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a b s t r a c t

We consider here the problem of tracking the dominant eigenspace of an indefinite matrix
by updating recursively a rank k approximation of the given matrix. The tracking uses a
window of the given matrix, which increases at every step of the algorithm. Therefore, the
rank of the approximation increases also, and hence a rank reduction of the approximation
is needed to retrieve an approximation of rank k. In order to perform the window
adaptation and the rank reduction in an efficient manner, we make use of a new anti-
triangular decomposition for indefinite matrices. All steps of the algorithm only make use
of orthogonal transformations, which guarantees the stability of the intermediate steps.
We also show some numerical experiments to illustrate the performance of the tracking
algorithm.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and notations

Indefinite symmetric matrices occur in many applications, such as optimization, partial differential equations and
variational problems where they are for instance linked to a so-called saddle point problem. In these applications one is
often interested in tracking the subspace associated to the largest eigenvalues. We consider in this paper the problem of
tracking the dominant eigenspace of an indefinite matrix by updating recursively a low rank approximation of the given
matrix. The proposed algorithm can be used, for instance, for problems where at each time instant a new row and column
is appended to the existing symmetric indefinite matrix, and the knowledge of the dominant subspace is required.

In the sequel, we introduce the basic notations used in this paper. The inertia of a symmetric matrix A ∈ Rn×n is the triple
Inertia(A) = (n−, n0, n+), where n−, n0 and n+ are the number of negative, zero and positive eigenvalues of A, respectively,
and n− + n0 + n+ = n. The identity matrix of order n is denoted by In and its columns, the unit vectors, are denoted by
e(n)
i , i = 1, . . . , n. Submatrices are denoted by the colon notation of MATLAB: A(i : j, k : l) denotes the submatrix of A

formed by the intersection of rows i to j and columns k to l, and A(i : j, :) denotes the rows of A from i to j. Vectors are usually
denoted in bold. A null submatrix is denoted by 0 and its size can vary depending on the context.

The paper is organized as follows. In Section 2, we consider the problem of finding the dominant eigenspace of a bordered
symmetric matrix. This amounts to computing the k-dimensional subspace associated to the largest eigenvalues in absolute
value of a bordered symmetric matrix, when we have an approximation of the dominant subspace of the smaller matrix.
Based on this ‘‘updating’’ algorithm, an iterative procedure for tracking the dominant eigenspace of an indefinite matrix is
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proposed. In Section 3wederive somebounds for the accuracy that can be obtainedwith ourmethod. In Section 4wepresent
some numerical experiments illustrating that the algorithm is numerically stable and that the eigenvalues and eigenvectors
are well approximated as the recursion proceeds.

2. Bordering problem

Let Ai := A(1 : i, 1 : i), i = 1, . . . , n. Suppose we have a rank—k approximation of Ai, 1 ≤ k ≤ i ≤ n of the form

Ai ≈ UiMiUT
i =: Ãi,

with Mi ∈ Rk×k symmetric and Ui ∈ Ri×k with orthonormal columns.
The main idea is to obtain a rank—k approximation of Ai+1 by using the best rank—k approximation in Frobenius norm

as well as in spectral norm of another bordered matrix, namely

Âi+1 =


Ãi ai
aTi γi+1


, (1)

with ai = A(1 : i, i+1) and γi+1 = A(1+ i, i+1). As a result of this, wewill also show that the eigenvalues and eigenvectors
of Âi+1 approximate well the dominant eigenvalues and eigenvectors of Ai+1.

In this section we describe in detail one step for the iterative procedure of the updating. Let

ri = UT
i ai, (2)

qi = (Ii − UiUT
i )ai = ai − Uiri, (3)

ρi = ∥qi∥2, (4)

u⊥

i = qi/ρi. (5)

Remark 2.1. These computations correspond to the Gram–Schmidt orthogonalization [1] of thematrix [Un | a], and require
4ki operations:

[Ui | ai] = [Ui | u⊥

i ]


Ii ri

ρi


.

To avoid loss of accuracy, in [2] it is suggested to perform the Gram–Schmidt orthogonalization twice, which of course
doubles the cost.

Since

ai = Uiri + ρiu⊥

i ,

then, by (2)–(5), we can write (1) as

Âi+1 =


Ãi ai
aTi γi+1


= Ûi+1M̂i+1ÛT

i+1, (6)

where

Ûi+1 :=


u⊥

i Ui
1


, and M̂i+1 :=

 ρi
Mi ri

ρi rTi γi+1

 . (7)

Let M̂i+1 = Q̂i+1Λ̂i+1Q̂ T
i+1 be the spectral decomposition of M̂i+1, with Q̂i+1 = [q̂1, q̂2, . . . , q̂k+1, q̂k+2] ∈ R(k+2)×(k+2)

orthogonal and Λ̂i+1 = diag(λ̂1, . . . , λ̂k+1, λ̂k+2) with |λ̂1| ≥ |λ̂2| ≥ · · · ≥ |λ̂k+1| ≥ |λ̂k+2|. The best rank—k
approximations of M̂i+1 and Âi+1 are given, respectively, by

M̃i+1 =

k
j=1

λ̂jq̂jq̂Tj , Ãi+1 = Ûi+1M̃i+1ÛT
i+1.

Let Ṽi+1 ∈ R(k+2)×(k+2) be the orthogonal matrix such that the last two columns of the product V̂i+1 = Ṽi+1Q̂i+1 are

V̂i+1e
(k+2)
i+1 = ±e(k+2)

j1
, V̂i+1e

(k+2)
i+2 = ±e(k+2)

j2
,

j1, j2 ∈ {1, . . . , i + 1, i + 2}, j1 ≠ j2, where e(k+2)
j , j = 1, . . . , k + 2 is the j-th vector of the canonical basis of R(k+2).
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Let M̌i+1 = V̂i+1M̂i+1V̂ T
i+1. Then, for j ∈ {1, 2, . . . , k, k + 1, k + 2},

e(k+2)
j1

T
M̌i+1e

(k+2)
j = e(k+2)

j
T
M̌i+1e

(k+2)
j1

=


λk+1, j1 = j,
0, j1 ≠ j,

e(k+2)
j2

T
M̌i+1e

(k+2)
j = e(k+2)

j
T
M̌i+1e

(k+2)
j2

=


λk+2, j1 = j,
0, j2 ≠ j,

i.e., the entries of the rows/columns j1 and j2 of M̌i+1 are zero but the entries on themain diagonal are equal to λk+1 and λk+2,
respectively. Therefore, the best rank—k approximation of Âi+1 is given by Ui+1Mi+1UT

i+1 where the matrix with orthogonal
columns Ui+1 ∈ R(i+1)×k is obtained by deleting from the product

Ûi+1V̂ T
i+1 ∈ R(i+1)×(k+2) (8)

columns j1 and j2, and the matrix Mi+1 ∈ Rk×k is obtained from M̌i+1 ∈ R(k+2)×(k+2) by removing rows/columns j1 and j2.
This process of shrinking the matrix is called deflation.

Remark 2.2. Instead of computing the product (8), to halve the computation, in [3] it is recommended to factor the matrix
Ui+1 into the product of two orthogonal matrices, Ui+1 = U (1)

i+1U
(2)
i+1,U

(1)
i+1 ∈ R(i+1)×k,U (2)

i+1 ∈ Rk×k.

The algorithm for tracking the eigenspace corresponding to the k largest eigenvalues in absolute value of a symmetric
indefinite matrix can be summarized as follows.

(1) Initialization: compute the best rank—k approximation of Al, l > k in
the form Ãl = UlMlUT

l ,Ul ∈ Rl×k orthogonal andMl ∈ Rk×k symmetric;
for i = l + 1 : n,

(2) compute Ûi ∈ Ri×(k+2) and M̂i ∈ R(k+2)×(k+2) as in (7);
(3) compute the eigenspace V for the two smallest eigenvalues in absolute value of M̂i;

(4) compute Ui ∈ Ri×k and Mi ∈ Rk×k deflating the subspace V from M̂i;

end for

Of course, to have an efficient procedure of updating it turns out that it is important to efficiently compute (3) and (4), i.e. to
compute in an efficient way the eigenvectors corresponding to the 2 eigenvalues λk+1 and λk+2 of M̂i and to update the
matrix Mi in an efficient way from Mi−1 inheriting its structure.

One could think that diagonal or tridiagonal can be a straightforward choice for the structure of Mi. Although the
computation of one of the eigenvalues and corresponding eigenvector of the latter matrices can be done in a fast way,
the reduction ofMi in the same form ofMi−1 requires O(k2) rotations. Therefore, the updating of the orthogonal factor of the
decomposition in (7) requires O(ik2) floating point operations [4–6]. To reduce the complexity, in this paper we considerMi
with symmetric lower block anti-triangular structure [7]. In fact, if Mi−1 is lower block anti-triangular in proper form, so is
Mi. Moreover, the computation of an eigenvector and the deflation process can be done with O(k2) complexity to updateMi
andO(ki) to updateUi. In the next two subsectionswe showhow this complexity can be achieved exploiting the properties of
symmetric anti-triangularmatrices. The algorithm for tracking the subspace associated to the largest eigenvalues in absolute
values of a symmetric matrix requires a more detailed description of how the structure ofMi is exploited.

2.1. Properties of lower block anti-triangular matrices

Definition 2.1. A symmetric matrix A ∈ Rn×n is lower anti-triangular if A(i, j) = 0, i + j ≤ n.

Definition 2.2. A symmetric matrix A ∈ Rn×n is said to be block lower anti-triangular if

A =

 Y T

X ZT

Y Z W

 ,

with Y anti-triangular and X and W symmetric.

Let Inertia(A) = (n−, n0, n+). Let n1 = min(n−, n+), and n2 = max(n−, n+) − n1.

Definition 2.3. A symmetric block lower anti-triangular matrix A ∈ Rn×n is in proper form if

A =


0 0 0 0
0 0 0 Y T

0 0 X ZT

0 Y Z W

 } n0
} n1
} n2
} n1
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with Z ∈ Rn1×n2 ,W ∈ Rn1×n1 symmetric, Y ∈ Rn1×n1 nonsingular lower anti-triangular, X ∈ Rn2×n2 symmetric definite,
i.e., X = εLLT with

ε =


1, if n+ > n−

−1, if n+ < n−

and L lower triangular. Hence, X is symmetric positive definite if ε = 1 and is symmetric negative definite if ε = −1.

If A ∈ Rn×n is a nonsingular symmetric block lower anti-triangular matrix in proper form, i.e., n0 = 0, then

A =

0 0 Y T

0 X ZT

Y Z W

 .

It can be shown that any symmetric matrix can be transformed into a block anti-triangular form by orthogonal similarity
transformations [7].

Theorem 2.1. Let A ∈ Rn×n be a symmetric indefinite matrix with Inertia(A) = (n−, n0, n+) and n1 = min(n−, n+), n2 =

max(n−, n+) − n1. There exists an orthogonal matrix Q ∈ Rn×n such that M = Q TAQ is block anti-triangular in proper form,

M =


0 0 0 0
0 0 0 Y T

0 0 X ZT

0 Y Z W

 } n0
} n1
} n2
} n1

with Z ∈ Rn1×n2 ,W ∈ Rn1×n1 symmetric, Y ∈ Rn1×n1 nonsingular lower anti-triangular, X ∈ Rn2×n2 symmetric definite, i.e.,
X = εLLT with

ε =


1, if n+ > n−

−1, if n+ < n−

and L lower triangular.

In the sequel, without loss of generality, we suppose ε = 1, i.e., the central block X of A positive definite.

2.2. Computation of an eigenpair of a block anti-triangular matrix

We supposeM ∈ R(k+2)×(k+2) nonsingular anti-triangular in proper formwith Inertia(M) = (k−, 0, k+), and k−
+ k+

=

k+2. Let k1 = min(k−, k+) and k2 = max(k−, k+)− k1. The smallest eigenvalue λ in absolute value and the corresponding
eigenvector q of

M := M̂i+1 =

 Y T

X ZT

Y Z W

 , X = LLT ∈ R(k2)×(k2),

can be efficiently computed by inverse iteration with zero shift exploiting the block anti-triangular structure of the matrix.
Partitioning x and y as

x =

x1
x2
x3


} k1
} k2
} k1

, y =

y1
y2
y3


} k1
} k2
} k1

,

a linear systemMx = ymust be solved at each step of inverse iteration. This is reduced to the following steps.

(a) Solve Y Tx3 = y1.
(b) Solve (LLT )x2 = y2 − ZTx3.
(c) Solve Yx1 = y3 − Zx2 − Wx3.

Due to the anti-triangular structure of Y , the subsystem in (a) is solved with k21/2 floating point operations, the two
subsystems in (b) are solved with k22/2 + 2k1k2 floating point operations and the subsystem in (c) is solved with k21/2 +

2k1(k1 + k2) floating point operations. The convergence of the inverse iteration depends on the choice of the initial guess.
It turns out that, frommany performed numerical experiments, the most efficient choice for the initial vector at the current
iteration is one of the two eigenvectors corresponding to the two smallest eigenvalues in absolute value λk+1 and λk+2
discarded at the previous iteration.
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2.3. Deflation of a block anti-triangular matrix

Let λ be the smallest eigenvalue in absolute value ofM ∈ R(k+2)×(k+2) and q the corresponding eigenvector. The deflation
procedure in case M is singular is trivial (see [7] for details). Without loss of generality, we suppose k+ > k−. Hence the
matrixM has the following block anti-triangular structure,

M =

 Y T

X ZT

Y Z W

 ,

with Y ,W ∈ Rk1×k1 , Y lower anti-triangular and W symmetric, Z ∈ Rk2×k1 , X ∈ Rk2×k2 symmetric definite. Without loss
of generality, we assume X positive definite with the lower triangular matrix L ∈ Rk2×k2 as Cholesky factor, i.e., X = LLT .
Moreover, we consider k2 > 2. The case k2 ≤ 2 can be handled in a straightforward way. The process of deflation is divided
into 4 steps. The aim is to construct an orthogonal matrix V transforming the eigenvalue problem

Mq = λq (9)
into

(VMV T )(Vq) = λ(Vq),

such that (Vq) = ±e(k+2)
k1

. The entries of the k1-th row and column of the matrix VMV T are equal to zero but the entry in
position (k1, k1) is equal to λ. Therefore, the best rank k + 1 approximation ofM is given by

Ṽ M̃Ṽ T ,

with V̂ = V (:, [1 : k1 − 1, k1 + 1 : k+ 2]) ∈ R(k+2)×(k+1), M̂ = M([1 : k1 − 1, k1 + 1 : k+ 2], [1 : k1 − 1, k1 + 1 : k+ 2]) ∈

R(k+1)×(k+1), i.e., M̂ is obtained fromM removing the k1-th row and column.
LetM0 := M, q0 := q and V := Ik+2.

2.4. First step

At the iteration j, j = 1, . . . , k1 − 1, of this step, the rows j and j + 1 of q are modified by the multiplication of a Givens
rotation G̃j determined such that

G̃jq(j : j + 1) =


0

q(j)2 + q(j + 1)2


.

Let

G̃(j)
=

Ij−1

G̃j
Ik−j+1

 .

Define
M̃ := G̃(j)MG̃(j)T , q̃ := G̃(j)q, V := V G̃(j)T .

The matrix M̃ differs from a block anti-triangular matrix for a bulge in position (j, n − j) and, symmetrically, in position
(n − j, j). Moreover, the j-th entry of q̃ is 0. To remove the bulge and restore the anti-triangular structure in M̃ , another
Givens rotation Ĝj is considered such that

M̃(j, k + 2 − j : k − j + 1)ĜT
j =


0, ∥M̃(j, k − j + 2 : k − j + 1)∥2


.

Let

Ĝ(j)
=

Ij−1

Ĝj
Ik−j+1


and define

M := Ĝ(j)M̃Ĝ(j)T , q := Ĝ(j)q̃, V = V Ĝ(j)T .

Hence, (9) is transformed into the following eigenvalue problem

(VM0V T )(Vq0) = λ(Vq0). (10)
The eigenvector q has the first j entries equal to zero. One can easily prove by induction that also the last j entries, i.e., the
entries k + 3 − l, l = 1, . . . , j, are zero. This step, for a matrixM with k1 = 3 and k2 = 5, is graphically depicted in Fig. 1.
Computational complexity. Due to the symmetric block anti-triangular structure ofM, at iteration j of this step, 6(k+ 2) and
12j floating point operations are required to update M and V , respectively. Therefore the first step needs 6k1(k + 2) + 6k21
floating point operations.
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Fig. 1. First step of the algorithm. Graphical representation of the application of the sequence of k1 − 1 Givens transformations to the augmented matrix
[M|q]. The entries to be annihilated are denoted by ⊗ and the entries modified by the multiplication are in red. The entries of the positive definite central
submatrix X are denoted by the symbol �. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 2. Second step of the algorithm. Graphical representation of the effect of themultiplication of the sequence of k2−1Givens rotations on the augmented
matrix [M|q].

2.5. Second step

Let k̃1 = k1 − 1. At the iteration j, j = 1, . . . , k2 − 1, of this step, the rows k1 + j and k1 + j + 1 of q are modified by the
multiplication of a Givens rotation G̃k̃1+j determined such that

G̃k̃1+jq(k1 + j : k1 + j + 1) =


0

q(k1 + j)2 + q(k1 + j + 1)2


.

Let

G̃(k̃1+j)
=

Ik̃1+j

G̃k̃1+j
Ik−k̃1−j

 .

Define

M := G̃(k̃1+j)MG̃(k̃1+j)T , (11)

q := G̃(k̃1+j)q,

V := V G̃(k̃1+j)T . (12)

The effect of the whole second step is graphically depicted in Fig. 2. At the j-th iteration of this step, the similarity
transformation (11) modifies the lower triangular structure of the Cholesky factor L of the central block X ofM introducing
a bulge in position (j, j + 1) of L. To restore the lower triangular structure, L must be multiplied to the right by an ‘‘inner’’
Givens rotation Ǧj ∈ Rk2×k2 , acting on columns j and j + 1 such that L := LǦj has the entry (j, j + 1) annihilated. This is
graphically depicted in Fig. 3.
Computational complexity. At iteration j of this step, (11) and (12) must be computed, requiring both 6k1 + 6j floating point
operations. Moreover, to restore the lower triangular structure in L, 6(k2− j) floating point operations are needed. Therefore
the second step needs 12k1k2 + 6k22 floating point operations.
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Fig. 3. Second step of the algorithm. For the sake of brevity, only the influence of the Givens rotations on the Cholesky factor L of X and the corresponding
entries of the eigenvector is depicted. To preserve the Cholesky structure, each multiplication by an outer Givens rotation G̃(k̃1+j), introducing a bulge in
the lower triangular structure of L, is followed by a multiplication by an inner Givens rotation Ǧj removing the bulge.

2.6. Third step

In this step, first a Givens rotation G̃k1+k2−1 ∈ R2×2 is determined such that

G̃k1+k2−1q(k1 + k2 : k1 + k2 + 1) =


0

q(k1 + k2)2 + q(k1 + k2 + 1)2


.

Let

G̃(k1+k2−1)
=

Ik1+k2−1

G̃k1+k2−1
Ik1−1

 .

Define

M := G̃(k1+k2−1)MG̃(k1+k2−1)T , (13)

q := G̃(k1+k2−1)q V := V G̃(k1+k2−1)T .

Since

Mq = λq, (14)

it turns out thatM(k1 + 1 : k1 + k2 − 1, k1 + k2) = 0 and, symmetrically,M(k1 + k2, k1 + 1 : k1 + k2 − 1) = 0. Due to the
fact that only the k1-th and (k1 + k2)-th entries of q differ from zero, from (14) we have

M(k1 + 1 : k1 + k2 − 1, [k1, k1 + k2])q([k1, k1 + k2]) = 0.

Hence,M(k1 + 1 : k1 + k2 − 1, k1 + k2) = 0 sinceM(k1 + 1 : k1 + k2 − 1, k1) = 0. This part of the third step is graphically
depicted in the first transformation in Fig. 4. To end this step, another Givens rotation, acting on the k1-th and (k1 + k2)-th
entries of q annihilating the entry (k1 + k2), must be applied. Let G̃k1+k2 =


c s

−s c


∈ R2×2 be a Givens rotation such that

G̃k1+k2q([k1, k1 + k2]) =


0

q(k1)2 + q(k1 + k2)2


.

Let M̌ be the 2 × 2 symmetric anti-triangular matrix formed intersecting the k1-th and k1 + k2-th rows and columns of M ,
i.e.,

M̌ :=


0 M(k1, k1 + k2)

M(k1 + k2, k1) M(k1 + k2, k1 + k2)


.

We observe that G̃k1+k2 diagonalizes M̌ , i.e.,

G̃k1+k2−1M̌G̃T
k1+k2−1 =


λ

γ1


,

with λγ1 < 0. Let

G̃(k1+k2) =


Ik1−1

c s
Ik2−1

−s c
Ik1

 .
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Fig. 4. Third step of the algorithm.

Let

M := G̃(k1+k2)MG̃(k1+k2)T , (15)

q := G̃(k1+k2)q ≡ ±e(k+2)
k1

,

V := V G̃(k1+k2)T .

We observe that in (15), M(k1 + 1 : k1 + k2 − 1, k1 + k2) = 0 and, symmetrically, M(k1 + k2, k1 + 1 : k1 + k2 − 1) = 0.
Moreover, the number of floating point operations of this step depends linearly on k1 and k2 and it is therefore negligible.

2.7. Step 4

In this step, M̂ is constructed removing the row and column k1 from M . Hence M̂ has the following symmetric block
anti-triangular structure,0 0 Ŷ T

0 X̂ ẐT

Ŷ Ẑ Ŵ

 } k1 − 1
} k2 + 1
} k1 − 1

, X̂ =

 LLT 0
0T γ1

t

tT γ2

 . (16)

Moreover, Ṽ is constructed removing the row and column k1 from V . Depending on the sign of λ, we have to distinguish
the following 2 cases.

Case 1: λ < 0. In this case, Inertia(M̂) = (k− − 1, 0, k+). Hence, the central block X̂ ∈ R(k2+1)×(k2+1) is symmetric positive
definite. We need only to update the Cholesky factor L̂ of X̂ , i.e., compute the last two rows of L̂, since L̂(1 : k2 − 1, 1 :

k2 − 1) = L(1 : k2 − 1, 1 : k2 − 1).

L̂(k2, 1 : k2 − 1) = 0; L̂(k2, 1 : k2) =


X̂(k2, k2);

solve L̂(1 : k2, 1 : k2)(L̂(k2 + 1, 1 : k2))T = X̂(1 : k2, k2 + 1);
L̂(k2 + 1, k2 + 1) = X̂(k2 + 1, k2 + 1)2 − lT l,

(17)

with l = L̂(k2 + 1, 1 : k2)T . The solution of the linear system (17) requires k22 floating point operations.

Case 2: λ > 0. In this case, Inertia(M̂) = (k−, 0, k+
− 1). Although M̂ is symmetric block anti-triangular, the central block

X̂ is indefinite. Since Inertia(X̂) = (1, 0, k2), we first transform X̂ into a block anti-triangular submatrix in proper form. Let
us decompose L ∈ R(k2−1)×(k2−1) as

L =


L1
lT1 β1


,

with L1 ∈ R(k2−2)×(k2−2), l1 ∈ Rk2−2, β1 ∈ R. Let γ1 = X̂(k2, k2) < 0. Therefore

X̂(1 : k2, 1 : k2) =

 L1
lT1
0T

 
LT1 l1 0


+

 β2
1

γ1

 .

Let X̂0 := X . Let Q2 ∈ R2×2 be the orthogonal matrix such that

Q2


β2
1

γ1


Q T
2 =


0 ξ1
ξ1 ξ2


.

Let 
lT2
lT3


= Q2


lT1
0T


.
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Then

X̂(1 : k2, 1 : k2) :=


Ik2−2

Q2


X̂(1 : k2, 1 : k2)


Ik2−2

Q T
2



=

 L1
lT2
lT3

 
LT1 l2 l3


+


0 ξ1
ξ1 ξ2


.

Let Γ = Gk2−2Gk2−3 · · ·G1, where Gi ∈ R(k2−1)×(k2−1), i = 1, . . . , k2 − 2 is the sequence of Givens rotations such that
0
L2


= Γ


L1
lT2


, (18)

with L2 ∈ R(k2−2)×(k2−2) lower triangular. Then

X̂(1 : k2, 1 : k2) =


Γ

1


X̂(1 : k2, 1 : k2)


Γ T

1


=

0 0 0
0 L2LT2 L2l3
0 lT3L

T
2 lT3 l3

 +

 z

zT ξ2

 ,

z = ξ1Γ e(k2−1)
k2−1 . Let z̃ =


0

L2l3


+ z, γ̂1 = lT3 l3 + ξ2. Then

X̂ =


0 0
0T L2LT2

z̃

z̃T γ̂1

t

tT γ2

 .

Let

Γ̂ :=

Ik1−1
Γ

Ik1+1

 Ik1+k2−3
Q2

Ik1+1


.

Then
M̂ := Γ̂ M̂Γ̂ T and V := V Γ̂ T .

To reduce M̂ in proper form, we construct the Givens matrix Q̂3 =


c −s
s c


such that

Q̂3


t(1)
z̃(1)


=


0

t(1)2 + z̃(1)2


.

Let

Q̃3 =


Ik1−1

Q̂3


and Q3 =

Ik1+k2−2

Q̂3
Ik1−1

 .

Then
M̂ := Q3M̂Q T

3

is a block lower anti-triangular matrix in proper form,

M̂ =

0 0 Ŷ T

0 X̂ ẐT

Ŷ Ẑ Ŵ

 } k1
} k2 − 1
} k1.

Moreover, let V := VQ T
3 . We observe that

X̂ =


L2LT2 X̂(1 : k2 − 1, k2 − 1)

X̂(k2 − 1, 1 : k2 − 1) X̂(k2 − 1, k2 − 1)


.

Hence to compute the Cholesky factor L̂ of X̂ we need to compute only its last row, since L̂(1 : k2 − 1, 1 : k2 − 1) = L2,

L̂(1 : k2−, 1 : k2 − 1) = L2;
solve L̂(1 : k2 − 1, 1 : k2 − 1)(L̂(k2, 1 : k2 − 1))T = X̂(1 : k2 − 1, k2);
L̂(k2, k2) = X̂(k2, k2)2 − lT4 l4,

(19)

with l4 = L̂(k2, 1 : k2 − 1). This is graphically depicted in the last transformation of Fig. 5.
Computational complexity. The required number of floating point operations to update M̂ and V are 3k22 + 6k1k2 and
12k1k2 + 6k22, respectively.
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Fig. 5. Fourth step of the algorithm. Transformation of the block anti-triangular matrix of Case 2 in proper form.

3. Accuracy bounds

In this section we provide some bounds on the error of the low rank approximation of the symmetric matrix. For this we
study the local approximation errors and show that these can be used to provide estimates for the global error at the end of
the algorithm. Let An ∈ Rn×n be a symmetric matrix with eigenvalue decomposition

An = VnΛnV T
n ,

with Λn = diag(λ1, . . . , λn), where we have ordered the eigenvalues according to their non-increasing amplitude :

|λ1| ≥ |λ2| ≥ · · · ≥ |λn| ≥ 0

since these are the ordered singular values of An. Let Ai be any i × i principal submatrix of order i with eigenvalue
decomposition

Ai = ViΛ
(i)
i V T

i ,

where Λ
(i)
i = diag(λ(i)

1 , . . . , λ
(i)
i ), and |λ

(i)
1 | ≥ |λ

(i)
2 | ≥ · · · ≥ |λ

(i)
i | ≥ 0.

It follows from the interlacing properties of singular values, that

|λj| ≥ |λ
(i+1)
j | ≥ |λ

(i)
j | j = 1, . . . , i, (20)

which shows that each singular value |λ
(i)
j | is a non-decreasing function of i.

In the updating scheme, we approximated Ai by a rank k approximation

Ai ≈ Ãi = UiMiUT
i , UT

i Ui = Ik,Mi = MT
i

which was obtained recursively for i = l + 1, . . . , n (with l > k). The first approximation Ãl is assumed to be an optimal
rank k approximation of Al, i.e. El := Al − Ãl has non-trivial singular values |λ

(l)
k+1|, . . . , |λ

(l)
l |. All subsequent approximations

were obtained by solving a local minimization problem at each iteration step n, using the bordered matrix problem

min




UiMiUT
i ai

aTi γi+1


− Ui+1Mi+1UT

i+1


2

F

, (21)

such thatMi+1 = MT
i+1 and UT

i+1Ui+1 = Ik, where ai, γi+1 are the elements of the bordered matrix

Ai+1 =


Ai ai
aTi γi+1


.

We indicate here that (21) always has a unique solution in the Frobenius norm and that it alsominimizes the 2 norm of (21).
We now try to bound the error matrix Ei := Ai − Ãi at each step, both in the 2-norm ∥Ei∥2 and the Frobenius norm ∥Ei∥F .

For this, we use the updating formulas for Ãi+1, which is a rank 2 correction to Âi+1:

Ãi+1 = Âi+1 − Wi+1∆i+1W T
i+1, Âi :=


Ãi ai
aTi γi+1


, ∆i+1 :=


λ̂

(i)
k+1 0
0 λ̂

(i)
k+2


with λ̂

(i)
k+1 and λ̂

(i)
k+2, the two deflated eigenvalues of Âi and W :=


w

(i)
k+1 w

(i)
k+2


, the matrix of corresponding eigenvectors.

Moreover, we have

Ai+1 − Ãi+1 =


Ai − Ãi 0

0T 0


+ Wi+1∆i+1W T

i+1.

Hence, it follows that

∥Ai+1 − Ãi+1∥2 ≤ ∥Ai − Ãi∥2 + |λ̂
(i)
k+1|,

∥Ai+1 − Ãi+1∥
2
F ≤ ∥Ai − Ãi∥

2
F + (λ̂

(i)
k+1)

2
+ (λ̂

(i)
k+2)

2.
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If we start with Aĩ = Ãĩ + Eĩ, then by induction we obtain at step i

Ai − Ãi = Êĩ + W∆W T ,

where ∆ is a block-diagonal matrix of order 2(i − l), containing the diagonal blocks ∆i, Êl is El padded with zeros, and W
contains the successive block columns Wi, also padded with zeros in order to have matching dimensions. It immediately
follows that

∥An − Ãn∥
2
F ≤ ηn :=

l
i=k+1

λ
(l)
i

2
+

n
i=l+1

(λ̂
(i)
k+1)

2
+

n
i=l+1

(λ̂
(i)
k+2)

2, (22)

∥An − Ãn∥2 ≤ ζn := |λ
(l)
k+1| +

n
i=l+1

|λ̂
(i)
k+1|. (23)

Although we could not prove this, we observed that in practice |λ̂
(i)
k+1| ≤ |λ

(i)
k+1| and since it follows from the interlacing

inequalities that |λ
(i)
k+1| ≤ |λk+1| we finally obtain

n
i=k+1

λ2
i ≤ ∥An − Ãn∥

2
F / 2(n − k)λ2

k+1.

If, moreover, the vectors inW are nearly orthogonal to each other then one would also have

|λk+1| ≤ ∥An − Ãn∥2 / c|λk+1|,

with c ≈ 1. We will verify in the examples of the next section, that this is nearly satisfied, but there is of course no
guarantee that this last bound always holds. The fact that c ≈ 1 implies that the obtained bound is globally optimal, while
we constructed only locally optimal approximations. We expect that the explanation ought to be found in the randomness
of the bordering vectors.

4. Numerical results

Some numerical experiments, showing the properties of the proposed algorithm, are reported in this section. In
particular, it is shown that the numerical results agree with the empirical bound of the previous section. The experiments
are carried out in matlab.

Example 4.1. In this example, we examine the behavior of the proposed algorithm applied to the indefinite symmetric
matrices A := A(α), depending on the parameter α, constructed as follows.

Let n = 100, d = [−10∗ones(10, 1); 8∗ones(10, 1); α∗randn(80, 1)]+α∗randn(100, 1), and A = Qdiag(d(P))Q T ,
with Q a random orthogonal matrix of order 100, P a random permutation of the indices of the vector d and α = 10−i, i =

0, 1, . . . , 5.
Therefore, the matrices A are nonsingular, with 10 eigenvalues clustered around −10, and 10 ones around 8. The size

of the initialization problem is l = 30 and the rank chosen for the approximation is k = 20, i.e., at each iteration of
the algorithm, the subspace corresponding to the largest 20 eigenvalues in absolute value is tracked. The eigenvalues of
the matrix A and the eigenvalues of the matrix Ãn, for α = 1, are depicted in Fig. 6. The left (asterisk) and the right
(circle) hand side of the bound (22), for l = 31, 32, . . . , 100, are reported in Fig. 7. We have also run the algorithm for
α = 10−i, i = 0, 1, . . . , 5, and the size of the initialization problem l equal to 50 and rank of the approximation k equal to 40.
Let us denote by V (20)

30,20 and by V (20)
50,40, the subspaces spanned by the eigenvectors corresponding to the 20 largest eigenvalues

in absolute value of the matrix Ãn computed by the proposed algorithm with the size of the initialization problem l equal
to 30 and 50, and the rank k (i.e. the order of the matrix M) equal to 20 and 40, respectively. Moreover, let V (20) be the
subspace spanned by the eigenvectors corresponding to the 20 largest eigenvalues in absolute value of A computed by the
matlab function eigs. In Table 1, the angles between the subspaces V and V (20)

30,20 and by V (20)
50,40 for different values of α are

reported. The angles between the subspaces seems to depend quadratically on the parameter α.

Example 4.2. Let

F(i, j) =

3
k=1

(−1)k exp


−
(i − µk)

2
+ (j − µk)

2

2σk


, i, j = 1, . . . , 100,

with

µ =

4 18 76


, σ =


10 20 5


.



N. Mastronardi, P. Van Dooren / Journal of Computational and Applied Mathematics 236 (2012) 4090–4104 4101

Fig. 6. Plot of the eigenvalues of the matrix An, with α = 1, (asterisk) and of those of the matrix Ãn (circle).

Fig. 7. Plot of ∥Ak − Ãk∥F (asterisk) and ηk (circle) of Example 4.1.

Table 1
Angles between the subspaces spanned by the eigenvectors corresponding to
the largest 20 eigenvalues of A computed by the function eigs of matlab
and the corresponding ones of UMUT computed by the proposed algorithm
for different values of α.

α ̸ (V (20), V (20)
30,20)

̸ (V (20), V (20)
50,40)

100 1.5683e−002 7.1443e−003
10−1 4.4014e−004 1.4602e−004
10−2 2.2637e−006 1.2077e−006
10−3 3.6738e−008 1.0810e−008
10−4 2.7103e−010 1.0118e−010
10−5 8.5140e−012 4.8410e−012

Hence, F is a rank 3 matrix. Let F = QΛQ T be its spectral decomposition and let ∆̃ ∈ R100×100 be a matrix of random
numbers generated by the matlab function randn, and define∆ = (∆̃+∆̃T )/∥∆̃+∆̃T

∥2. For this example, the considered
symmetric indefinite matrix is (Fig. 8)

An = F + ε∆

with n = 100 and ε = 1.0e−3.
The left (asterisk) and the right (circle) hand side of the bound (22), for l = 4, 5, . . . , 100, are reported in Fig. 9. In

Table 2 the largest three eigenvalues in absolute value of the matrix A computed by the function eigs of matlab and
the corresponding ones of the matrix Ãn computed by the proposed algorithm with l = 10 and rank k = 3. The angle
between V (3) be the subspace spanned by the eigenvectors corresponding to the 3 largest eigenvalues in absolute value of
An computed by thematlab function eigs and the subspace V (3)

10,3, the subspace spanned by the eigenvectors corresponding
to the 3 largest eigenvalues in absolute value of the matrix Ãn computed by the proposed algorithm with l = 10 and rank
k = 3, is 4.8878e−007.
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Fig. 8. Plot of the entries of the matrix An of Example 4.2.

Fig. 9. Plot of ∥Ak − Ãk∥F (asterisk) and ηk (circle) of Example 4.2.

Table 2
First three eigenvalues of the matrix An (Example 4.2) computed by the
function eigs of matlab and the corresponding ones of the matrix Ãn by
the proposed algorithm.

i λi(An) λi(Ãn)

1 7.922052200064504e+000 7.922052200062411e+000
2 −5.279522842849688e+000 −5.279522842849557e+000
3 −3.963518913702159e+000 −3.963518920320980e+000

Example 4.3. The matrix A considered in this example is the real part of the complex symmetric matrix called QC324,
obtained from the Matrix Market [8], modeling H+

2 in an Electromagnetic Field, and depicted in Fig. 10. Its order is
n = 324 and it has 211 negative and 113 positive eigenvalues, respectively. The size of the initialization problem is 60
and the rank chosen for the approximation is 40, i.e., at each iteration of the algorithm, the subspace corresponding to the
largest 40 eigenvalues in absolute value is tracked. The eigenvalues of the matrix An and those of the matrix Ãn are depicted
in Fig. 11. The left (asterisk) and the right (circle) hand side of the bound (22), for l = 61, 62, . . . , 324, are reported in Fig. 12.

In Fig. 13 we show the inertia of the matrices Mi ∈ R40×40, i = 60, 61, . . . , 324, constructed at each iteration of the
algorithm. The matricesMi are nonsingular. The number of positive and negative eigenvalues are denoted by circles and as-
terisks, respectively. It appears that the inertia of the matrices Mi varies quite significantly, but the algorithm nevertheless
tracks the dominant space very well. Indeed, the angle between the subspace spanned by the eigenvectors corresponding to
the 10 largest eigenvalues of An and the subspace spanned by the eigenvectors corresponding to the 10 largest eigenvalues
of Ãn is 6.504e−004.
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Fig. 10. Plot of the entries of matrix A of Example 4.3.

Fig. 11. Plot of the eigenvalues of the matrix An (asterisk) and of those of the matrix Ãn (circle).

Fig. 12. Plot of ∥Ak − Ãk∥F (asterisk) and ηk (circle) of Example 4.1.

5. Conclusions

In this paper, we presented a fast algorithm to compute incrementally the dominant eigenspace of a symmetric indefinite
matrix. The overall complexity of the incremental updating technique to compute an n× k basis matrix Un for the dominant
eigenspace of An, is of the order of 6n2k + O(nk2) and uses only orthogonal updating transformations. The method heavily
relies on the anti-triangular form developed in [7], whichwas shown to be backward stable because of the use of orthogonal
transformations. In this paper we analyzed the tracking capabilities of the updating scheme and gave accuracy bounds and
computable estimates for these bounds. We also validated those results by a number of convincing examples.
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Fig. 13. Plot of the number of positive (circle) and negative (asterisk) eigenvalues of the matricesMi .

References

[1] G.W. Stewart, Matrix Algorithms II: Eigensystems, SIAM, Philadelphia, 2001.
[2] J. Daniel, W.B. Gragg, L. Kaufman, G.W. Stewart, Reorthogonalization and stable algorithms for updating the Gram–Schmidt QR factorization,

Mathematics of Computation 30 (1976) 772–795.
[3] N. Mastronardi, E. Tyrtyshnikov, P. Van Dooren, A fast algorithm for updating and downsizing the dominant kernel principal components, SIAM Journal

on Matrix Analysis and Applications 31 (5) (2010) 2376–2399.
[4] W.B. Gragg, W.J. Harrod, The numerically stable reconstruction of Jacobi matrices from spectral data, Numerische Mathematik 44 (1984) 317–335.
[5] H. Park, S. Van Huffel, Two-way bidiagonalization scheme for downdating the singular-value decomposition, Linear Algebra and its Applications 222

(1995) 23–39.
[6] S. Van Huffel, H. Park, Parallel tri- and bi-diagonalization of bordered bidiagonal matrices, Parallel Computing 20 (8) (1994) 1069–1220.
[7] N. Mastronardi, P. Van Dooren, An algorithm for computing the anti-triangular factorization of symmetric matrices, SIAM Journal on Matrix Analysis

and Applications (submitted for publication).
[8] N.J. Higham, The matrix computation toolbox. http://www.ma.man.ac.uk/~higham/mctoolbox.

http://www.ma.man.ac.uk/~higham/mctoolbox

	Recursive approximation of the dominant eigenspace of an indefinite matrix
	Introduction and notations
	Bordering problem
	Properties of lower block anti-triangular matrices
	Computation of an eigenpair of a block anti-triangular matrix
	Deflation of a block anti-triangular matrix
	First step
	Second step
	Third step
	Step 4

	Accuracy bounds
	Numerical results
	Conclusions
	References


