On the Isomorphisms of Cayley Graphs of Abelian Groups ${ }^{1}$

Yan-Quan Feng, Yan-Pei Liu
Department of Mathematics, Northern Jiaotong University, Beijing 100044,
People's Republic of China
E-mail: yqfeng@cneter.njtu.edu.cn
and
Ming-Yao Xu
Department of Mathematics, Peking University, Beijing 100871, People's Republic of China
E-mail: xumy@math.pku.edu.cn

Received November 17, 1998; published online July 10, 2002

Let G be a finite group, S a subset of $G \backslash\{1\}$, and let Cay (G, S) denote the Cayley digraph of G with respect to S. If, for any subset T of $G \backslash\{1\}, \operatorname{Cay}(G, S) \cong \operatorname{Cay}(G, T)$ implies that $S^{\alpha}=T$ for some $\alpha \in \operatorname{Aut}(G)$, then S is called a CI-subset. The group G is called a CIM-group if for any minimal generating subset S of $G, S \cup S^{-1}$ is a CI-subset. In this paper, CIM-abelian groups are characterized. © 2002 Elsevier Science (USA)
Key Words: Cayley digraph; CI-subset; CIM-group.

1. INTRODUCTION

Let G be a finite group and let S be a subset of $G \backslash\{1\}$. The Cayley digraph $X=\operatorname{Cay}(G, S)$ of G with respect to S is defined to have vertex set $V(X)=G$ and edge set $E(X)=\{(g, s g) \mid g \in G, s \in S\}$. It is seen that X is connected if and only if S generates the group G. If $S=S^{-1}$ then $X=\operatorname{Cay}(G, S)$, called a Cayley graph, is viewed as an undirected graph by identifying two oppositely directed edges with one undirected edge. A subset S of $G \backslash\{1\}$ is said to be a CI-subset of G if for any subset T of $G \backslash\{1\}, \operatorname{Cay}(G, S) \cong \operatorname{Cay}(G, T)$ implies that there is an automorphism α of G such that $S^{\alpha}=T$.

The study of CI-subsets has received considerable attention for more than 30 years. In 1967 Ádám [1] posed the conjecture that each finite cyclic group is a DCI-group (a finite group G is called a DCI-group if each subset of

[^0]$G \backslash\{1\}$ is a CI-subset). The conjecture was disproved in 1970 by Elspas and Turner [6] but it is true if the number n of vertices is either a prime [4], or a product of two primes [17] or satisfies the condition $(n, \phi(n))=1$, where ϕ is Euler's function [27]. It is known that the conjecture fails if n is divisible by 8 or by an odd square, and Páley [27] conjectured that Ádám's conjecture is true for all other values of n. This was proved by Muzychuk [25, 26]. Also, a lot of other important work has been done about DCI-groups [2, 3, 5, 10]. However, DCI-groups are rare and CI-subsets have been investigated under various additional conditions, for example, m-DCI groups and m-CIgroups, see [7,19-24]. This paper is devoted to the study of the following question posed by the third author [29].

Question 1.1 [29, Problem 6]. Let G be a finite group and let S be a minimal generating subset of G.
(1) Is S a CI-subset?
(2) Is $S \cup S^{-1} a C I-s u b s e t$?

Here, a minimal generating subset S of G means that S generates G and for any $s \in S, S \backslash\{s\}$ does not generate G. Both questions (1) and (2) were answered in the affirmative for cyclic groups [13-15] and for abelian groups with cyclic Sylow 2 -subgroups [9]. Also, the question (1) was answered in the affirmative for minimum generating subsets (minimal generating subsets with least cardinality) of abelian groups [8]. However, Li and Zhou [24] gave infinite families of examples which show that the answers to questions (1) and (2) are negative in general.

Meng and Xu [18] defined the so-called DCIM- and CIM-groups: a finite group G is called a DCIM- and a CIM-group if for each minimal generating subset S of G, S and $S \cup S^{-1}$ are CI-subsets, respectively. Meng and Xu [18] characterized DCIM-abelian groups (see also Li and Zhou [24]), and they proposed the following question.

Question 1.2 [18, Problem 1]. Characterize CIM-abelian groups.

The purpose of this paper is to give an answer for the above question.
Theorem 1.3. A finite abelian group G is a CIM-group if and only if Sylow 2-subgroups of G are elementary abelian or have no direct factor isomorphic to \mathbb{Z}_{2}.

Let u be a vertex of an undirected graph X. We denote by $X_{1}(u)$ the neighborhood of u in X, that is, the vertices adjacent to u. For the group theoretic and graph theoretic notation and terminology not defined here we refer the reader to [12, 16].

2. PRELIMINARY RESULTS

In this section we give some preliminary results which will be used later.
Proposition 2.1 [18, Theorem 7]. A finite abelian group G is a DCIMgroup if and only if G is a 2-group or G has no direct factor isomorphic to the type $\mathbb{Z}_{2} \times \mathbb{Z}_{2^{p}}(p \geqslant 2)$.

Independently, this proposition was proved by Li and Zhou [24]. The following is the basic inclusion and exclusion formula (see also [11, Sect. 2.1]).

Proposition 2.2 [28, Chap. 2, Theorem 1.1]. Let $A_{1}, A_{2}, \ldots, A_{n}$ be subsets of S and let r be a non-negative integer. Let $f(n, r)$ denote the number of the elements of S that belong to exactly r of A_{i}. Then

$$
f(n, r)=\sum_{k=r}^{n}(-1)^{k-r}\binom{k}{r} \sum_{\substack{K \subset M \\|K|=k}}\left|\bigcap_{i \in k} A_{i}\right|,
$$

where $M=\{1,2, \ldots, n\}$.
Lemma 2.3. Let

$$
p_{n}=\left\{\begin{array}{cc}
-n+\sum_{i=1}^{\frac{n-2}{2}}\left[2 i\binom{n}{2 i+1}-2 i\binom{n}{2 i}\right], & \text { n even } \\
\sum_{i=1}^{\frac{n-1}{2}}\left[2 i\binom{n}{2 i}-2 i\binom{n}{2 i+1}\right], & n \text { odd }
\end{array}\right.
$$

If $n \geqslant 2$ then $p_{n} \neq 0$.
Proof. It is easy to check $p_{n} \neq 0$ for $n=2$ and 3. Let $n \geqslant 4$. We divide the proof into four cases: $n=4 k, 4 k+2,4 k+1$, or $4 k+3$ (k a positive integer). If $n=4 k$, then

$$
\begin{aligned}
p_{n}= & -n+(n-2)\binom{n}{n-1}-\left[(n-2)\binom{n}{n-2}+2\binom{n}{2}\right] \\
& +\left[(n-4)\binom{n}{n-3}+2\binom{n}{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
& -\cdots-\left[\left(\frac{n}{2}+2\right)\binom{n}{\frac{n}{2}+2}+\left(\frac{n}{2}-2\right)\binom{n}{\frac{n}{2}-2}\right] \\
& +\left[\frac{n}{2}\binom{n}{\frac{n}{2}+1}+\left(\frac{n}{2}-2\right)\binom{n}{\frac{n}{2}-1}\right]-\frac{n}{2}\binom{n}{\frac{n}{2}} \\
& =-n+(n-2)\binom{n}{1}-n\binom{n}{2}+(n-2)\binom{n}{3}-\cdots-n\binom{n}{\frac{n}{2}-2} \\
& +(n-2)\binom{n}{\frac{n}{2}-1}-\frac{n}{2}\binom{n}{\frac{n}{2}} \\
& =-2\binom{n}{1}-2\binom{n}{3}-\cdots-2\binom{n}{\frac{n}{2}-1}-\frac{n}{2}\left[2\binom{n}{0}\right. \\
& \left.-2\binom{n}{1}+\cdots+2\binom{n}{\frac{n}{2}-1}-\binom{n}{\frac{n}{2}}\right] \\
& =-2\binom{n}{1}-2\binom{n}{3}-\cdots-2\binom{n}{\frac{n}{2}-1}<0 \text {. }
\end{aligned}
$$

Similarly, if $n=4 k+2$ then $p_{n}=-2\binom{n}{1}-2\binom{n}{3}-\cdots-2\binom{n}{n / 2-2}-\binom{n}{n / 2}<0$. If $n=4 k+1$, then

$$
\begin{aligned}
p_{n}= & (n-1)^{2}-\left[(n-3)\binom{n}{n-2}-2\binom{n}{2}\right] \\
& +\left[(n-3)\binom{n}{n-3}-2\binom{n}{3}\right] \\
& -\cdots-\left[\frac{n+3}{2}\binom{n}{\frac{n+5}{2}}-\frac{n-5}{2}\binom{n}{\frac{n-5}{2}}\right] \\
& +\left[\frac{n+3}{2}\left(\frac{n+3}{2}\right)-\frac{n-5}{2}\binom{n}{\frac{n-3}{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =(n-1)^{2}-\left[(n-5)\binom{n}{2}-(n-5)\binom{n}{3}\right] \\
& -\cdots-\left[4\binom{n}{\frac{n-5}{2}}-4\binom{n}{\frac{n-3}{2}}\right] \\
& =(n-1)^{2}-\sum_{k=1}^{\frac{n-5}{4}}(n-4 k-1)\left[\binom{n}{2 k}-\binom{n}{2 k+1}\right] \text {. }
\end{aligned}
$$

By the unimodality of the binomial coefficients, we have $p_{n}>0$.
Similarly, if $n=4 k+3$ then $p_{n}=(n-1)^{2}-\sum_{k=1}^{(n-3) / 4}(n-4 k-1)\left[\begin{array}{c}n \\ 2 k\end{array}\right)-$ $\left.\left(\begin{array}{c}n+1\end{array}\right)\right]>0$.

3. PROOF OF MAIN RESULT

In this section, we shall prove Theorem 1.3.
Lemma 3.1. Let $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n}}=\langle a\rangle \times\langle b\rangle(n \geqslant 2), S=\left\{b, b^{-1}, a b^{2^{n-2}}\right.$, $\left.\left(a b^{2^{n-2}}\right)^{-1}\right\}$, and $T=\left\{b, b^{-1}, a, a b^{2^{n-1}}\right\}$. Then $\operatorname{Cay}(G, S) \cong \operatorname{Cay}(G, T)$ and S is not a CI-subset of G.

Proof. Let $X=\operatorname{Cay}(G, S)$ and $Y=\operatorname{Cay}(G, T)$. Define a map $\sigma: G \rightarrow G$ by

$$
a^{i} b^{j} \rightarrow a^{i} b^{j-i \cdot 2^{n-2}}, \quad i=0 \text { or } 1,0 \leqslant j<2^{n}
$$

Remember that for any $g \in G, X_{1}(g)$ and $Y_{1}(g)$ denote the neighborhoods of g in X and Y, respectively. Then we have $X_{1}\left(a^{i} b^{j}\right)=\left\{a^{i} b^{j+1}, a^{i} b^{j-1}, a^{i+1}\right.$ $\left.b^{j+2^{n-2}}, a^{i+1} b^{j-2^{n-2}}\right\}$. By the definition of σ, considering $i=0,1$, respectively we obtain that $Y_{1}\left(\left(a^{i} b^{j}\right)^{\sigma}\right)=\left[X_{1}\left(a^{i} b^{j}\right)\right]^{\sigma}$, and hence σ is an isomorphism from X to Y. Since there are two involutions in T but not in S, S is not a CIsubset of G.

Hereafter we assume that G is a finite abelian group and S is a minimal generating subset of G. Let σ be an isomorphism from $X=\operatorname{Cay}\left(G, S \cup S^{-1}\right)$ to $Y=\operatorname{Cay}(G, T)$ with $1^{\sigma}=1$. Then $\left(S \cup S^{-1}\right)^{\sigma}=T$. Assume that Sylow 2subgroups of G are elementary abelian or have no direct factor isomorphic to \mathbb{Z}_{2}. We shall prove that there exists an $\alpha \in \operatorname{Aut}(G)$ such that $\left(S \cup S^{-1}\right)^{\alpha}=$ T, that is, $S \cup S^{-1}$ is a CI-subset of G.

Lemma 3.2. If Sylow 2-subgroups of G are elementary abelian, then $S \cup$ S^{-1} is a CI-subset of G.

Proof. Define an equivalence relation \sim on $S \cup S^{-1}$ by the rule

$$
s_{1} \sim s_{2} \Leftrightarrow s_{1}^{2}=s_{2}^{2}, \quad \text { for any } s_{1}, s_{2} \in S \cup S^{-1}
$$

Then the set of all involutions in $S \cup S^{-1}$, say S_{0}, is an equivalence class under \sim. If S_{i} is an equivalence class then it is easy to show that S_{i}^{-1} is also an equivalence class, and moreover if $S_{i} \neq S_{0}$ then $S_{i}^{-1} \neq S_{i}$ because G has no element of order 4. Thus, we may assume that $S \cup S^{-1}=S_{0} \cup S_{1} \cup \cdots \cup$ $S_{\ell} \cup S_{1}^{-1} \cup \cdots \cup S_{\ell}^{-1}$ where $S_{0}, S_{1}, \ldots, S_{\ell}, S_{1}^{-1}, \ldots, S_{\ell}^{-1}$ are all equivalence classes of \sim on $S \cup S^{-1}$.

The proof of Lemma 3.2 will be carried out over a series of three claims. We show $\left(S_{i}^{-1}\right)^{\sigma}=\left(S_{i}^{\sigma}\right)^{-1}$ in Claim 2 and hence we may assume $\quad T=T_{0} \cup T_{1} \cup \cdots \cup T_{\ell} \cup T_{1}^{-1} \cup \cdots \cup T_{\ell}^{-1} \quad$ where $\quad T_{i}=S_{i}^{\sigma} . \quad$ By Claim 3 we have $\operatorname{Cay}\left(G, S_{0} \cup S_{1} \cup \cdots \cup S_{\ell}\right) \cong \operatorname{Cay}\left(G, T_{0} \cup T_{1} \cup \cdots \cup T_{\ell}\right)$. Note that $S_{0} \cup S_{1} \cup \cdots \cup S_{\ell}$ is a minimal generating subset of G. Thus, by Proposition 2.1 there exists an $\alpha \in \operatorname{Aut}(G)$ such that $\left(S_{0} \cup S_{1} \cup \cdots \cup S_{\ell}\right)^{\alpha}=T_{0} \cup T_{1} \cup \cdots \cup T_{\ell}$ and it follows that $\left(S \cup S^{-1}\right)^{\alpha}=$ T, that is, $S \cup S^{-1}$ is a CI-subset of G. To prove Claim 2 and Claim 3, we need to know the intersection of the neighborhoods of $g s_{1}$ and $g s_{2}$ for any $g \in G$ and $s_{1}, s_{2} \in S \cup S^{-1}$, which will be computed in Claim 1.

For convenience of statement, we assume that $S_{0}, S_{1}, \ldots, S_{k}$ are all the equivalence classes of \sim on $S \cup S^{-1}$ and let $T_{i}=S_{i}^{\sigma}(i=0,1, \ldots, k)$, where S_{0} has the same meaning as above. Then $T=T_{0} \cup T_{1} \cup \cdots \cup T_{k}$.

Claim 1. Let $s_{1}, s_{2} \in S \cup S^{-1}, g \in G$ and let $s_{1} \neq s_{2}^{ \pm 1}$. Then we have
(1) $X_{1}\left(g s_{1}\right) \cap X_{1}\left(g s_{2}\right)= \begin{cases}\left\{g, g s_{1} s_{2}\right\}, & s_{1} \sim s_{2} \\ \left\{g, g s_{1}^{2}, g s_{1} s_{2}, g s_{1} s_{2}^{-1}=g s_{2} s_{1}^{-1}\right\}, & s_{1} \sim s_{2} ;\end{cases}$
(2) Let $s_{1} \in S_{t} \neq S_{0}$. Then $X_{1}\left(g s_{1}\right) \cap X_{1}\left(g s_{1}^{-1}\right)=\left\{g s_{1} s \mid s \in S_{t}^{-1}\right\}=X_{1}\left(g s_{1}\right)$ $\cap X_{1}\left(g S_{t}^{-1}\right)$ where $X_{1}\left(g S_{t}^{-1}\right)=\bigcup_{s \in S_{t}^{-1}} X_{1}(g s)$.

Proof. If $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a minimal generating subset of G then $\left\{x_{1}^{\delta_{1}}\right.$, $\left.x_{2}^{\delta_{2}}, \ldots, x_{n}^{\delta_{n}}\right\}\left(\delta_{i}=1\right.$ or $\left.-1, i=1,2, \ldots, n\right)$ are also minimal generating subsets of G. To prove (1), we may assume that $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ since $s_{1} \neq s_{2}^{ \pm 1}$.

Assume that for some $s_{i}, s_{j} \in S, s_{1} s_{i}^{\delta_{i}}=s_{2} s_{j}^{\delta_{j}}\left(\delta_{i}, \delta_{j}=1\right.$ or -1). By the minimality of $\left\{s_{1}^{\delta_{1}}, s_{2}^{\delta_{2}}, \ldots, s_{n}^{\delta_{n}}\right\}$, we have $i=1$ or 2 and $j=1$ or 2. Furthermore, if $i=1$ then $j=2$ and if $i=2$ then $j=1$. Thus, it
follows that

$$
X_{1}\left(g s_{1}\right) \cap X_{1}\left(g s_{2}\right) \subseteq \begin{cases}\left\{g, g s_{1} s_{2}\right\}, & s_{1}^{2} \neq s_{2}^{2} \\ \left\{g, g s_{1}^{2}, g s_{1} s_{2}, g s_{1} s_{2}^{-1}=g s_{2} s_{1}^{-1}\right\}, & s_{1}^{2}=s_{2}^{2}\end{cases}
$$

The inverse inclusion is obvious and (1) follows.
To prove (2), we assume that for some $s_{i}, s_{j} \in S, s_{1} s_{i}^{\delta_{i}}=s_{1}^{-1} s_{j}^{\delta_{j}}\left(\delta_{i}, \delta_{j}=1\right.$ or -1). By the minimality of $\left\{s_{1}^{\delta_{1}}, s_{2}^{\delta_{2}}, \ldots, s_{n}^{\delta_{n}}\right\}$, we have $i=j$. Since $s_{1} \in S_{t}$ and $S_{t} \neq S_{0}$, we have $s_{1}^{2} \neq 1$. Thus, $s_{i}^{\delta_{i}}=\left(s_{j}^{\delta_{j}}\right)^{-1}$ and $s_{1}^{2}=\left(s_{j}^{\delta_{j}}\right)^{2}$, which forces $s_{j}^{\delta_{j}} \in S_{t}$ and $s_{i}^{\delta_{i}} \in S_{t}^{-1}$. Therefore, $X_{1}\left(g s_{1}\right) \cap X_{1}\left(g s_{1}^{-1}\right) \subseteq\left\{g s_{1} s \mid s \in S_{t}^{-1}\right\}$. The inverse inclusion is also obvious. Since $S_{t} \neq S_{0}$, we have $S_{t} \neq S_{t}^{-1}$, which implies that $s_{1} \sim s_{t}^{-1}$ for any $s_{t} \in S_{t}$. By (1), if $s_{t} \neq s_{1}$ then $X_{1}\left(g s_{1}\right) \cap X_{1}\left(g s_{t}^{-1}\right)=$ $\left\{g, g s_{1} s_{t}^{-1}\right\}$, which is a subset of $X_{1}\left(g s_{1}\right) \cap X_{1}\left(g s_{1}^{-1}\right)=\left\{g s_{1} s \mid s \in S_{t}^{-1}\right\}$. It follows that $X_{1}\left(g s_{1}\right) \cap X_{1}\left(g s_{1}^{-1}\right)=\left\{g s_{1} s \mid s \in S_{t}^{-1}\right\}=X_{1}\left(g s_{1}\right) \cap X_{1}\left(g S_{t}^{-1}\right)$.

Claim 2. $\quad S_{j}=S_{i}^{-1}$ if and only if $T_{j}=T_{i}^{-1}$.
Proof. Assume that $S_{j}=S_{i}^{-1}$. Let $i \neq 0$ and $t_{i}=s_{i}^{\sigma} \in T_{i}$ where $s_{i} \in S_{i}$. By $i \neq 0$, we have that $S_{i}^{-1} \neq S_{i}$ and so $j \neq i$. Claim 1 tells us that $\mid X_{1}\left(s_{i}\right) \cap$ $X_{1}\left(S_{j}\right)\left|=\left|\left\{s_{i} s \mid s \in S_{j}\right\}\right|=\left|S_{j}\right|\right.$ and it follows that $| Y_{1}\left(t_{i}\right) \cap Y_{1}\left(T_{j}\right)\left|=\left|S_{j}\right|\right.$. Suppose that $t_{i}^{-1} \notin T_{j}$. Then $\left|Y_{1}\left(t_{i}\right) \cap Y_{1}\left(T_{j}\right)\right| \geqslant\left|\left\{1, t_{i} t \mid t \in T_{j}\right\}\right|=\left|T_{j}\right|+1$. Thus, $\left|T_{j}\right|$ $+1 \leqslant\left|S_{j}\right|$. However, $T_{j}=S_{j}^{\sigma}$ implies that $\left|S_{j}\right|=\left|T_{j}\right|$, a contradiction. Therefore, $t_{i}^{-1} \in T_{j}$ and $T_{i}^{-1}=T_{j}$. Now we have proved that for any $i \neq 0, S_{j}=S_{i}^{-1}$ implies that $T_{j}=T_{i}^{-1}$. Consequently, $T_{0}=T_{0}^{-1}$.

Assume that $T_{j}=T_{i}^{-1}$. We prove $S_{j}=S_{i}^{-1}$. Suppose to the contrary that $S_{j} \neq S_{i}^{-1}$. Then there exists some $m(m \neq j)$ such that $S_{m}=S_{i}^{-1}$. By the above proof, we have $T_{m}=T_{i}^{-1}$. It follows that $T_{m}=T_{j}=T_{i}^{-1}$, contrary to the fact that $m \neq j$.

CLaim 3. Let $s_{1}, s_{2}, \ldots, s_{n} \in S$ and $s_{i} \in S_{k_{i}}$ where $0 \leqslant k_{i} \leqslant k(i=1,2, \ldots$, n). Then $\left(s_{1} s_{2} \cdots s_{n}\right)^{\sigma}=\left(s_{1} s_{2} \cdots s_{n-1}\right)^{\sigma} t_{n}$ for some $t_{n} \in T_{k_{n}}$.

Proof. For $n=1$ the claim is obvious. Let $n \geqslant 2$ and set $x=s_{1} s_{2} \cdots s_{n-2}$ ($x=1$ if $n=2$). By induction on n, we may assume that $\left(x s_{n-1}\right)^{\sigma}=x^{\sigma} t_{n-1}^{\prime}$ and $\left(x s_{n}\right)^{\sigma}=x^{\sigma} t_{n}^{\prime}$ for some $t_{n-1}^{\prime} \in T_{k_{n-1}}$ and $t_{n}^{\prime} \in T_{k_{n}}$. It suffices to prove that $\left(x s_{n-1} s_{n}\right)^{\sigma}=\left(x s_{n-1}\right)^{\sigma} t_{n}$ for some $t_{n} \in T_{k_{n}}$.

Let $k_{n} \neq k_{n-1}$. We distinguish two cases: (i) $S_{k_{n}} \neq S_{k_{n-1}}^{-1}$ and (ii) $S_{k_{n}}=S_{k_{n-1}}^{-1}$. In the first case, we have $T_{k_{n}} \neq T_{k_{n-1}}^{-1}$ (Claim 2) and so $t_{n-1}^{\prime} t_{n}^{\prime} \neq 1$. Since $X_{1}\left(x s_{n-1}\right) \cap X_{1}\left(x s_{n}\right)=\left\{x, x s_{n-1} s_{n}\right\} \quad$ (Claim 1) and $Y_{1}\left(x^{\sigma} t_{n-1}^{\prime}\right) \cap Y_{1}\left(x^{\sigma} t_{n}^{\prime}\right) \supseteq$ $\left\{x^{\sigma}, x^{\sigma} t_{n-1}^{\prime} t_{n}^{\prime}\right\}$, it follows that $\left(x s_{n-1} s_{n}\right)^{\sigma}=x^{\sigma} t_{n-1}^{\prime} t_{n}^{\prime}=\left(x s_{n-1}\right)^{\sigma} t_{n}^{\prime}$ where $t_{n}^{\prime} \in T_{k_{n}}$. In the second case, $T_{k_{n}}=T_{k_{n-1}}^{-1}$. Since $k_{n} \neq k_{n-1}$, we have $k_{n-1} \neq 0$. By Claim 1, we have $X_{1}\left(x s_{n-1}\right) \cap X_{1}\left(x S_{k_{n}}\right)=\left\{x s_{n-1} s \mid s \in S_{k_{n}}\right\}$. Clearly, $\quad Y_{1}\left(x^{\sigma} t_{n-1}^{\prime}\right) \cap$ $Y_{1}\left(x^{\sigma} T_{k_{n}}\right) \supseteq\left\{x^{\sigma} t_{n-1}^{\prime} t \mid t \in T_{k_{n}}\right\}$. Since $\left|S_{k_{n}}\right|=\left|T_{k_{n}}\right|$, there exists a $t_{n} \in T_{k_{n}}$ such that
$\left(x s_{n-1} s_{n}\right)^{\sigma}=x^{\sigma} t_{n-1}^{\prime} t_{n}=\left(x s_{n-1}\right)^{\sigma} t_{n}$. Combining these two cases, we have proved that for any $k_{n} \neq k_{n-1},\left(x s_{n-1} s_{n}\right)^{\sigma}=\left(x s_{n-1}\right)^{\sigma} t_{n}$ for some $t_{n} \in T_{k_{n}}$. Consequently, it is also true for $k_{n}=k_{n-1}$.

Now we are ready to prove Lemma 3.2. Note that $S \cup S^{-1}=S_{0} \cup S_{1} \cup$ $\cdots \cup S_{\ell} \cup S_{1}^{-1} \cup \cdots \cup S_{\ell}^{-1}$ where $S_{0}, S_{1}, \ldots, S_{\ell}, S_{1}^{-1}, \ldots, S_{\ell}^{-1}$ are all equivalence classes of \sim on $S \cup S^{-1}$. By Claim 2, we may let $T=T_{0} \cup T_{1} \cup \cdots \cup$ $T_{\ell} \cup T_{1}^{-1} \cup \cdots \cup T_{\ell}^{-1}$ where $T_{i}=S_{i}^{\sigma}$ for $0 \leqslant i \leqslant \ell$. Set $S^{\prime}=S_{0} \cup S_{1} \cup \cdots \cup S_{\ell}$ and $T^{\prime}=T_{0} \cup T_{1} \cup \cdots \cup T_{\ell}$. Then S^{\prime} is a minimal generating subset of G and by Claim 3 we have $\operatorname{Cay}\left(G, S^{\prime}\right) \cong \operatorname{Cay}\left(G, T^{\prime}\right)$. By Proposition $2.1, S^{\prime}$ is a CIsubset and so there is an $\alpha \in \operatorname{Aut}(G)$ such that $\left(S^{\prime}\right)^{\alpha}=T^{\prime}$. It follows that $\left(S \cup S^{-1}\right)^{\alpha}=\left(S^{\prime} \cup\left(S^{\prime}\right)^{-1}\right)^{\alpha}=T^{\prime} \cup\left(T^{\prime}\right)^{-1}=T$ and so $S \cup S^{-1}$ is a CI-subset of G.

Lemma 3.3. If Sylow 2-subgroups of G have no direct factor isomorphic to \mathbb{Z}_{2}, then $S \cup S^{-1}$ is a CI-subset of G.

Proof. Denote by S_{1} the set of all elements of order 4 in $S \cup S^{-1}$ and set $S_{2}=\left(S \cup S^{-1}\right) \mid S_{1}, T_{1}=S_{1}^{\sigma}$ and $T_{2}=S_{2}^{\sigma}$. Clearly, $S_{1}^{-1}=S_{1}$ and $S_{2}^{-1}=S_{2}$.

First we give an outline of the proof. The proof will also be carried out over a series of claims. Note that σ is an isomorphism from $X=\operatorname{Cay}(G, S \cup$ S^{-1}) to $Y=\operatorname{Cay}(G, T)$ with $1^{\sigma}=1$. In Claim 1 we show that the restriction of σ on $\left\langle S_{2}\right\rangle$, say α, is a group isomorphism from $\left\langle S_{2}\right\rangle$ to $\left\langle T_{2}\right\rangle$. Hence, to prove the lemma it suffices to construct a group isomorphism, say β, from $\left\langle S_{1}\right\rangle$ to $\left\langle T_{1}\right\rangle$ such that $S_{1}^{\beta}=T_{1}$ and $u^{\beta}=u^{\alpha}$ for any $u \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$ (Claim 4) because the automorphism of G defined by as $\rightarrow a^{\beta} s^{\alpha}$ for any $a \in\left\langle S_{1}\right\rangle$ and $s \in\left\langle S_{2}\right\rangle$, maps $S \cup S^{-1}$ to T. Since Sylow 2-subgroups of G have no direct factor isomorphic to \mathbb{Z}_{2}, we may show $\left\langle S_{1}\right\rangle=\left\langle a_{1}\right\rangle \times \cdots \times\left\langle a_{k}\right\rangle$ where $S_{1}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \cup\left\{a_{1}^{-1}, a_{2}^{-1}, \ldots, a_{k}^{-1}\right\}$. Thus to construct the above β such that $S_{1}^{\beta}=T_{1}$, we need to prove that T_{1} consists of elements of order 4 and $\left\langle T_{1}\right\rangle=\left\langle b_{1}\right\rangle \times\left\langle b_{2}\right\rangle \times \cdots \times\left\langle b_{k}\right\rangle$ where $T_{1}=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ $\cup\left\{b_{1}^{-1}, b_{2}^{-1}, \ldots, b_{k}^{-1}\right\}$, which will be proved in Claim 2. For $u \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$, it is seen that $u=x_{1}^{2} x_{2}^{2} \cdots x_{m}^{2}\left(\right.$ for $\left.i \neq j, x_{i} \neq x_{j}\right)$ where $x_{i} \in\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, and $u^{\alpha}=y_{1}^{2} y_{2}^{2} \cdots y_{m}^{2}\left(\right.$ for $\left.i \neq j, y_{i} \neq y_{j}\right)$ where $y_{i} \in\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$. We call x_{1}, x_{1}, $\ldots, x_{m}\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ the factors of $u\left(u^{\alpha}\right)$. To construct the above β such that $u^{\alpha}=u^{\beta}$ for any $u \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$, we need to prove that the number of common factors of $u_{1}, u_{2}, \ldots, u_{n}$ is equal to the number of common factors of $u_{1}^{\alpha}, u_{2}^{\alpha}, \ldots, u_{n}^{\alpha}$ for any $u_{1}, u_{2}, \ldots, u_{n} \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$, which will be proved in Claim 3.

Claim 1. The restriction of σ on $\left\langle S_{2}\right\rangle$ is a group isomorphism from $\left\langle S_{2}\right\rangle$ to $\left\langle T_{2}\right\rangle$ and the restriction of σ on $\left\langle S_{1}\right\rangle$ is a graph isomorphism from $\operatorname{Cay}\left(\left\langle S_{1}\right\rangle, S_{1}\right)$ to $\operatorname{Cay}\left(\left\langle T_{1}\right\rangle, T_{1}\right)$.

Proof. Let $s_{1}, s_{2} \in S \cup S^{-1}$ and $s_{1} \neq s_{2}$. First we prove that $s_{1}^{2} \neq s_{2}^{2}$, or $o\left(s_{1}\right)=4$ and $s_{2}=s_{1}^{-1}$. Let $s_{1}^{2}=s_{2}^{2}$. Then $s_{1}^{-1} s_{2}$ is an involution. If $s_{1}, s_{2} \in S$ then $G=\left\langle S \backslash\left\{s_{1}\right\}, s_{1}^{-1} s_{2}\right\rangle$ and $G \neq\left\langle S \backslash\left\{s_{1}\right\}\right\rangle$ because S is a minimal generating subset of G, which implies that G has a direct factor isomorphic to $\mathbb{Z}_{2}\left(\left\langle s_{1}^{-1} s_{2}\right\rangle\right)$, contrary to the hypothesis. Thus, s_{1} and s_{2} cannot be two elements of any minimal generating subset of G and so $s_{2}=s_{1}^{-1}$. By $s_{1}^{2}=s_{2}^{2}$, we have $o\left(s_{1}\right)=4$.

Let $s_{1}, s_{2} \in S \cup S^{-1}$ with $s_{1} \neq s_{2}$. We have proved that $s_{1}^{2} \neq s_{2}^{2}$, or $s_{2}=s_{1}^{-1}$ and $o\left(s_{1}\right)=4$. With this result, a similar argument to the proof of Claim 1 in Lemma 3.2 gives rise to the following formula for any $g \in G$:

$$
X_{1}\left(g s_{1}\right) \cap X_{1}\left(g s_{2}\right)= \begin{cases}\{g\}, & s_{2}=s_{1}^{-1} \text { and } o\left(s_{1}\right) \neq 4 \\ \left\{g, g s_{1}^{2}\right\}, & s_{2}=s_{1}^{-1} \text { and } o\left(s_{1}\right)=4 \\ \left\{g, g s_{1} s_{2}\right\}, & s_{2} \neq s_{1}^{-1}\end{cases}
$$

Since $\left|X_{1}\left(g s_{1}\right) \cap X_{1}\left(g s_{2}\right)\right|=1$ if and only if $s_{2}=s_{1}^{-1}$ and $o\left(s_{1}\right) \neq 4$, we have $\left(s^{-1}\right)^{\sigma}=\left(s^{\sigma}\right)^{-1}$ for any $s \in S_{2}$. Thus $T_{2}^{-1}=\left(S_{2}^{\sigma}\right)^{-1}=\left(S_{2}^{-1}\right)^{\sigma}=T_{2}$ and $T_{1}^{-1}=$ T_{1}. By a similar argument to the proof of Claim 3 in Lemma 3.2, we have that for any $s_{1}, s_{2}, \ldots, s_{n} \in S \cup S^{-1},\left(s_{1} s_{2} \cdots s_{n}\right)^{\sigma}=\left(s_{1} s_{2} \cdots s_{n-1}\right)^{\sigma} t_{n}$ where t_{n} $=s_{n}^{\sigma}$ if $s_{n} \in S_{2}$ and $t_{n} \in T_{1}$ if $s_{n} \in S_{1}$. This implies that the restriction of σ on $\left\langle S_{2}\right\rangle$ is a group isomorphism from $\left\langle S_{2}\right\rangle$ to $\left\langle T_{2}\right\rangle$ and the restriction of σ on $\left\langle S_{1}\right\rangle$ is a graph isomorphism from $\operatorname{Cay}\left(\left\langle S_{1}\right\rangle, S_{1}\right)$ to $\operatorname{Cay}\left(\left\langle T_{1}\right\rangle, T_{1}\right)$.

If S_{1} is empty then $S \cup S^{-1}$ coincides with S_{2}. By Claim 1, Lemma 3.2 is true. Thus, from now on we assume $\left|S_{1}\right| \geqslant 1$ and denote by α the isomorphism from $\left\langle S_{2}\right\rangle$ to $\left\langle T_{2}\right\rangle$ induced by the restriction of σ on $\left\langle S_{2}\right\rangle$.

Let $S_{1}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \cup\left\{a_{1}^{-1}, a_{2}^{-1}, \ldots, a_{k}^{-1}\right\}$ with $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subseteq S$. Then $k \geqslant 1$. We claim $\left\langle S_{1}\right\rangle=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{k}\right\rangle$. Otherwise, without loss of generality, we may suppose that $a_{1}^{2}=\left(a_{2}^{\delta_{2}} a_{3}^{\delta_{3}} \cdots a_{k}^{\delta_{k}}\right)^{2}$ by the minimality of S, where $\delta_{i}=0,1$ or $-1(2 \leqslant i \leqslant k)$. Clearly, $\left\langle S_{1}\right\rangle=\left\langle a_{1}^{-1} a_{2}^{\delta_{2}}\right.$ $\left.\cdots a_{k}^{\delta_{k}}, a_{2}, a_{3}, \ldots, a_{k}\right\rangle$ and hence $\left\langle S \backslash\left\{a_{1}\right\}, a_{1}^{-1} a_{2}^{\delta_{2}} \cdots a_{k}^{\delta_{k}}\right\rangle=G$. Since $\left\langle S \backslash\left\{a_{1}\right\}\right\rangle$ $\neq G$ and $o\left(a_{1}^{-1} a_{2}^{\delta_{2}} \cdots a_{k}^{\delta_{k}}\right)=2, G$ has a direct factor isomorphic to $\mathbb{Z}_{2}\left(\left\langle a_{1}^{-1} a_{2}^{\delta_{2}} \cdots a_{k}^{\delta_{k}}\right\rangle\right)$, contrary to the hypothesis.

Claim 2. Each element of T_{1} has order 4 and $\left\langle T_{1}\right\rangle=\left\langle b_{1}\right\rangle \times\left\langle b_{2}\right\rangle \times$ $\cdots\left\langle b_{k}\right\rangle$ where $T_{1}=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\} \cup\left\{b_{1}^{-1}, b_{2}^{-1}, \ldots, b_{k}^{-1}\right\}$.

Proof. Since $\left|S_{1}\right| \geqslant 1, T_{1}$ is not empty. Let $X_{i}=\operatorname{Cay}\left(\left\langle S_{i}\right\rangle, S_{i}\right)$ and $Y_{i}=$ $\operatorname{Cay}\left(\left\langle T_{i}\right\rangle, T_{i}\right)(i=1,2)$. By Claim 1, $X_{i} \cong Y_{i}(i=1,2)$. If each element of T_{1} has order 4 then we have $\left\langle T_{1}\right\rangle=\left\langle b_{1}\right\rangle \times\left\langle b_{2}\right\rangle \times \cdots\left\langle b_{k}\right\rangle$ because $\left|S_{1}\right|=\left|T_{1}\right|$ and $\left|\left\langle S_{1}\right\rangle\right|=\left|\left\langle T_{1}\right\rangle\right|$. Thus, in order to prove the claim it suffices to prove that each element of T_{1} has order 4 . We consider three cases according to the orders of elements in T_{1}.

Case I. There is no element of order 3 in T_{1}.
Since X_{1} has no triangle and $X_{1} \cong Y_{1}, Y_{1}$ has no triangle and so T_{1} contains no element of order 3.

Case II. There is no element of order greater than 4 in T_{1}.
Suppose to the contrary that there exists a $b_{1} \in T_{1}$ and $o\left(b_{1}\right)>4$. Let $u \in V\left(X_{1}\right)$ such that $d_{X_{1}}(1, u)=2$, where $d_{X_{1}}(1, u)$ denotes the distance between 1 and u. It is seen that u and 1 lie on a cycle of length 4 in X_{1} and so do 1 and b_{1}^{2} in Y_{1}. Thus, there exist $b_{2}, b_{3} \in T_{1}\left(b_{1} \neq b_{2}, b_{3}\right)$ such that $b_{1}^{2}=b_{2} b_{3}$. If $b_{2}=b_{3}$ then $\left|Y_{1}\left(b_{1}\right) \cap Y_{1}\left(b_{2}\right)\right| \geqslant\left|\left\{1, b_{1}^{2}, b_{1} b_{2}\right\}\right|=3$ and if $b_{2} \neq b_{3}$ then $\left|Y_{1}\left(b_{1}\right) \cap Y_{1}\left(b_{2}\right) \cap Y_{1}\left(b_{3}\right)\right| \geqslant\left|\left\{1, b_{1}^{2}\right\}\right|=2$. Both are impossible since for any $a_{1}, a_{2}, a_{3} \in S_{1}$ with $a_{i} \neq a_{j}(i \neq j),\left|X_{1}\left(a_{1}\right) \cap X_{1}\left(a_{2}\right)\right|=2$ and $\mid X_{1}\left(a_{1}\right) \cap$ $X_{1}\left(a_{2}\right) \cap X_{1}\left(a_{3}\right) \mid=1$.

Case III. There is no element of order 2 in T_{1}.
Suppose to the contrary that $V \neq \phi$ is the set of all involutions in T_{1}. Set $U=T_{1} \backslash V$. Then $T_{1}=U \cup V$ and each element of U has order 4. Let $U=$ $\left\{b_{1}, b_{2}, \ldots, b_{\ell}\right\} \cup\left\{b_{1}^{-1}, b_{2}^{-1}, \ldots, b_{\ell}^{-1}\right\}$ where $o\left(b_{i}\right)=4(1 \leqslant i \leqslant \ell)$. Noting that $S_{1}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \cup\left\{a_{1}^{-1}, a_{2}^{-1}, \ldots, a_{k}^{-1}\right\}$ and $\left|S_{1}\right|=\left|T_{1}\right|$, we have $k>\ell$ since $V \neq \phi$.

Let $S_{2}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}, T_{2}=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ and let $s_{i}^{\alpha}=t_{i}(i=1,2, \ldots$, $n)$. We may assume that $s_{i}=e_{i} u_{i}$ and $t_{i}=f_{i} v_{i}$ such that $o\left(e_{i}\right), o\left(f_{i}\right)$ are 2-powers and $o\left(u_{i}\right), o\left(v_{i}\right)$ are odd. Since α is a group isomorphism from $\left\langle S_{2}\right\rangle$ to $\left\langle T_{2}\right\rangle$, we have $\left(e_{i}\right)^{\alpha}=f_{i}$. Denote by G_{2} the Sylow 2-subgroup of G. Then, $G_{2}=\left\langle\bigcup_{i=1}^{n}\left\{e_{i}\right\}, \bigcup_{i=1}^{k}\left\{a_{i}\right\}\right\rangle=\left\langle\bigcup_{i=1}^{n}\left\{f_{i}\right\}, \bigcup_{i=1}^{\ell}\left\{b_{i}\right.\right.$ $\}, V\rangle$. Since G has no direct factor isomorphic to \mathbb{Z}_{2}, we have $V \subseteq \Phi\left(G_{2}\right)$ where $\Phi\left(G_{2}\right)$ is the Frattini subgroup of G_{2}. This implies that $G_{2}=$ $\left\langle\bigcup_{i=1}^{n}\left\{f_{i}\right\}, \bigcup_{i=1}^{\ell}\left\{b_{i}\right\}\right\rangle$. Clearly, $G_{2} \neq\left\langle\bigcup_{i=1}^{n}\left\{e_{i}\right\}, \bigcup_{i=1}^{k}\left\{a_{i}\right\} \backslash\left\{a_{j}\right\}\right\rangle(j=1,2$, \ldots, or k). If $e_{n}=e_{1}^{m_{1}} e_{2}^{m_{2}} \cdots e_{n-1}^{m_{n-1}} a$ for some $a \in\left\langle S_{1}\right\rangle$, then $a^{-1}=e_{1}^{m_{1}} e_{2}^{m_{2}} \cdots$ $e_{n-1}^{m_{n-1}} e_{n}^{-1} \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$. Since α is an isomorphism from $\left\langle S_{2}\right\rangle$ to $\left\langle T_{2}\right\rangle$, we have $f_{n}=f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n-1}^{m_{n-1}} a^{\alpha}$ where $a^{\alpha} \in\left\langle T_{1}\right\rangle$. Thus, $G_{2}=\left\langle\bigcup_{i=1}^{n-1}\left\{e_{i}\right\}\right.$, $\left.\bigcup_{i=1}^{k}\left\{a_{i}\right\}\right\rangle$ implies that $G_{2}=\left\langle\bigcup_{i=1}^{n-1}\left\{f_{i}\right\}, \bigcup_{i=1}^{\ell}\left\{b_{i}\right\}\right\rangle$. Now we may assume that $G_{2}=\left\langle\bigcup_{i=1}^{m}\left\{e_{i}\right\}, \bigcup_{i=1}^{k}\left\{a_{i}\right\}\right\rangle=\left\langle\bigcup_{i=1}^{m}\left\{f_{i}\right\}, \bigcup_{i=1}^{\ell}\left\{b_{i}\right\}\right\rangle(m \leqslant n)$ such that $\left\{\bigcup_{i=1}^{m}\left\{e_{i}\right\}, \bigcup_{i=1}^{k}\left\{a_{i}\right\}\right\}$ is a minimal generating subset of G_{2}. Since any minimal generating subset of a p-group (p prime) is a minimum generating subset [16, 3.15 of Chapter III], we have $m+k \leqslant m+\ell$, which contradicts the fact that $k>\ell$.

By Claim 2, there exists a group isomorphism λ, induced by $a_{i} \rightarrow$ $b_{i}(0 \leqslant i \leqslant k)$, from $\left\langle S_{1}\right\rangle$ to $\left\langle T_{1}\right\rangle$. Clearly, λ maps S_{1} to T_{1}. If $\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle=1$ then the automorphism of G, defined by $a s \rightarrow a^{\lambda} s^{\alpha}$ for any $a \in S_{1}, s \in S_{2}$, maps $S \cup S^{-1}$ to T. Thus, Lemma 3.3 is true and so we assume $\left\langle S_{1}\right\rangle \cap$ $\left\langle S_{2}\right\rangle \neq 1$ from now on.

Let $\bar{S}_{1}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ and $\bar{T}_{1}=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$. Then $\left\langle S_{1}\right\rangle=\left\langle a_{1}\right\rangle \times$ $\cdots \times\left\langle a_{k}\right\rangle$ and $\left\langle T_{1}\right\rangle=\left\langle b_{1}\right\rangle \times \cdots \times\left\langle b_{k}\right\rangle$ where $S_{1}=\bar{S}_{1} \cup\left(\bar{S}_{1}\right)^{-1}$ and $T_{1}=$ $\bar{T}_{1} \cup\left(\bar{T}_{1}\right)^{-1}$. Remember that each element of S_{1} is of order 4 and we have assumed $\bar{S}_{1} \subseteq S$ before Claim 2. If $\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$ has an element of order 4 then there exists at least one element of \bar{S}_{1}, say a_{i}, such that it is a product of elements in $S \backslash\left\{a_{i}\right\}$, which contradicts the minimality of S. Thus, $\left\langle S_{1}\right\rangle \cap$ $\left\langle S_{2}\right\rangle$ is an elementary abelian 2-group. Let $u \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$ with $u \neq 1$. Then u can be written as a unique product $u=x_{1}^{2} x_{2}^{2} \cdots x_{m}^{2}\left(\right.$ for $\left.i \neq j, x_{i} \neq x_{j}\right)$ where $x_{i} \in \bar{S}_{1}$. Since α is an isomorphism from $\left\langle S_{2}\right\rangle$ to $\left\langle T_{2}\right\rangle, u^{\alpha}$ has order 2 and hence u^{α} can be written as a unique product $u^{\alpha}=y_{1}^{2} y_{2}^{2} \cdots y_{n}^{2}$ (for $i \neq j, \quad y_{i} \neq y_{j}$) where $y_{i} \in \bar{T}_{1}$. We call $x_{1}, x_{2}, \ldots, x_{m}$ (resp. $y_{1}, y_{2}, \ldots, y_{n}$) the factors of u (resp. u^{α}) and m (resp. n) the factor number of u (resp. u^{α}), denoted by $N(u)$ (resp. $N\left(u^{\alpha}\right)$). Since $\left\langle S_{1}\right\rangle=\left\langle a_{1}\right\rangle \times \cdots \times\left\langle a_{k}\right\rangle$ and $\left\langle T_{1}\right\rangle=$ $\left\langle b_{1}\right\rangle \times \cdots \times\left\langle b_{k}\right\rangle$, we have that $d_{X_{1}}(1, u)=2 m$ and $d_{Y_{1}}\left(1, u^{\alpha}\right)=2 n$ where $d_{X_{1}}$ $(1, u)$ (resp. $\left.d_{Y_{1}}\left(1, u^{\alpha}\right)\right)$ denotes the distance between 1 and u (resp. u^{α}) in X_{1} (resp. Y_{1}). It follows that $m=n$ because $X_{1} \cong Y_{1}$. Thus, $N(u)=N\left(u^{\alpha}\right)$ for any $u \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$ where we let $N(u)=0$ for $u=1$.

Claim 3. Let $u_{1}, u_{2}, \ldots, u_{n} \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$ and $v_{i}=u_{i}^{\alpha}(i=1,2, \ldots, n)$. Then the number of common factors of $u_{1}, u_{2}, \ldots, u_{n}$ is equal to that of $v_{1}, v_{2}, \ldots, v_{n}$.

Proof. The claim is true for $n=1$. Let $n \geqslant 2$.
Let A_{i} (resp. B_{i}) be the set of all factors of u_{i} (resp. v_{i}) and let $f(n, r)$ (resp. $g(n, r))$ be the number of all elements in \bar{S}_{1} (resp. \bar{T}_{1}) that belong to exactly r of $A_{i}\left(\right.$ resp. $\left.B_{i}\right)$. Then $\bigcap_{i=1}^{n} A_{i}\left(\right.$ resp. $\left.\bigcap_{i=1}^{n} B_{i}\right)$ is the set of all common factors of $u_{1}, u_{2}, \ldots, u_{n}$ (resp. $v_{1}, v_{2}, \ldots, v_{n}$) and so $f(n, n)=\left|\bigcap_{i=1}^{n} A_{i}\right|$ (resp. $\left.g(n, n)=\left|\bigcap_{i=1}^{n} B_{i}\right|\right)$. To prove the claim, it suffices to prove that $f(n, n)=$ $g(n, n)$.

Let x be a factor that belongs to exactly r of A_{i}. Then x is a factor of $u_{1} u_{2} \cdots u_{n}$ if r is odd, but not if r is even. Thus we have
$N\left(u_{1} u_{2} \cdots u_{n}\right)= \begin{cases}\sum_{i=1}^{n} N\left(u_{i}\right)-n f(n, n)-\sum_{i=1}^{\frac{n-2}{2}}[2 i f(n, 2 i) & \\ \quad+2 i f(n, 2 i+1)], & n \text { even } \\ \sum_{i=1}^{n} N\left(u_{i}\right)-\sum_{i=1}^{\frac{n-1}{2}}[2 i f(n, 2 i)+2 i f(n, 2 i+1)], & n \text { odd. }\end{cases}$
Similarly,
$N\left(v_{1} v_{2} \cdots v_{n}\right)= \begin{cases}\sum_{i=1}^{n} N\left(v_{i}\right)-n g(n, n)-\sum_{i=1}^{\frac{n-2}{2}}[2 i g(n, 2 i)+2 i g(n, 2 i+1)], & n \text { even } \\ \sum_{i=1}^{n} N\left(v_{i}\right)-\sum_{i=1}^{\frac{n-1}{2}}[2 i g(n, 2 i)+2 i g(n, 2 i+1)], & n \text { odd } .\end{cases}$

By Proposition 2.2, we have

$$
f(n, r)=\sum_{k=r}^{n}(-1)^{k-r}\binom{k}{r} \sum_{\substack{K \subset M \\|K|=k}}\left|\bigcap_{i \in K} A_{i}\right|=f_{1}(n, r)+(-1)^{n-r}\binom{n}{r} f(n, n),
$$

where

$$
\begin{aligned}
& f_{1}(n, r)= \sum_{k=r}^{n}(-1)^{k-r}\binom{k}{r} \sum_{\substack{K \subseteq M \\
|K|=k}}\left|\bigcap_{i \in K} A_{i}\right|(r<n) \quad \text { and } \\
& M=\{1,2, \ldots, n\}
\end{aligned}
$$

Similarly, $g(n, r)=g_{1}(n, r)+(-1)^{n-r}\binom{n}{r} g(n, n)$ where

$$
\begin{aligned}
g_{1}(n, r)= & \sum_{k=r}^{n-1}(-1)^{k-r}\binom{k}{r} \sum_{\substack{k \subset M \\
|K|=k}}\left|\bigcap_{i \in K} B_{i}\right|(r<n) \quad \text { and } \\
& M=\{1,2, \ldots, n\}
\end{aligned}
$$

If n is even then $N\left(u_{1} u_{2} \cdots u_{n}\right)=\sum_{i=1}^{n} N\left(u_{i}\right)-n f(n, n)-\sum_{i=1}^{(n-2) / 2}$ $[2 i f(n, 2 i)+2 i f(n, 2 i+1)]=\sum_{i=1}^{n} N\left(u_{i}\right)-n f(n, n)-\sum_{i=1}^{(n-2) / 2}\left[2 i f_{1}(n, 2 i)+\right.$ $\left.(-1)^{n-2 i} 2 i\binom{n}{2 i} f(n, n)+2 i f_{1}(n, 2 i+1)+(-1)^{n-2 i-1} 2 i\binom{n}{2 i+1} f(n, n)\right]=\sum_{i=1}^{n} N\left(u_{i}\right)$ $-\sum_{i=1}^{(n-2) / 2}\left[2 i f_{1}(n, 2 i)+2 i f_{1}(n, 2 i+1)\right]+f(n, n)\left\{-n+\sum_{i=1}^{(n-2) / 2}\left[2 i\binom{n}{2 i+1}-\right.\right.$ $\left.2 i\left(\begin{array}{c}n \\ 2 i\end{array}\right]\right\}=\sum_{i=1}^{n} N\left(u_{i}\right)-\sum_{i=1}^{(n-2) / 2}\left[2 i f_{1}(n, 2 i)+2 i f_{1}(n, 2 i+1)\right]+p_{n} f(n, n)$, where p_{n} has the same meaning as in Lemma 2.3. Similarly, if n is odd then $\quad N\left(u_{1} u_{2} \cdots u_{n}\right)=\sum_{i=1}^{n} N\left(u_{i}\right)-\sum_{i=1}^{(n-1) / 2}[2 i f(n, 2 i)+2 i f(n, 2 i+1)]=$ $\sum_{i=1}^{n} N\left(u_{i}\right)-\sum_{i=1}^{(n-1) / 2}\left[2 i f_{1}(n, 2 i)+2 i f_{1}(n, 2 i+1)\right]+p_{n} f(n, n)$. Thus,

$$
N\left(u_{1} u_{2} \cdots u_{n}\right)=\left\{\begin{array}{rr}
\sum_{i=1}^{n} N\left(u_{i}\right)-\sum_{i=1}^{\frac{n-2}{2}}\left[2 i f_{1}(n, 2 i)\right. \\
\left.+2 i f_{1}(n, 2 i+1)\right]+p_{n} f(n, n), & n \text { even } \\
\sum_{i=1}^{n} N\left(u_{i}\right)-\sum_{i=1}^{\frac{n-1}{2}}\left[2 i f_{1}(n, 2 i)\right. \\
\left.+2 i f_{1}(n, 2 i+1)\right]+p_{n} f(n, n), & n \text { odd. }
\end{array}\right.
$$

Similarly,
$N\left(v_{1} v_{2} \cdots v_{n}\right)=\left\{\begin{array}{cc}\sum_{i=1}^{n} N\left(v_{i}\right)-\sum_{i=1}^{\frac{n-2}{2}}\left[2 i g_{1}(n, 2 i)+2 i g_{1}(n, 2 i+1)\right] & \\ +p_{n} g(n, n), & n \text { even } \\ \sum_{i=1}^{n} N\left(v_{i}\right)-\sum_{i=1}^{\frac{n-1}{2}}\left[2 i g_{1}(n, 2 i)+2 i g_{1}(n, 2 i+1)\right] & \\ +p_{n} g(n, n), & n \text { odd. }\end{array}\right.$
By induction on n, we may assume that $\left|\bigcap_{i \in T} A_{i}\right|=\left|\bigcap_{i \in T} B_{i}\right|$, where T is a proper subset of $M=\{1,2, \ldots, n\}$, that is, $|T|<n$. It implies that $f_{1}(n, r)=$ $g_{1}(n, r)(r<n)$. Since $\left(u_{1} u_{2} \cdots u_{n}\right)^{\alpha}=v_{1} v_{2} \cdots v_{n}$ and $u_{i}^{\alpha}=v_{i}(1 \leqslant i \leqslant n)$, we have that $N\left(u_{1} u_{2} \cdots u_{n}\right)=N\left(v_{1} v_{2} \cdots v_{n}\right)$ and $N\left(u_{i}\right)=N\left(v_{i}\right)(1 \leqslant i \leqslant n)$. Hence, $N\left(u_{1} u_{2} \cdots u_{n}\right)=N\left(v_{1} v_{2} \cdots v_{n}\right)$ implies that $p_{n} f(n, n)=p_{n} g(n, n)$. By Lemma 2.3, $p_{n} \neq 0$ and so $f(n, n)=g(n, n)$.

Claim 4. There exists a group isomorphism β from $\left\langle S_{1}\right\rangle$ to $\left\langle T_{1}\right\rangle$ such that $S_{1}^{\beta}=T_{1}$ and $u^{\beta}=u^{\alpha}$ for any $u \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$.

Proof. Let $1 \leqslant i, j \leqslant k$. Define an equivalence relation \approx on $\bar{S}_{1}=\left\{a_{1}, a_{2}\right.$ $\left., \ldots, a_{k}\right\}$ by the rule

$$
\begin{aligned}
& a_{i} \approx a_{j} \Leftrightarrow \text { both } a_{i} \text { and } a_{j} \text { are either factors of } u \text { or not for any } \\
& u \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle .
\end{aligned}
$$

We also define a similar equivalence relation on $\bar{T}_{1}=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$, also say \approx, by

$$
\begin{aligned}
& b_{i} \approx b_{j} \Leftrightarrow \text { both } b_{i} \text { and } b_{j} \text { are either factors of } v \text { or not for any } \\
& v \in\left\langle T_{1}\right\rangle \cap\left\langle T_{2}\right\rangle .
\end{aligned}
$$

Let U_{0} be the set of all elements in \bar{S}_{1} that are not factors of any element in $\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$. Clearly, if $U_{0} \neq \phi$ then it is an equivalence class of \approx on \bar{S}_{1}. We also have a similar subset of \bar{T}_{1}, say V_{0}.

Let $U_{1}, U_{2}, \ldots, U_{l}$ be all other equivalence classes of \bar{S}_{1} different from U_{0}, and let $u_{1}, u_{2}, \ldots, u_{\ell_{i}}$ be all elements of $\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$ which have a factor in U_{i} for some $1 \leqslant i \leqslant \ell$. Since U_{i} is an equivalence class, every element in U_{i} is a factor of u_{j} for each $1 \leqslant j \leqslant \ell_{i}$, and so there are no other elements in $\left\langle S_{1}\right\rangle \cap$ $\left\langle S_{2}\right\rangle$ which have some factors in U_{i}. Clearly, U_{i} is the set of all common factors of u_{1}, u_{2}, \ldots, and $u_{\ell_{i}}$. By Claim $3, u_{1}^{\alpha}, u_{2}^{\alpha}, \ldots, u_{\ell_{i}}^{\alpha}$ have $\left|U_{i}\right|$ common factors. Denote the set of these common factors by V_{i}. Then $\left|U_{i}\right|=\left|V_{i}\right|$. We prove that V_{i} is an equivalence class of \bar{T}_{1}.

Let $u_{\ell_{i}+1}^{\alpha} \in\left\langle T_{1}\right\rangle \cap\left\langle T_{2}\right\rangle$ and $u_{\ell_{i}+1}^{\alpha} \neq u_{j}^{\alpha}\left(j=1,2, \ldots, \ell_{i}\right)$ for some $u_{\ell_{i}+1} \in$ $\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$. It suffices to prove that $u_{\ell_{i}+1}^{\alpha}$ has no factor in V_{i}. Suppose to the
contrary that $u_{1}^{\alpha}, u_{2}^{\alpha}, \ldots, u_{\ell_{i}}^{\alpha}, u_{\ell_{i}+1}^{\alpha}$ have at least one common factor. Claim 3 tells us that $u_{1}, u_{2}, \ldots, u_{\ell_{i}}, u_{\ell_{i}+1}$ have at least one common factor. Clearly, this common factor belongs to U_{i}, contrary to the fact that $u_{1}, u_{2}, \ldots, u_{\ell_{i}}$ are all elements of $\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$ which have a factor in U_{i}. Hence, V_{i} is an equivalence class of \bar{T}_{1}.

Thus, we can make a one-one mapping $\bar{\beta}$ from \bar{S}_{1} to \bar{T}_{1} such that $\left(U_{i}\right)^{\bar{\beta}}=$ $V_{i}(i=0,1,2, \ldots, \ell)$ and define a group isomorphism β from $\left\langle S_{1}\right\rangle=\left\langle\bar{S}_{1}\right\rangle$ to $\left\langle T_{1}\right\rangle=\left\langle\bar{T}_{1}\right\rangle$ by $a_{1}^{m_{1}} a_{2}^{m_{2}} \cdots a_{k}^{m_{k}} \rightarrow\left(a_{1}^{\bar{\beta}}\right)^{m_{1}}\left(a_{2}^{\bar{\beta}}\right)^{m_{2}} \cdots\left(a_{k}^{\beta}\right)^{m_{k}}$, where $m_{1}, m_{2}, \ldots, m_{k}$ are integers.

Let $u \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$ with $u \neq 1$. Then u has order 2 . Assume that the set of all factors of u consist of r equivalence classes of \bar{S}_{1}, say $U_{t_{1}}, U_{t_{2}}, \ldots, U_{t_{r}}$. Then the set of all factors of u^{α} also consist of r equivalence classes of \bar{T}_{1}, that is, $V_{t_{1}}, V_{t_{2}}, \ldots, V_{t_{r}}$. Since $o(u)=2$, we have that

$$
u=\prod_{x \in U_{t_{1}} \cup U_{t_{2}} \cup \cdots U_{t_{r}}} x^{2} \quad \text { and } \quad u^{\alpha}=\prod_{u \in V_{t_{1}} \cup V_{t_{2}} \cup \ldots V_{t_{r}}} y^{2} .
$$

By the definition of β, we have $u^{\beta}=u^{\alpha}$ for any $u \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$.
Now we are ready to prove Lemma 3.3. Define a map $\gamma: G \rightarrow G$ by as $\rightarrow a^{\beta} s^{\alpha}$ where $a \in\left\langle S_{1}\right\rangle$ and $s \in\left\langle S_{2}\right\rangle$. We claim that γ is an automorphism of G. Let $a_{1} s_{1}=a_{2} s_{2}$ where $a_{i} \in\left\langle S_{1}\right\rangle$ and $s_{i} \in\left\langle S_{2}\right\rangle(i=1,2)$. Then $a_{1} a_{2}^{-1}=$ $s_{2} s_{1}^{-1} \in\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$ and so $\left(a_{1} a_{2}^{-1}\right)^{\beta}=\left(s_{2} s_{1}^{-1}\right)^{\alpha}$. Since α, β are group isomorphisms, we have $\alpha_{1}^{\beta} s_{1}^{\alpha}=a_{2}^{\beta} s_{2}^{\alpha}$ which implies that γ is well defined. Now it is clear that γ is an automorphism of G and $\left(S \cup S^{-1}\right)^{\gamma}=T$. Therefore, $S \cup S^{-1}$ is a CI-subset of G.

Proof of Theorem 1.3. Let G_{2} be a Sylow 2-subgroup of G. If G_{2} is not elementary abelian and has a direct factor isomorphic to \mathbb{Z}_{2}, then we may assume that $G=\langle a\rangle \times\langle b\rangle \times\left\langle c_{1}\right\rangle \times \cdots \times\left\langle c_{m}\right\rangle$ where $\langle a\rangle \cong \mathbb{Z}_{2}$ and $\langle b\rangle$ $\cong \mathbb{Z}_{2^{n}}(n \geqslant 2)$. Clearly, $S=\left\{b, a b^{2^{n-2}}, c_{1}, c_{2}, \ldots, c_{m}\right\}$ is a minimal generating subset of G. Set $T=\left\{b, b^{-1}, a, a b^{2^{n-1}}, c_{1}, c_{2}, \ldots, c_{m}, c_{1}^{-1}, c_{2}^{-1}, \ldots, c_{m}^{-1}\right\}$. By Lemma 3.1, it is easy to show that $\operatorname{Cay}\left(G, S \cup S^{-1}\right) \cong \operatorname{Cay}(G, T)$. But for any $\alpha \in \operatorname{Aut}(G),\left(S \cup S^{-1}\right)^{\alpha} \neq T$. This implies that $S \cup S^{-1}$ is not a CI-subset, and so G is not a CIM-group. Now we assume that G_{2} is elementary abelian or has a direct factor isomorphic to \mathbb{Z}_{2}. Let S be a minimal generating subset of G. By Lemmas 3.2 and 3.3, $S \cup S^{-1}$ is a CI-subset and so G is a CIMgroup.

ACKNOWLEDGMENTS

[^1]
REFERENCES

1. A. Ádám, Research problem 2-10, J. Combin. Theory 2 (1967), 393.
2. B. Alspach and T. D. Parsons, Isomorphisms of circulant graphs and digraphs, Discrete Math. 25 (1979), 97-108.
3. L. Babai, Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad. Sci. Hungar. 29 (1977), 329-336.
4. D. Ż. Djoković, Isomorphism problem for a special class of graphs, Acta Math. Acad. Sci. Hungar. 21 (1970), 267-270.
5. E. Dobson, Isomorphism problem for Cayley graphs of Z_{p}^{3}, Discrete Math. 147 (1995), 87-94.
6. B. Elspas and J. Turner, Graphs with circulant adjacency matrices, J. Combin. Theory 9 (1970), 297-307.
7. X. G. Fang, Abelian 3-DCI groups, Ars Combin. 32 (1992), 263-267.
8. Y. Q. Feng and M. Y. Xu, A note on isomorphisms of Cayley digraphs of abelian groups, Australas. J. Combin. 15 (1997), 87-90.
9. Y. Q. Feng and T. P. Gao, Automorphism groups and isomorphisms of Cayley digraphs of abelian groups, Australas. J. Combin. 16 (1997), 183-187.
10. C. D. Godsil, On Cayley graph isomorphisms, Ars Combin. 15 (1983), 231-246.
11. M. Hall, "Combinatorial Theory," 2nd ed., Wiley, New York, 1986.
12. F. Harary, "Graph Theory," Addison-Wesley, Reading, MA, 1969.
13. Q. X. Huang and J. X. Meng, Isomorphisms of circulant digraphs, Appl. Math. J. Chinese Univ. Ser. B 9 (1994), 405-409.
14. Q. X. Huang and J. X. Meng, Automorphism groups of Cayley digraphs, in "Combinatorics, Graph Theory, Algorithms and Applications" (Y. Alavi, D. R. Lick, and J. Q. Liu, Eds.), pp. 77-81, World Scientific, Singapore, 1994.
15. Q. X. Huang and J. X. Meng, On the isomorphisms and automorphism groups of circulants, Graphs Combin. 12 (1996), 179-187.
16. B. Huppert, "Endliche Gruppen I," Springer-Verlag, Berlin, 1979.
17. M. H. Klin and R. Pöschel, The König problem, the isomorphism problem for cyclic groups and the method of Schur rings, in "Algebraic Methods in Graph Theory, Szeged, 1978," Colloq. Math. Soc. Janos Bolyai, Vol. 25, pp. 405-434, North-Holland, Amsterdam, 1981.
18. J. X. Meng and M. Y. Xu , On the isomorphism problem of Cayley graphs of abelian groups, Discrete Math. 187 (1998), 161-169.
19. C. H. Li, The finite groups with the 2-DCI property, Comm. Algebra 24 (1996), 1749-1757.
20. C. H. Li, Isomorphisms of connected Cayley graphs, II, J. Combin. Theory Ser. B 74 (1998), 28-34.
21. C. H. Li, On finite groups with the Cayley isomorphism property, II ${ }^{1}$, J. Combin. Theory Ser. A 88 (1999), 19-35.
22. C. H. Li, Isomorphisms of finite Cayley digraphs of bounded valency, II', J. Combin. Theory Ser. A 87 (1999), 333-346.
23. C. H. Li, C. E. Praeger, and M. Y. Xu, Isomorphisms of finite Cayley digraphs of bounded valency, J. Combin. Theory Ser. B 73 (1998), 164-183.
24. C. H. Li and S. Zhou, On isomorphisms of minimal Cayley graphs and digraphs, Graphs Combin. 17 (2001), 307-314.
25. M. Muzychuk, Ádám's conjecture is true in the square-free case, J. Combin. Theory Ser. A 72 (1995), 118-134.
26. M. Muzychuk, On Ádám's conjecture for circulant graphs, Discrete Math. 176 (1997), 285-298.
27. P. P. Páley, Isomorphism problem for relational structures with a cyclic automorphism, European J. Combin. 8 (1987), 35-43.
28. H. J. Ryser, "Combinatorial Mathematics," Wiley, New York, 1963.
29. M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998), 309-319.

[^0]: ${ }^{1}$ Supported by the NSFC(10071002) and PD154-NJTU.

[^1]: The authors are indebted to the referee who spent a lot of time in correcting our English and made many useful suggestions.

