact that k > ‘: ]

By Claim 2, there exists a group isomorphism l; induced by ai !
bi ð04i4kÞ; from hS1i to hT1i: Clearly, lmaps S1 to T1: If hS1i \ hS2i ¼ 1
then the automorphism of G; defined by as! alsa for any a 2 S1; s 2 S2;
maps S [ S	1 to T : Thus, Lemma 3.3 is true and so we assume hS1i \
hS2i=1 from now on.
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Let %SS1 ¼ fa1; a2; . . . ; akg and %TT1 ¼ fb1; b2; . . . ; bkg: Then hS1i ¼ ha1i �
� � � � haki and hT1i ¼ hb1i � � � � � hbki where S1 ¼ %SS1 [ ð %SS1Þ

	1 and T1 ¼
%TT1 [ ð %TT1Þ

	1: Remember that each element of S1 is of order 4 and we have
assumed %SS1 � S before Claim 2. If hS1i \ hS2i has an element of order 4
then there exists at least one element of %SS1; say ai; such that it is a product of
elements in S=faig; which contradicts the minimality of S: Thus, hS1i \
hS2i is an elementary abelian 2-group. Let u 2 hS1i \ hS2i with u=1: Then
u can be written as a unique product u ¼ x21x

2
2 � � � x

2
m (for i=j; xi=xj) where

xi 2 %SS1: Since a is an isomorphism from hS2i to hT2i; ua has order 2 and
hence ua can be written as a unique product ua ¼ y21y

2
2 � � � y

2
n (for

i=j; yi=yj) where yi 2 %TT1: We call x1; x2; . . . ; xm (resp. y1; y2; . . . ; yn) the
factors of u (resp. ua) and m (resp. n) the factor number of u (resp. ua),
denoted by N ðuÞ (resp. N ðuaÞ). Since hS1i ¼ ha1i � � � � � haki and hT1i ¼
hb1i � � � � � hbki; we have that dX1

ð1; uÞ ¼ 2m and dY1 ð1; u
aÞ ¼ 2n where dX1

ð1; uÞ (resp. dY1 ð1; u
aÞ) denotes the distance between 1 and u (resp. ua) in X1

(resp. Y1). It follows that m ¼ n because X1 ffi Y1: Thus, N ðuÞ ¼ N ðuaÞ for
any u 2 hS1i \ hS2i where we let N ðuÞ ¼ 0 for u ¼ 1:

Claim 3. Let u1; u2; . . . ; un 2 hS1i \ hS2i and vi ¼ uai ði ¼ 1; 2; . . . ; nÞ:
Then the number of common factors of u1; u2; . . . ; un is equal to that of

v1; v2; . . . ; vn:

Proof. The claim is true for n ¼ 1: Let n52:
Let Ai (resp. Bi) be the set of all factors of ui (resp. vi) and let f ðn; rÞ (resp.

gðn; rÞ) be the number of all elements in %SS1 (resp. %TT1) that belong to exactly r
of Ai (resp. Bi). Then

Tn
i¼1 Ai (resp.

Tn
i¼1 Bi) is the set of all common factors

of u1; u2; . . . ; un (resp. v1; v2; . . . ; vn) and so f ðn; nÞ ¼ j
Tn
i¼1 Aij (resp.

gðn; nÞ ¼ j
Tn
i¼1 Bij). To prove the claim, it suffices to prove that f ðn; nÞ ¼

gðn; nÞ:
Let x be a factor that belongs to exactly r of Ai: Then x is a factor of

u1u2 � � � un if r is odd, but not if r is even. Thus we have

N ðu1u2 � � � unÞ ¼

Pn
i¼1 NðuiÞ 	 nf ðn; nÞ 	

Pn	2
2
i¼1 ½2if ðn; 2iÞ

þ 2if ðn; 2iþ 1Þ�; n even

Pn
i¼1 NðuiÞ 	

Pn	1
2
i¼1 ½2if ðn; 2iÞ þ 2if ðn; 2iþ 1Þ�; n odd:

8>>><
>>>:

Similarly,

N ðv1v2 � � � vnÞ ¼

Pn
i¼1 N ðviÞ 	 ngðn; nÞ 	

Pn	2
2
i¼1 ½2igðn; 2iÞ þ 2igðn; 2iþ 1Þ�; n even

Pn
i¼1 N ðviÞ 	

Pn	1
2
i¼1 ½2igðn; 2iÞ þ 2igðn; 2iþ 1Þ�; n odd:

8><
>:
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By Proposition 2.2, we have

f ðn; rÞ ¼
Xn
k¼r

ð	1Þk	r
k

r

 !X
K�M
jK j¼k

\
i2K

Ai

�����
����� ¼ f1ðn; rÞ þ ð	1Þn	r

n

r

 !
f ðn; nÞ;

where

f1ðn; rÞ ¼
Xn
k¼r

ð	1Þk	r
k

r

 !X
K�M
jK j¼k

\
i2K

Ai

�����
����� ðr5nÞ and

M ¼ f1; 2; . . . ; ng:

Similarly, gðn; rÞ ¼ g1ðn; rÞ þ ð	1Þn	rðnrÞgðn; nÞ where

g1ðn; rÞ ¼
Xn	1

k¼r

ð	1Þk	r
k

r

 !X
k�M
jK j¼k

\
i2K

Bi

�����
�����ðr5nÞ and

M ¼ f1; 2; . . . ; ng:

If n is even then N ðu1u2 � � � unÞ ¼
Pn

i¼1 N ðuiÞ 	 nf ðn; nÞ 	
Pðn	2Þ=2

i¼1

½2if ðn; 2iÞ þ 2if ðn; 2i þ 1Þ� ¼
Pn

i¼1 N ðuiÞ 	 nf ðn; nÞ 	
Pðn	2Þ=2

i¼1 ½2if1ðn; 2iÞþ

ð	1Þn	2i2iðn
2iÞf ðn; nÞþ2if1ðn; 2iþ 1Þ þ ð	1Þn	2i	12ið n

2iþ1
Þf ðn; nÞ� ¼

Pn
i¼1 N ðuiÞ

	
Pðn	2Þ=2

i¼1 ½2if1ðn; 2iÞ þ 2if1ðn; 2i þ 1Þ� þ f ðn; nÞf	nþ
Pðn	2Þ=2

i¼1 ½2ið n
2iþ1Þ 	

2iðn
2iÞ�g ¼

Pn
i¼1 N ðuiÞ 	

Pðn	2Þ=2
i¼1 ½2if1ðn; 2iÞ þ 2if1ðn; 2i þ 1Þ� þ pnf ðn; nÞ;

where pn has the same meaning as in Lemma 2.3. Similarly, if n is odd

then N ðu1u2 � � � unÞ ¼
Pn

i¼1 N ðuiÞ 	
Pðn	1Þ=2

i¼1 ½2if ðn; 2iÞ þ 2if ðn; 2iþ 1Þ� ¼Pn
i¼1 N ðuiÞ 	

Pðn	1Þ=2
i¼1 ½2if1ðn; 2iÞ þ 2if1ðn; 2iþ 1Þ� þ pnf ðn; nÞ: Thus,

N ðu1u2 � � � unÞ ¼

Pn
i¼1 N ðuiÞ 	

Pn	2
2
i¼1 ½2if1ðn; 2iÞ

þ 2if1ðn; 2iþ 1Þ� þ pnf ðn; nÞ; n even

Pn
i¼1 N ðuiÞ 	

Pn	1
2
i¼1 ½2if1ðn; 2iÞ

þ 2if1ðn; 2iþ 1Þ� þ pnf ðn; nÞ; n odd:

8>>>>>><
>>>>>>:
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Similarly,

Nðv1v2 � � � vnÞ ¼

Pn
i¼1 NðviÞ 	

Pn	2
2
i¼1 ½2ig1ðn; 2iÞ þ 2ig1ðn; 2iþ 1Þ�

þpngðn; nÞ; n even

Pn
i¼1 NðviÞ 	

Pn	1
2
i¼1 ½2ig1ðn; 2iÞ þ 2ig1ðn; 2iþ 1Þ�

þpngðn; nÞ; n odd:

8>>>>>><
>>>>>>:

By induction on n; we may assume that j
T
i2T Aij ¼ j

T
i2T Bij; where T is a

proper subset of M ¼ f1; 2; . . . ; ng; that is, jT j5n: It implies that f1ðn; rÞ ¼
g1ðn; rÞ ðr5nÞ: Since ðu1u2 � � � unÞ

a ¼ v1v2 � � � vn and uai ¼ vi ð14i4nÞ; we

have that N ðu1u2 � � � unÞ ¼ N ðv1v2 � � � vnÞ and N ðuiÞ ¼ N ðviÞ ð14i4nÞ: Hence,
N ðu1u2 � � � unÞ ¼ N ðv1v2 � � � vnÞ implies that pnf ðn; nÞ ¼ pngðn; nÞ: By Lemma
2.3, pn=0 and so f ðn; nÞ ¼ gðn; nÞ: ]

Claim 4. There exists a group isomorphism b from hS1i to hT1i such that

Sb1 ¼ T1 and ub ¼ ua for any u 2 hS1i \ hS2i:

Proof. Let 14i; j4k: Define an equivalence relation � on %SS1 ¼ fa1; a2
; . . . ; akg by the rule

ai � aj , both ai and aj are either factors of u or not for any

u 2 hS1i \ hS2i:

We also define a similar equivalence relation on %TT1 ¼ fb1; b2; . . . ; bkg; also
say �; by

bi � bj , both bi and bj are either factors of v or not for any

v 2 hT1i \ hT2i:

Let U0 be the set of all elements in %SS1 that are not factors of any element
in hS1i \ hS2i: Clearly, if U0=f then it is an equivalence class of � on %SS1:
We also have a similar subset of %TT1; say V0:

Let U1;U2; . . . ;Ul be all other equivalence classes of %SS1 different from U0;
and let u1; u2; . . . ; u‘i be all elements of hS1i \ hS2i which have a factor in Ui
for some 14i4‘: Since Ui is an equivalence class, every element in Ui is a
factor of uj for each 14j4‘i; and so there are no other elements in hS1i \
hS2i which have some factors in Ui: Clearly, Ui is the set of all common
factors of u1; u2; . . . ; and u‘i : By Claim 3, ua1; u

a
2; . . . ; u

a
‘i
have jUij common

factors. Denote the set of these common factors by Vi: Then jUij ¼ jVi j: We
prove that Vi is an equivalence class of %TT1:

Let ua‘iþ1 2 hT1i \ hT2i and ua‘iþ1=uaj ðj ¼ 1; 2; . . . ; ‘iÞ for some u‘iþ1 2
hS1i \ hS2i: It suffices to prove that ua‘iþ1 has no factor in Vi: Suppose to the
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contrary that ua1; u
a
2; . . . ; u

a
‘i
; ua‘iþ1 have at least one common factor. Claim 3

tells us that u1; u2; . . . ; u‘i ; u‘iþ1 have at least one common factor. Clearly,
this common factor belongs to Ui; contrary to the fact that u1; u2; . . . ; u‘i are
all elements of hS1i \ hS2i which have a factor in Ui: Hence, Vi is an
equivalence class of %TT1:

Thus, we can make a one-one mapping %bb from %SS1 to %TT1 such that ðUiÞ
%bb ¼

Vi ði ¼ 0; 1; 2; . . . ; ‘Þ and define a group isomorphism b from hS1i ¼ h %SS1i to
hT1i ¼ h %TT1i by am1

1 a
m2

2 � � � amkk ! ða
%bb
1Þ
m1 ða

%bb
2Þ
m2 � � � ða

%bb
k Þ
mk ; where m1;m2; . . . ;mk

are integers.
Let u 2 hS1i \ hS2i with u=1: Then u has order 2. Assume that the set of

all factors of u consist of r equivalence classes of %SS1; say Ut1 ;Ut2 ; . . . ;Utr :
Then the set of all factors of ua also consist of r equivalence classes of %TT1;
that is, Vt1 ; Vt2 ; . . . ; Vtr : Since oðuÞ ¼ 2; we have that

u ¼
Y

x2Ut1[Ut2[���Utr

x2 and ua ¼
Y

u2Vt1[Vt2[���Vtr

y2:

By the definition of b; we have ub ¼ ua for any u 2 hS1i \ hS2i:
Now we are ready to prove Lemma 3.3. Define a map g :G! G by

as! absa where a 2 hS1i and s 2 hS2i: We claim that g is an automorphism
of G: Let a1s1 ¼ a2s2 where ai 2 hS1i and si 2 hS2i ði ¼ 1; 2Þ: Then a1a	1

2 ¼
s2s	1

1 2 hS1i \ hS2i and so ða1a	1
2 Þb ¼ ðs2s	1

1 Þa: Since a;b are group
isomorphisms, we have ab1s

a
1 ¼ ab2s

a
2 which implies that g is well defined.

Now it is clear that g is an automorphism of G and ðS [ S	1Þg ¼ T :
Therefore, S [ S	1 is a CI-subset of G: ]

Proof of Theorem 1.3. Let G2 be a Sylow 2-subgroup of G: If G2 is not
elementary abelian and has a direct factor isomorphic to Z2; then we may
assume that G ¼ hai � hbi � hc1i � � � � � hcmi where hai ffi Z2 and hbi
ffi Z2n ðn52Þ: Clearly, S ¼ fb; ab2

n	2

; c1; c2; . . . ; cmg is a minimal generating
subset of G: Set T ¼ fb; b	1; a; ab2

n	1

; c1; c2; . . . ; cm; c	1
1 ; c	1

2 ; . . . ; c	1
m g: By

Lemma 3.1, it is easy to show that CayðG; S [ S	1Þ ffi CayðG; T Þ: But for
any a 2 AutðGÞ; ðS [ S	1Þa=T : This implies that S [ S	1 is not a CI-subset,
and so G is not a CIM-group. Now we assume that G2 is elementary abelian
or has a direct factor isomorphic to Z2: Let S be a minimal generating subset
of G: By Lemmas 3.2 and 3.3, S [ S	1 is a CI-subset and so G is a CIM-
group. ]
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