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Let G be a finite group, S a subset of G\ {1}, and let Cay (G, S) denote the Cayley
digraph of G with respect to S. If, for any subset 7 of G\ {1}, Cay(G,S) = Cay(G,T)
implies that S* = T for some o € Aut(G), then S is called a Cl-subset. The group
G is called a CIM-group if for any minimal generating subset S of G, SUS™! is a
Cl-subset. In this paper, CIM-abelian groups are characterized. © 2002 Elsevier Science
(USA)
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1. INTRODUCTION

Let G be a finite group and let S be a subset of G\ {1}. The Cayley digraph
X = Cay(G,S) of G with respect to S is defined to have vertex set V(X)) = G
and edge set E(X) = {(g,s9) | g € G,s € S}. It is seen that X is connected if
and only if § generates the group G. If S = S~! then X = Cay(G, S), called a
Cayley graph, is viewed as an undirected graph by identifying two oppositely
directed edges with one undirected edge. A subset S of G\ {1} is said to be a
CI-subset of G if for any subset T of G\ {1}, Cay(G,S) = Cay(G, T) implies
that there is an automorphism « of G such that S* = T.

The study of CI-subsets has received considerable attention for more than
30 years. In 1967 Adam [1] posed the conjecture that each finite cyclic group
is a DCI-group (a finite group G is called a DCI-group if each subset of
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G\ {1} is a Cl-subset). The conjecture was disproved in 1970 by Elspas and
Turner [6] but it is true if the number n of vertices is either a prime [4], or a
product of two primes [17] or satisfies the condition (n, ¢(n)) = 1, where ¢ is
Euler’s function [27]. It is known that the conjecture fails if # is divisible by 8
or by an odd square, and Paley [27] conjectured that Adam’s conjecture is
true for all other values of n. This was proved by Muzychuk [25, 26]. Also, a
lot of other important work has been done about DCI-groups [2, 3,5, 10].
However, DCI-groups are rare and CI-subsets have been investigated under
various additional conditions, for example, m-DCI groups and m-CI-
groups, see [7,19-24]. This paper is devoted to the study of the following
question posed by the third author [29].

QUESTION 1.1 [29, Problem 6]. Let G be a finite group and let S be a
minimal generating subset of G.

(1) Is S a Cl-subset?
(2) Is S U S~ a Cl-subset?

Here, a minimal generating subset S of G means that S generates G and
for any s €S, S\{s! does not generate G. Both questions (1) and (2) were
answered in the affirmative for cyclic groups [13—15] and for abelian groups
with cyclic Sylow 2-subgroups [9]. Also, the question (1) was answered in the
affirmative for minimum generating subsets (minimal generating subsets
with least cardinality) of abelian groups [8]. However, Li and Zhou [24] gave
infinite families of examples which show that the answers to questions (1)
and (2) are negative in general.

Meng and Xu [18] defined the so-called DCIM- and CIM-groups: a finite
group G is called a DCIM- and a CIM-group if for each minimal generating
subset S of G, Sand S U S~! are Cl-subsets, respectively. Meng and Xu [18]
characterized DCIM-abelian groups (see also Li and Zhou [24]), and they
proposed the following question.

QUESTION 1.2 [18, Problem 1].  Characterize CIM-abelian groups.

The purpose of this paper is to give an answer for the above question.

THEOREM 1.3. A finite abelian group G is a CIM-group if and only if
Sylow 2-subgroups of G are elementary abelian or have no direct factor
isomorphic to 7.

Let u be a vertex of an undirected graph X. We denote by Xj(u) the
neighborhood of u in X, that is, the vertices adjacent to u. For the group
theoretic and graph theoretic notation and terminology not defined here we
refer the reader to [12, 16].
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2. PRELIMINARY RESULTS
In this section we give some preliminary results which will be used later.

ProOPOSITION 2.1 [18, Theorem 7]. A finite abelian group G is a DCIM-
group if and only if G is a 2-group or G has no direct factor isomorphic to the
type Zy x Z5p (p=2).

Independently, this proposition was proved by Li and Zhou [24]. The
following is the basic inclusion and exclusion formula (see also [11, Sect.
2.1)).

ProrosiTiON 2.2 [28, Chap. 2, Theorem 1.1]. Let Ay,A43,...,4, be
subsets of S and let v be a non-negative integer. Let f(n,r) denote the number
of the elements of S that belong to exactly r of A;. Then

n k
f(n,r):Z(—l)""<r> >N 4
k=r

>

KM ick
K=k
where M = {1,2,...,n}.
LEMMA 2.3. Let
n—2
—n+zi:]2 [21’(21.11)—21'(;)], n even
Pn = n—1
2 M) —al L dd
2 [l<2i> ’<2i+1 : 1 odd.

If n=2 then p,#0.
Proof. ltis easy to check p,#0 for n = 2 and 3. Let n>4. We divide the

proof into four cases: n =4k, 4k+2, 4k+ 1, or 4k+3 (k a positive
integer). If n = 4k, then

v, a7 ()
w=of, ") ()]

+
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Similarly, if n = 4k +2 then p, = —2()) — 2() — -+ = 2(, 3_,) — (1) <O.
If n = 4k + 1, then

ot foa(, ") 2 (2)
wof,") ()]

o) )]
) ()

+
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—a=v=fa=s(5)-o-9(5)]
e

5

"
4

. _ 2_ B _ n _ n

=(n—1) ; (n— 4k DK%) <2k+]>

By the unimodality of the binomial coefficients, we have p, > 0.
Similarly, if 7= 4k +3 then p, = (n — 1)> = 0 (n — 4k — D)[(2)—
Gy )]> 0. 8

3. PROOF OF MAIN RESULT
In this section, we shall prove Theorem 1.3.

Lemma 3.1, Let G =75 x Zy = <ay x {bY(n>2), = {b,b"',ab*",
(@b®* )™y, and T = {b,b',a,ab*'}. Then Cay(G,S) =~ Cay(G,T) and S
is not a Cl-subset of G.

Proof. Let X = Cay(G,S) and Y = Cay(G, T). Define amap 0: G —» G
by

ab - db 7, i=0or 1, 0<j<2".

Remember that for any g € G, X;(g) and Y;(g) denote the neighborhoods of
g in X and Y, respectively. Then we have X;(a'd/') = {a'b/t!,a'b/™ !, a'"!
B2 qit1pi=2""} By the definition of @, considering i = 0, 1, respectively
we obtain that Y;((¢’d/)°) = [X1(a’))]’, and hence ¢ is an isomorphism from
X to Y. Since there are two involutions in T but not in S, S is not a CI-
subset of G. 1

Hereafter we assume that G is a finite abelian group and S is a minimal
generating subset of G. Let ¢ be an isomorphism from X = Cay(G,S u S~")
to Y = Cay(G, T) with 1° = 1. Then (S U S~")? = T. Assume that Sylow 2-
subgroups of G are elementary abelian or have no direct factor isomorphic
to Z,. We shall prove that there exists an « € Aut(G) such that (S U S~")”* =
T, that is, S U S~ ! is a Cl-subset of G.
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LEMMA 3.2.  If Sylow 2-subgroups of G are elementary abelian, then S L
S~!is a CI-subset of G.

Proof. Define an equivalence relation ~ on S U S~! by the rule

S] ~ 8§ @sf:sg, for any s;,s»eSu S~

Then the set of all involutions in S U S™!, say S, is an equivalence class
under ~ . If §; is an equivalence class then it is easy to show that S;! is also
an equivalence class, and moreover if S; # S, then S~ 1 £S; because G has no
element of order 4. Thus, we may assume that SUS ! =Sy US; U---U
Seu St uS !t where So,S8i,...,8, S;l,...,S; 1 are all equivalence
classes of ~ on SuU S~ .

The proof of Lemma 3.2 will be carried out over a series of three
claims. We show (S;!) = (.S'{’)’1 in Claim 2 and hence we may
assume T'=TuTiu--uTl,uTly'u---UT; ! where T;=S7. By
Claim 3 we have Cay(G,Sou S u---uS) = Cay(G,ThyuvThu---uTp.
Note that SpuS;u---uUS, is a minimal generating subset of G.
Thus, by Proposition 2.1 there exists an o€ Aut(G) such that
SouSiu-—-uUS) =TyuTi u---UT,; and it follows that (Su S~ )" =
T, that is, SUS™' is a Cl-subset of G. To prove Claim 2 and
Claim 3, we need to know the intersection of the neighborhoods
of gs; and gs, for any g € G and 51,5, € S U S~!, which will be computed
in Claim 1.

For convenience of statement, we assume that Sy, S;,...,S; are all the
equivalence classes of ~ on S US™! and let 7; = S? (i=0,1,...,k), where
So has the same meaning as above. Then T =Ty v i U--- U T}.

Cram 1. Let s;,seSuUS™!, ge G and let s, ;észil. Then we have

{9, 95152}, S1 82
1) Xi(gs1) n Xi(gs2) =
(1) Xi(gs1) n Xi(gs2) {{Q,QS%,QSISZ,gslszl =gsosi'h, s~ s
(2) Let s € S;#Sy. Then Xi(gs1) N Xi(gsy') = {gsisls € S;'} = Xi(gs1)
NXi(gS; ") where X1(gS; ") = Uses1 X1(g9).

Proof. 1If {x1,x5,...,x,} is a minimal generating subset of G then {x‘f‘,
xgz,...,xgﬂ} (0;=1 or —1, i=1,2,...,n) are also minimal generating
subsets of G. To prove (1), we may assume that S = {sy,s5,...,5,} since
S1 ;ész

Assume that for some sl,sjeS sls‘> —S2s (0,0, =1 or —1). By
the minimality of {s‘f‘,s2 beees SO, we have i=1 or 2 and j=1
or 2. Furthermore, if i =1 then j: 2 and if i =2 then j = 1. Thus, it
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follows that

{9, 95152}, 5T #53

Xi(gs1) N Xi(gs2) < { 5 0 1
19,951, 95152, 915, = gsasy }, s = 55
The inverse inclusion is obvious and (1) follows. ]

To prove (2), we assume that for some s,,sj €S, sls = s1 s (65,0, =1
or —1). By the mmlmahty of {5 ,32 ,e. } we have i=j. Since s1 €S,
and St # S0, we have s?# 1. Thus, s,’ = (s ’)* and s1 (sf’) which forces
s €S, and s €S, !, Therefore, Xl(gsl) N Xi(gs7h < {gsisls € S7'}. The
1nverse 1nclus1on is also obvious. Since S;#S, we have S, #S; 1, which
implies that s; ~s; ! for any s, € S;. By (1), if s, #s) then Xj(gs1) N Xi(gs;!) =
{9, 9515, '}, which is a subset of X(gs1) nXi(gs;!) = {gslslseSt‘l}. It
follows that X(gs;) ﬁX](gSfl) = {gs1s|s € S;l} = Xi(gs1) ﬁX](gSZI). |

Cramv 2. S;=S; " if and only if Ty = T, .

Proof. Assume that S =S, Let i#0 and #; = s7 € T; where s; € S;. By
i#0, we have that S;! #S and so j#i. Claim 1 tells us that [Xi(s;) N
Xi(S)| = Hsisls € S;3| = |S;] and it follows that |Yi(4;) n Yi(T))| = |S;]. Sup-
pose that ;71 ¢ T;. Then |Y1(t;) N Yi(T)|=>|{1, 4|t € T;}| = |T;| + 1. Thus, |T}|
+1 <|S| However T, = S" implies that |S;| = |7}|, a contradiction. There-
fore, ;7! € T; and 7! Now we have proved that for any i #0, §; = S
1rnphes that T; = T ! Consequently, Ty, = T L

Assume that T; =T, '. We prove S; = S;°! Suppose to the contrary that
S;#S:!. Then there exists some m (m ;é]) such that S, = S;1. By the above
proof we have T,, = T;"!. It follows that 7,, = T; = T,!, contrary to the fact
that m#/. 1

CLAM 3. Let s1,52,...,8, €S and s; € S, where 0<k;<k (i=1,2,...,
n). Then (sis2---8,)" = (5152~ Sy—1)"ty for some t, € Ty, .

Proof. For n =1 the claim is obvious. Let n>2 and set x = 5153+ 5,2
(x =1 if n = 2). By induction on n, we may assume that (xs,_;)" = x t” 1
and (xs,)” = x°¢, for some #,_, € I}, , and ¢, € T} . It suffices to prove that
(x8p—184)° = (x8,—1)"t, for some ¢, € Ty, .

Let &, #k,_;. We distinguish two cases (1) Sk, ;éSk and (ii) S, = S, }]. In
the first case, we have T, #7,' (Claim 2) and so ¢t #1. Since
X1(xs,—1) N X1(xs,) = {x,x8,_15,} (Claim 1) dnd Yi(x7t ) 0 (x7t) o
{x7,x7¢, ¢}, it follows that (xs,7 180)” = x%t_t, = (xs,-1)°t, where ¢, € Tj,.
In the second case, T}, = Tk - . Since k, #k,—1, we have k,_; #0. By Cldlm 1,
we have Xj(xs,_1) le(xSk ) = {xs,_15ls € S, }. Clearly, Y,(x° tnfl)m
Y1(x°Ty,) o {x°t,_,t|t € Ty, }. Since |S,| = |T}, |, there exists a t, € Tj, such that



ISOMORPHISMS OF CAYLEY GRAPHS 45

(x8y—18,)" = x°t,_t, = (x5,-1)°t,. Combining these two cases, we have
proved that for any k,#k,—1, (xs,—18,)° = (xs,—1)"t, for some ¢, €Ty,
Consequently, it is also true for k, = k,_1. 1

Now we are ready to prove Lemma 3.2. Note that SU S ! =S, U S, U
uSpuSitu-u S where S, S1,. .., 8, S, S, ! are all equiva-
lence classes of ~ on S U S~!. By Claim 2, wemay let T=Ty U T} U--- U
T,oT o~ U T, where T; = 87 for 0<i<{. Set ' =Sy uS;U---US,
and 7" =Ty u T U--- U T,. Then §’ is a minimal generating subset of G and
by Claim 3 we have Cay(G, S’) =~ Cay(G, T"). By Proposition 2.1, 8" is a CI-
subset and so there is an o € Aut(G) such that (§')* = T". It follows that
SusS Yy = uE)Y=Tu@)'=TandsoSuS!isa Cl-subset
of G. 1

LemMma 3.3.  If Sylow 2-subgroups of G have no direct factor isomorphic to
Z,, then S U 87" is a Cl-subset of G.

Proof. Denote by S; the set of all elements of order 4 in S U S~! and set
Sy = USHS, T1 =87 and T» = S§. Clearly, S;! = §) and S;!' = S».

First we give an outline of the proof. The proof will also be carried out
over a series of claims. Note that ¢ is an isomorphism from X = Cay(G, S U
SN to Y = Cay(G, T) with 19 = 1. In Claim 1 we show that the restriction
of o on <{$;), say a, is a group isomorphism from <{S;) to (7> ). Hence, to
prove the lemma it suffices to construct a group isomorphism, say f5, from
{81 to {T1) such that Sf =T} and ¥ = u* for any u € (1> N (S>> (Claim
4) because the automorphism of G defined by as — afs* for any a € (S|)
and s € ¢S,), maps S US~! to 7. Since Sylow 2-subgroups of G have no
direct factor isomorphic to Z,, we may show (8> =<a;) x - - x agy
where S = {ai,as,...,a:} U {a;',a5',...,a;'}. Thus to construct the
above f§ such that S| = T7, we need to prove that 77 consists of elements
of order 4 and <T1> = <b1> X <b2> X X <bk> where T = {b],bQ,...,bk}
u{bl, by, .., b}, which will be proved in Claim 2. For u € {S;) n <{S»),
it is seen that u = x3x3 - --x2 (for i#j, x;#x;) where x; € {a,a,...,a}, and
u* = yiys---y2 (for i#j, yi#y;) where y; € {by,by,...,bc}. We call x1,x1,
voisXm V1, Y2, .., ym) the factors of u(u”). To construct the above f such
that u* = u for any u € {(S;> N {S,), we need to prove that the number of
common factors of uy,uy,...,u, is equal to the number of common factors
of uf,uf,...,u} for any uy,ua, ..., u, € <S1) N <{S2), which will be proved in
Claim 3.

Cram 1. The restriction of a on {S>) is a group isomorphism from {S»)
to {T») and the restriction of o on {Si) is a graph isomorphism from
Cay(<{S817,81) to Cay(KT1), Th).
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Proof. Let 51,55 €S U S’ and S| #S87. First we prove that s1 ;ész, or
o(s;) = 4 and s, = s7!. Let s7 = s3. Then s7 s, is an involution. If 51,5, € S
then G = (S\{s1},s7's2> and G#<(S\{s;}> because S is a minimal
generating subset of G, which implies that G has a direct factor isomorphic
to Z, (<sf1sz »), contrary to the hypothesis. Thus, s; and s, cannot be two
elements of any minimal generating subset of G and so s, = s7!. By s = s3,
we have o(s;) = 4

Let 51,50 € S U S~ with 51 #5,. We have proved that s3#s3, or s, = 57
and o(s;) = 4. With this result, a similar argument to the proof of Claim 1 in
Lemma 3.2 gives rise to the following formula for any g € G:

1

{g}, sy = sy and o(s)) #4
Xi(gs1) N Xi(gs2) = < {9,951}, sy =s7! and o(s) = 4
{9, gs152}, saFsy L

Since |X1(gs1) N Xi(gs2)| = 1 if and only if s, = s7! and o(s1) #4, we have
(57" =(s")"' forany se€ ;. Thus 75 = (89) ' = (8;")" = T» and ;' =
T1. By a similar argument to the proof of Claim 3 in Lemma 3.2, we have
that for any s1,s2,...,5, €S US™, (s152-5,)" = (s152---5,_1)"t, Where 1,
=s7if s, €S and ¢, € T; if 5, € S1. This implies that the restriction of ¢ on
{8, > is a group isomorphism from <{S,) to {7>) and the restriction of ¢ on
{S1) is a graph isomorphism from Cay({S;),S)) to Cay(K7;>,T1). 1

If S} is empty then S U S~! coincides with S,. By Claim 1, Lemma 3.2 is
true. Thus, from now on we assume |S;|>1 and denote by « the
isomorphism from <{S,> to (7T>) induced by the restriction of ¢ on {S,).

Let S| = {ai,a,...,ar} U {al’l,az’l,...,azl} with {aj,as,...,a;} < S.
Then £>1. We claim {S;) = {a;) X {ar) X --- X <ak> Otherwise without
loss of generality, we may suppose that a3 = (a2 a3 : k) by the

mlmmahty of S, where 6, =0,1 or —1 2<i<k). Clearly, <S1> =<ay 'agz

@, ay,as,. .., a; > and hence (S\{a1},a;'ad - al*> = G. Since (S\{a;}>
#G and o(a(lag’- k) =2, G has a direct factor isomorphic to
7, (<al‘]agZ *>) contrary to the hypothesis.

CLAM 2.  Each element of Ty has order 4 and {(T\) = {b1) x {(by) X
- {bry where T) = {b],bz,...,bk} ) {b?l,bgl,...,b;l}.

Proof. Since |S||>=1, T; is not empty. Let X; = Cay({S$;),S;) and ¥; =
Cay(KT;>, T;) (i=1,2). By Claim 1, X; =~ Y; (i = 1,2). If each element of T}
has order 4 then we have {T1) = {(b1> x {by> x ---<{by) because |[S|| = |T}]
and |[{S} )| = [T )|. Thus, in order to prove the claim it suffices to prove that
each element of 77 has order 4. We consider three cases according to the
orders of elements in 7.
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Case 1. There is no element of order 3 in 7j.
Since X; has no triangle and X; = Y}, ¥; has no triangle and so T}
contains no element of order 3.

Case 1. There is no element of order greater than 4 in 7.

Suppose to the contrary that there exists a by € 7} and o(b;) > 4. Let
u e V(X;) such that dy,(1,u) =2, where dx,(1,u) denotes the distance
between 1 and wu. It is seen that # and 1 lie on a cycle of length 4 in X
and so do 1 and b% in Y;. Thus, there exist by, b3 € T} (by #b,, b3) such that
b% = b2b3. If b2 = b3 then |Y1(b1) M Y](bz)|>|{l,b2,b1b2}| =3 and if b2 ¢b3
then |Y1(b1) N Yi(b2) N Yi(b3)|=|{1,b?}| = 2. Both are impossible since for
any aj,ax,az €Sy with a;#a; (i#)), |Xi(a1) nXi(a)| =2 and |Xi(a1) N
Xi(a2) N Xi(a3)l = 1.

Case 1II. There is no element of order 2 in Tj.

Suppose to the contrary that V' # ¢ is the set of all involutions in 7j. Set
U=T\V. Then T} = U U V and each element of U has order 4. Let U =
{b1,bs,...,be} U by, by 1, .. b} where o(b;) = 4 (1<i<¢). Noting that
Sy =A{an,az,...,a} v {a;t,ayl, ..., a; '} and |S)| = |Ti|, we have k > ¢ since
V#é.

Let S, = {s1,50,...,8,}, T» = {t,tr,...,t,} and let S? =t (i =12,...,
n). We may assume that s; = e;u; and t; = f;v; such that o(e;), o(f;) are
2-powers and o(y;), o(v;) are odd. Since « is a group isomorphism
from <S> to (I»), we have (e¢)* = f;. Denote by G, the Sylow
2-subgroup of G. Then, G> = <UL, ferd, U, faity = <UL, (£i}UL, b
},V>. Since G has no direct factor isomorphic to Z,, we have V < @(G,)
where @(G;) is the Frattini subgroup of G,. This implies that G, =
UL UL i) Cleatly, Go# (UL, feih, Uy {at\ fa}) (= 1.2,
-0 OF k). If e, = €}'"€5” --- €] 'a for some a € (Sy), then a L=l
emle e dSiHn <S2> Since « is an isomorphism from <{S;) to <T2>
we have f, = f" "7 fi'a” where a* € {Ty). Thus, G, = <Ul | e},
Ul Haity 1mplles that Gz =<5 AR Ul | {bi }> Now we may assume
that G> = (U7, {ed, UL, {aid> = CUP, 145Uy (63 (m<m) such that
{U~, {e,-},Ul:1 {a;}} is a minimal generating subset of G,. Since any
minimal generating subset of a p-group (p prime) is a minimum generating
subset [16, 3.15 of Chapter III], we have m + k<m + ¢, which contradicts
the fact that k> ¢. 1

By Claim 2, there exists a group isomorphism A, induced by a; —
b; (0<i<k), from {S;) to (T1). Clearly, Amaps S; to 71. If {(S1> n {(S) =1
then the automorphism of G, defined by as — a’s* for any a € S;, s € S,
maps S US~! to 7. Thus, Lemma 3.3 is true and so we assume {S;)> N
(8> #1 from now on.
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Let S| = {ai,a,...,a;} and Ty = {b1,bs,...,b;}. Then (8> = {ar) x
cox<agy and (T = <by> x -+ x by where §; = S, U (S))"! and T} =
T, U (]_"1):1. Remember that each element of S; is of order 4 and we have
assumed S < § before Claim 2. If {S;) N {$,) has an element of order 4
then there exists at least one element of Sy, say a;, such that it is a product of
elements in S\{a;}, which contradicts the minimality of S. Thus, {(S;> N
{$,) is an elementary abelian 2-group. Let u € {S1)> N (S>> with u#1. Then
u can be written as a unique product u = xix3 - - -x2 (for i#j, x;#x;) where
x; € S;. Since o is an isomorphism from (S>> to (7>, u* has order 2 and
hence u* can be written as a unique product u* = y?y3-.-y? (for
i#j, yi#y;) where y; e T,. We call x1,x3,...,%n (resp. y1,2,...,yn) the
factors of u (resp. u*) and m (resp. n) the factor number of u (resp. u*),
denoted by N(u) (resp. N(u*)). Since (S;) =<a;y X --- x {agy and {T}) =
b1y x -+ x {byy, we have that dx,(1,u) = 2m and dy, (1, u*) = 2n where dy,
(1,u) (resp. dy,(1,u*)) denotes the distance between 1 and u (resp. u*) in X
(resp. Y7). It follows that m = n because X; =~ Y;. Thus, N(u) = N(u”*) for
any u € {S1) N {S,> where we let N(u) =0 for u = 1.

CLamM 3. Let ui,uz,...,u, €{S1) n<S) and vi=u? (i=1,2,...,n).
Then the number of common factors of uy,ua,...,u, is equal to that of
U1,02,...,0y.

Proof. The claim is true for n = 1. Let n>2.

Let 4; (resp. B;) be the set of all factors of u; (resp. v;) and let f(n,r) (resp.
g(n, r)) be the number of all elements in S| (resp. T';) that belong to exactly r
of 4; (resp. B;). Then (), 4; (resp. (;_, B;) is the set of all common factors
of wuy,us,...,u, (resp. vy,v2,...,0,) and so f(n,n) = |ﬂ;7:1 Al (resp.
g(n,n) = [, Bil). To prove the claim, it suffices to prove that f(n,n) =
g(n,n).

Let x be a factor that belongs to exactly r of 4;. Then x is a factor of
uiuy - - - u, if r is odd, but not if » is even. Thus we have

n=2
it NQw) — nf(n,n) — 35,2 [2if(n,2i)
Nuy - uy) = +2if(n,2i + 1)), n even

n—1

S N — 3,2 [2f(n,2i) + 2if(n,2i + D], n odd.

Similarly,

n=2
Z:’:l N(v;) — ng(n,n) — Zl.:zl [2ig(n, 2i) + 2ig(n,2i + 1)], n even

n—1

S N@w) — X2 [Rig(n, 2i) + 2ig(n, 2i + 1)], n odd.

N(vy---v,) =
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By Proposition 2.2, we have

() 4

ieK

— fim )+ (—1y (Z ) flnn),

fn,r) = Z( 1)’”( )Z

k=r
|K|=k

where

N4

ieK

filn,r) = z": (—l)kr<k> > (r<n)  and
= =

M={1,2,...,n}.

Similarly, g(n,r) = g1(n,r) + (=1)"""(")g(n, n) where

ﬂ B;i|(r<n) and

ieK

n—1 k
gi(nr) =" (—D’”(r) >

k=r kM
|K|=k

M={1,2,...,n}.

If n is even then N(uuy---uy) =", N(u)—nf(n,n)— "7/
[2i f(n,20) + 2i f(n,2i + D] =S, N(wy) — nf(n,n) — 27 [2ifi(n, 20)+
(—=D"22i(3) fn,m)+2i f1(n, 20 + 1) + (=1 712iG," ) f(n,m)] = S Nuwy)

— S Rifi(n,2i) + 2ifi(n,2i + D]+ flan)i—n+ X077 20 ) —
20N = Y, Nw) — S0 Rifin,20) + 2ifi(n,2i + D] + paf(n,n),

where p, has the same meaning as in Lemma 2.3. Similarly, if » is odd
then  N(uyuz---up) = 3, N(u) — S [2if(n, 20) + 20 f(n, 20 + 1)] =
Sy Nw) = S0 20fi(n,20) + 20 11,26 + D] + puf(n,n). Thus,

n=2
Z?:l N(u;) — Z,‘:zl [2if1(n, 2i)
+2if1(n,2i + D)+ puf(n,n), n even

n—1
Z:’:1 N(u;) — Z,‘:zl [2if1 (n, 2i)
+2if1i(n,2i + V)] + puf(n,n), n odd.

N(uyuz -« uy) =
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Similarly,
n-2
Doy N@) = 322 [2igi(n, 20) + 2igi(n, 2 + )]
+ png(n,n), n even
Noro--0,) = Png(n,n) L
Sr L N@) = Y2 [2igi(n, 2i) + 2igy(n, 2i + 1)]
+ pug(n, n), n odd.
By induction on n, we may assume that |\, 4:l = |(;cr Bil, where T is a

proper subset of M = {1,2,...,n}, that is, |T|<n. It implies that fi(n,r) =
gi(n,r) (r<nm). Since (ujuz---u,)* =vivy---v, and uf =v; (1<i<n), we
have that N(ujuy - - - u,) = N(vjv2 - - - v,) and N(u;) = N(v;) (1<i<n). Hence,
N(uyuy - - -u,) = N(vivy - - - v,) implies that p, f(n,n) = p,g(n,n). By Lemma
2.3, p,#0 and so f(n,n) = g(n,n). 1

CLAIM 4.  There exists a group isomorphism f from {Sy) to {T1) such that
S{g =T\ and uf = u* for any ue {(S;> N (5.

Proof. Let 1<i,j<k. Define an equivalence relation =~ on S, = {ai,a;
,...,a;} by the rule

a; & a; < both a; and a; are either factors of u or not for any
u € {81y N <S8

We also define a similar equivalence relation on T = {by,b,,..., b}, also
say =, by

b; & bj < both b; and b; are either factors of v or not for any
ve <T1> [ <T2>.

Let U, be the set of all elements in S| that are not factors of any element
in (81> N {S,). Clearly, if Uy # ¢ then it is an equivalence class of ~ on S|.
We also have a similar subset of 77, say 1. B

Let Uy, Us,. .., U; be all other equivalence classes of S| different from U,
and let uy, us, . . ., ug, be all elements of {(S;) N <{S,) which have a factor in U;
for some 1<i<{. Since U; is an equivalence class, every element in U; is a
factor of u; for each 1<j<{;, and so there are no other elements in <{S;) N
{8, > which have some factors in U;. Clearly, U; is the set of all common
factors of uy,us,..., and u,. By Claim 3, uf, us, ..., up have |U;| common
factors. Denote the set of these common factors by V;. Then |U;| = |V;]. We
prove that ¥} is an equivalence class of T;.

Let uf ., €<T1) n<T2) and uj #u (G=12,...,¢) for some us) €
(81> N {82). It suffices to prove that u7 .| has no factor in ;. Suppose to the
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contrary that uf,u5,...,uz,uj | have at least one common factor. Claim 3
tells us that uy,us,...,us,u,41 have at least one common factor. Clearly,
this common factor belongs to U, contrary to the fact that uj,us, ..., u, are

all elements of (81> n {S,)> which have a factor in U;. Hence, V; is an
equivalence class of Tl. _ _ )

Thus, we can make a one-one mapping f from S; to T such that (I_Ji)ﬁ =
Vi (i=0,1,2,...,¢) and define a group isomorphism f from {§;) = {S;) to
(N =T by al'ay? - alt - (af)"”(ag)m2 e (af)mk, where my, my, ..., my
are integers.

Let u € {S1) n (85> with u# 1. Then u has order 2. Assume that the set of
all factors of u consist of r equivalence classes of Sy, say U,,, Uy,,...,U,.
Then the set of all factors of u* also consist of r equivalence classes of T 1
that is, ¥}, V,,,..., V,. Since o(u) = 2, we have that

u= H x? and u* = H las

er,] uU,2 U, ueV,] uV,z (ORR 7%

By the definition of f8, we have u# = u* for any u € {(S|> N (S»).

Now we are ready to prove Lemma 3.3. Define a map y:G —» G by
as — als* where a € {(S)) and s € ¢(S,)>. We claim that y is an automorphism
of G. Let ajs) = axsy where a; € (S1) and s; € {($2) (i = 1,2). Then aja;' =
257" € (81> N <S8y and so (aja;')f = (sas7!)*. Since «,f are group
isomorphisms, we have ocfs“l‘ = agsg which implies that y is well defined.
Now it is clear that y is an automorphism of G and (SuS~') =T.
Therefore, S U S~ ! is a Cl-subset of G. 1

Proof of Theorem 1.3. Let G, be a Sylow 2-subgroup of G. If G, is not
elementary abelian and has a direct factor isomorphic to Z,, then we may
assume that G = {(a) x <b) x {c1) x -+ x {c» where <a) = Z, and <{b)
~ 7> (n=2). Clearly, S = {b,ab* ",c1,ca,...,cn} is a minimal generating
subset of G. Set T = {b,b"",a,ab® ',ci,c2,....cmcit 5!, . e} By
Lemma 3.1, it is easy to show that Cay(G,S u S~!) =~ Cay(G, T). But for
any o € Aut(G), (S uS~")*#T. This implies that S U S~! is not a Cl-subset,
and so G is not a CIM-group. Now we assume that G, is elementary abelian
or has a direct factor isomorphic to Z,. Let S be a minimal generating subset
of G. By Lemmas 3.2 and 3.3, S u S~ ! is a CI-subset and so G is a CIM-
group. 1
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