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A general method is developed for giving simulation estimates of boundary crossing probabilities 

for processes related to random walks in discrete or continuous time. Particular attention is given 

to the probability Q(u, T) of ruin before time T in compound Poisson risk processes. When the 

probability law P governing the given process is imbedded in an exponential family (P,), one 

can write (lr( u, T) = E,R, for certain random variables R, given by Wald’s fundamental identity. 

Using this to simulate from P, rather than P, it is possible not only to overcome the difficulties 

connected with the case T = co, but also to obtain a considerable variance reduction. It is shown 

that the solution of the Lundberg equation determines the asymptotically optimal value of B in 

heavy traffic when T = co, and some results guidelining the choice of 0 when T < a? are also given. 

The potential of the method in different situations is illustrated by two examples. 

risk reserve process * ruin probability * simulation * conjugate distributions * importance sampling 

* heavy traffic * fundamental identity of sequential analysis * Lundberg equation * periodic queues 

1. Introduction 

In a great number of applied probability areas like sequential analysis, queueing 

theory, storage and dam models, insurance risk and so on, a basic question is to 

assess the values of probabilities of the form I+!J( u) = P( r < co), $( u, T) = P( r < T) 

where 

is the time of the first crossing of some process {X,} over a boundary specified by 

u(t). Unfortuantely this problem is far from easy. Even for such a simple case as 

u(t) = u and {Xz} a discrete time random walk, much ingenuity is required and the 

resulting expressions are not straightforward to implement numerically. 

At least from the point of view of assessing numerical values to the I,!J( u), +( u, T), 

it is therefore appealing to rely on simulation. The simplest example of this would 

be crude (or straightforward) simulation of $(u, T) by running N replicates of 

{X,},,, and estimate I,!J(u, T) by the fraction of runs with T-C T. This method is of 

course so simple and standard that a discussion of its principles from the theoretical 

point of view very quickly exhausts the subject. However, some specific features 

suggest to take a closer look at the problem. In particular, $(u) cannot be simulated 
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in finite time and also the $(u), $(u, T) are in main cases small so that the relative 

error on the estimates becomes large. 

The purpose of the present paper is the study of a general method, which is 

applicable and efficient at least in some basic cases, and also seems to contain some 

promises on adaptability to more complex situation. The basic idea is quite simple 

and comes from one of the classical tools in risk theory and sequential analysis, 

conjugate distributions. These may be thought of as arising from an imbedding of 

the probability law P = PO0 governing the given process in a conjugate family (P,), 

and a given $( U, T) can by means of Wald’s fundamental identity be expressed as 

I,!J( u, T) = EBRB for certain random variables R. (thus R, is simply the indicator of 

ruin before T). The point is that for suitable choice of 0 the RB can be simulated 

in finitely many steps even when T = 00, and that their vairances are small compared 

to R,. This idea relates to the concept of importance sampling and has been studied 

within the framework of two-barrier problems in sequential analysis ([28] and 

references there), but somewhat surprisingly not in risk- and queueing theory where 

the random walk problem is a one-barrier one. In fact, for queues the more advanced 

literature is heavily orientated towards the method of regenerative simulation, cf. 

[8], [9], [15], [6, Ch. 61, whereas in the case of insurance risk the references (e.g. 

[5, 231) that we know are few and do not go deep into the methodology of the 

subject. 

2. Compound Poisson risk processes and conjugate families 

The details of the paper will be worked out within the classical setting of insurance 

risk models (though at the end we exemplify some extensions to different settings, 

e.g. periodic queues). 

Assume that the claims arrive incurred by an insurance company according to a 

Poisson process {N( t)}tZo with intensity (Y, that the claim sizes Yr, Y2, . . . are 

independent of {N(t)} and i.i.d. with common moment generating function 4(s) = 

E esY, and that premiums come in at rate p per unit time. That is, the interclaim 

times Z,, Z, are i.i.d. with P(Z > z) = eC* and 

N(t) 
X(l)= c Y,-pt 

n=l 

represents the net pay-out at time t. Thus if u is the initial risk reserve, then in the 

usual terminology r = r(u) = inf{ t 2 0: X, > u} is the time of ruin, (lr( U) = P( T < 00) 

is the probability of ultimate ruin and +( U, T) = P( T < T) is the probability of ruin 

before time T. We assume that the safety loading n = (p - aEY)/aEY is >O which 

is equivalent to (cI( u) < 1 for all u 2 0. This set-up is extensively studied in the 

literature. General references are [7, 21, 271 whereas for alternatives to simulation 

we refer to [24, 26, 32, 33, 21 for numerial methods and to [27, 21 for surveys of 

approximations. 
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We define the basic conjugate family (PO) of risk processes exactly as in [2]. We 

cite only the most basic facts and formulas and refer to [2] for a more complete 

discussion and references (to which we take here the opportunity to add [3], [ 181). 

Let &, < 0 be defined by cy+‘( - 0,) = p and consider for each 13 satisfying C$ (0 - 0,) 

a risk process governed by say P,, corresponding to premium pe = p, arrival intensity 

a0 = CY~(I~ - 13,) and m.g.f. +e(s) = E, eSY = 4(s+e-&J/4(0-0,). Then the given 

process corresponds to 0 = B0 and the cumulant generating functions satisfy 

Kc(S) = log Ee e “““‘/t=(Yg(~e(s)-i)-_ps=K,,(s+8-8’)-K,,(8-8’). 

(2.1) 

The choice of origin (or equivalently 0,) ensures that &X(t) 5 0 exactly when 0 5 0. 

This is well-known to imply that in particular ruin occurs as. when f3 2 0. I.e., 

P,( T( u) < ~0) = 1, 0 2 0. Besides &, a very important quantitity in risk theory is the 

solution y > 0 of the Lundberg equation K(Y) = 0, and we let 0, = y + &_ 

Now if T* is any stopping time and ST* the usual stopping time v-algebra, then 

the PB are mutually equivalent on g7* n {T* < a} with densities given by 

$$=eXp{(e’-e)X(r*)-T*K,(o’-8)). 
B 

(2.2) 

In particular, if we let r* = T, 0’ = B0 and integrate over {T < T} we get $( U, T) = 

E,R, where 

RB=eXp{(8,-B)X(T)-TKe(eO-e)}1(T< T). (2.3) 

Note that, as one would expect, R, = r(T < T). If T = co and 8 2 0, then 7 < co 

a.s. so that I(T < T) in (2.3) is vacuous. A further simplification occurs for the 

Lundberg value 8,. Hence Ko,( 80 - 0,) = 0 so that the last term in the bracket vanishes. 

In view of the particular role of 8i it will frequently be convenient to represent a 

general 0 2 0 as 0 = C&(1 + A). Then by (2.1), 

R ~,(I+~,=~~P{-(Y+~,A)X(T)+TK~,(~~A)}~(T< T) (2.4) 

and, if we let vB = Var, Rg, 

b,(l+Li) - - Ee,~,+~~R~,~,+~~ - v+(u)’ 

= E,, exp{-(2y+B,d)X(~)+~K,,(B,d))l(7< T)-+(U)‘. (2.5) 

It is also frequently convenient to write X(T) = u + B(u) where B(u) is the 

overshot. 

3. Performance measures. Empirical examples 

The simulation method to be studied in the rest of the paper can now easily be 

explained: Instead of performing crude (P,,-) simulation, we can for each 0 simulate 

a risk process with parameters corresponding to PO and observe the response R,. 
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Replicating the experiment a suitable number NB of times, one can then in a standard 

manner use the empirical mean of the observed responses to estimate +( u, T) = EBRe 

and their empirical variance to estimate u0 = Var, RB and thereby the standard error 

(G/NB)i’* on the estimate. The case 8 = 8r will play a particular role and is 

henceforth referred to as Lundberg simulation. 

A number of problems arise immediately. For example, which value of 0 should 

one choose and how does the method compare to crude simulation or other 

alternatives? To answer such questions, we need to define appropriate performance 

measures. From the point of view of optimal allocation of computer time, it is 

clearly important that both uO, the variance on the response, and i,, the expected 

CPU time needed to create one replicate of Rg, should be small. To balance these 

requirements, we suggest to look for a 0 minimizing the product iev,. This is motivated 

from the observation that if we simulate in some fixed large amount t of time, we 

get approximately N, = t/ ie replicates and hence approximately a variance vO/ N, = 

ieve/ t on the estimate [related remarks are in [22, p. 4051 and [28]; that the 

randomness of NB is immaterial follows from Anscombe’s theorem much in the 

same way as in [9, p. 541. 

We start by some examples illustrating these points and take T = 00 for simplicity. 

For empirical purposes, we have considered only the Poisson/Exponential (P/E) 

or M/M/l case P(Y>y)=e- py. Of course, this is hardly realistic but even though 

the case of a more geneal Y causes no intrinsic difficulties, it has the advantage 

that a great number of functions can be evaluated explicitly, giving guidelines for 

the general case as well as checks of the simulation results. 

Example 3.1. Looking first at v0 alone, consider the P/E case with p = 1/ EY = 1, 

p = 1, (Y = 0.85 and (cI( u) = (Y e-(1-n)” = 50/ O, i.e., u = 18.9 (this set of parameters could 

be argued to be typical and will be used repeatedly in the paper). Crude simulation 

of $(u) is not possible in the strict sense but could be implemented approximately 

by choosing an appropriate stopping criterion (e.g. large t or small X(t)). Then 

ve, = 0.05( 1 - 0.05) = 0.0475 whereas for the Lundberg case we get 

vg, = Var,, e --yx(7) = e-2yu Var,, e-ye(“) = 0.0000575 

(using the easily checked relations y = 1 - cr, B(u) =9 Y). Needless to say that this 

is a dramatic reduction. Heuristic considerations indicate that also i,> i,,. In fact, 

in crude simulation the runs with ruin will have about the same length as in the 

Lundberg process ([l], slightly adapted) whereas the ones without ruin will be 

longer since we must wait until our stopping criterion is met. 

Example 3.2. To judge the behaviour of v0 for 13 # 0i is somewhat more complicated, 

but at least too large values of f3 cannot be appropriate since it may be deduced 

from (2.2), (2.5) and [31] that 

(3.1) 
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On the contrary, is may be expected to decrease with 0 since the P,-distribution of 

{X(t)} is readily seen to be stochastically increasing with 8 and hence T decreasing. 

To illustrate these phenomena, we return to the P/E example (Y = 0.85, q!~( u) = 5%. 

Computer simulation were performed for 0,, and for larger as well as smaller 8. 

For each value of 0, the computer time allowed was the same, one second CPU 

time. That is, the number NB of runs was finalized the first time the CPU time at 

the end of a run exceeded one second. The estimates and asymptotic 95% confidence 

bands are depicted in Figure 1. 

Ne 

10 % 

qJiu1=5% 

1% 

10 16 23 30 37 LL 51 59 67 75 8L 91 

0 point estlmot Re 

I 
95% confidence interval 

- 

Figure 1. Simulation results from one second CPU time simulation from Pe,c,+a). P/E case, p = p = 1, 
I/T(U) = 5%, A = -0.75(0.25)2.00. 

The simulations were carried out in Pascal at the Regional Computing Center, 

University of Copenhagen, on their Univac 1181 Machine. Uniform random numbers 

were produced by N.A.G. routine SOSCAF, initialized by SOSCBF(1) with I = 17 

for any single simulation estimate reported in the paper. The algorithm generating 

R, is extremely simple and considers the times of claims only as follows: 

(1) Put x= T=O; 

(2) Generate a claim size Y and an interarrival time Z according to P, ; put 

X=X+ Y-pZ, T= T+Z; 

(3) If X < u, return to (2). Otherwise let R = exp{( f$,- f3)X - TK,( &- t9)). 

It is seen from Fig. 1 that as expected NB increases with 0 and that the width of 

the confidence band is minimal when 0 = el. 

Example 3.3. It is well-known [20, 21, 251 that if for convenience the time scale is 
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chosen such that p = 1, then G(u) = P( V> u) where V is the virtual waiting time 

in a stationary M/G/l queue with arrival intensity LY and service times distributed 

as Y. This could suggest to apply instead regenerative simulation, cf. [9], [6, Ch. 

61. To compare these two approaches, we performed Lundberg simulation and 

regenerative simulation in each one second CPU time for various sets of parameters. 

The results are summarized in Table 1 and indicate that Lundberg simulation is 

superior in a wide range of parameters (not only in the tail though the difference 

becomes more marked there). 

Table 1 

Empirical variance on simulation estimates of $(u) obtained within one 

second CPU time. P/E model with p = p = 1 

(I *L(u)(%) Regenerative PSI Ratio 

0.50 5 1.6,,-4 1.8,,-6 91.8 

0.50 50 2.0,,-4 6.2,,-5 3.2 

0.85 5 9.8,,-4 2.2,,-6 436 
0.85 50 2.8,,-3 3.2,, - 5 86.4 

0.85 85 5.0,,-4 3.4,,-5 14.6 

These examples clearly indicate that simulation from a conjugate process may 

lead to considerable variance reduction compared to traditional approaches, and 

thereby motivate a closer study of the method. 

We shall first look at the optimal choice of 0, considering the cases T =OO and 

T <a separately. E.g., for T = 00 we show that the Lundberg value 0 = 13, is 

asymptotically optimal under heavy traffic conditions, thereby providing an explana- 

tion of Fig. 1. A related result is given in [28], where the optimality of f3r is shown 

for fixed & in the case of two barriers -u < 0 < u where u?oo. This would correspond 

here to $(u) + 0, i.e., in the queueing terminology of Example 3.1 to pass to the tail of 

the waiting time distribution. However, obviously the heavy traffic limit seems more 

relevant in many cases and also Example 3.1 indicates that the present method may be 

worthwhile not only for tail probabilities. 

For the asymptotic considerations, it is necessary to put the somewhat unprecise 

definition of is into a form more suitable for theoretical analysis. A look at the 

algorithm above seems to suggest that the main time consuming factor 

generating a single R is the repetitions of step (2), the number of which is 

when 

n=inf nS1: $J {Y,--pZ,}>u . 

k=l 

The time needed for each step is of course machine- and programming language 

dependent but does not significantly vary with 0, and in the following we shall 

therefore replace i, by Eon. That is, our object of study is 

f(A) = &,c,+~)n * %,(l+A) (3.2) 
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4. Diffusion approximations in heavy traffic 

We shall consider the same limiting procedure as in [29], [2, Section 51 (which 

is not restricted to the P/E case). That is, we think of PO (i.e., of p, (Ye, &,) as the 

fixed parameter and consider the limit 

&TO, U~CO in such a way that 0,~ + -5 (4.1) 

for some [> 0 (note that in [2] we write 8,~ + 5 with 5 < 0). As explained in [2] 

(the argument is essentially the same as in [lo, 11, 29]), it holds subject to (4.1) that 

7(u)a0E0Y2 

U2 
+ 7~~ in PO”-distribution (4.2) 

where To is the time of first passage of Brownian motion with unit variance and 

drift 5 to level 1 (thus T< is defective when << 0). The distribution of r2 is the 

so-called inverse Gaussian distribution and has density, cumulative d.f., resp. moment 

generating function 

~ g( t; 5) = & t-3’2 exp{.$-f(f+f’t)}, t>O, (4.3) 

G(t,~)=P(~~<t)=l-~(t-“~-~t~‘~)+e~~~(-t-”~-~t”~), t>O, 

(4.4) 

a, A > e2/2, 
Ee “T< = 

exp{[-Jt2-2A}, 
(4.5) 

h s t2/2. 

See [30, Ch. 71 or [16, Ch. 151 for more detail. 

We quote some consequences of (4.1), (4.2) from the above references. First 

~(u)=P~~(~<~~)~P(~.~<co)=G(oo,-_~)=~-~~, (4.6) 

~(~,TU~/(Y~E~Y~)=P~~(T<TU~/(Y~E~Y~)~P(T-~<T)=G(T;-~). 

(4.7) 

Next, since &, < 0, 8, > 0 are connected by KO( 00) = KO( e,), it follows by Taylor 

expansion that (4.1) is equivalent to 

o,u+ 5. (4.8) 

From this relations similar to (4.7) for the P,,(,+,,-distribution of T follow by 

replacing -5 by t( 1-t A). Furthermore: 

Lemma 4.1. Subject to (4.8), it holds that B(u) + B(W) in POI-distribution. Here B(a) 

has the limiting PO-distribution of B(u) as u + CO, viz. 

E0 e 
AB(m) _ 

-Z& 2;;:2. 
0 

(4.9) 

Furthermore E,, eAB’“’ + E. eAB’“’ in a neighbourhood of zero. 
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Indeed, the first statement is contained in [29], the formula (4.9) in the proof of 

Lemma 5.1 of [2] whereas the last statement as well as some further estimates to 

be used in the sequel requires some uniform integrability arguments. As example 

of how to carry out these, we give the proof of the following Lemma: 

Lemma 4.2. Subject to (4.8), it 

I 

Co ultimately, A > t2/2, 

+exp{[-Jt*-_A}, A 

A t2/2.) 

Proof. Since T + r[ in Pe, -distribution, the result is trivial for A < 0, and for 0 < A < 

t2/2 it suffices by standard uniform integrability arguments to show 

- 
hm EO, exp{A’rQ?0Y2/u2} < cc (4.10) 

forsomeA’>A.ChooseA’<~2/2andlet~,p,qsatisfyO~~~1,p~1,l/p+l/q=1, 

A’< (2e - ~‘)5’/2p < 12/2. Since 

-Ke,(-8,&) = K,,(t?,) - Ko(el(l - &)) = -!$!2{e:_e:(1-F)7J 

= a,E,Y2/u2(2a - a2)e2/2 (4.11) 

we can then bound (4.10) by 

lim E,, eeT“ B,(-‘I’)‘~ =lim EB,(AB,BO,), 

A 
01 

= e-8,Sx(S)/P-=s (--BIE)/P 
9 

J.3 
01 

= eB,mT)lP 
(4.12) 

Here E,,A{, = 1 by a standard martingale identity, whereas B(u) + B(co) implies 

E,,B‘7, = ee,eUdPEe, e~,EB(u)dP z ehl/P . 1. 

Hence (4.12) is finite by Holder’s inequality. 

Suppose finally A > t2/2 and let 

P= 
AaOEoY2 

u2 ’ 

Then p > PO ultimately and similarly to (3.1) one gets E,, ePr = CO whenever p > 

PO. 0 

5. Asymptotic optima@ of Lundberg simulation for T = 00 

We can now easily obtain the limiting behaviour of (3.2): 
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Proposition 5.1. Subject to (4.1), (4.8), it holds thatj(d) = ~0 ultimately ifA > &- 1 

(i.e., A2+2A>l). If-l<A<&-1, then 

More precisely, for A = 0 it holds that 

(5.1) 

(5.2) 

Clearly, this result contains the asymptotic optimality of 8r since {a . *} in (5.1) 

vanishes for A = 0 and is necessarily always 20 as limit of non-negative quantities 

(this is also easily proved directly). Proposition 5.1 contains, however, some further 

information: Sincef(A)/f(O) = cu2 for A # 0, the difference between 0, and 0,(1+ A) 

becomes more and more marked as the traffic increases. It is also seen from (5.2) 

that the efficiency of Lundberg simulation does not deteriorate in the limit. This is 

in marked contrast to regenerative simulation, which at a number of places in the 

literature (e.g. [ 191) has been noted to behave badly under heavy traffic conditions. 

Proof of Proposition 5.1. Using Wald’s identity, we first note that 

E 
E 

O,(l+A)n= 
O,(l+AIT 21 u’/aoEo Y2EQ(,+~, U2 

E Z- 01(l+A) EoZ = EoY2,$(l+A) 
(5.3) 

(the estimate for ET requires some uniform integrability argument along the lines 

of Lemma 4.2. We omit the details). In the remaining factor (2.5), (Cl(u)“=ee-” by 

(4.6) Furthermore 

(2y+0,A)X(~)=8,(4+A)(u+B(~))=(4+A)5, 

K~,(~,A)=:~E,Y~/u~(A~+~A)[~/~, 

cf. (4.11). Therefore 

(5.4) 

(5.5) 

exp{-(2y+8,A)X(~)+t~~,(~,A)}~exp{-(4+A)~+(A~+2A)~~/2~~~) 

in distribution. By Lemma 4.2 and standard results on weak convergence, the 

expectations converge as well with limit 

exp{-(4+A)[+t--tJl-A2-24) 

given by (4.5). Combining the above estimates, (5.1) follows. 

For (5.2), we need to estimate vO, = Var,, e-yX(r) more precisely. However, 

le- us(U) - 1 -t yB( u)l S y2B( u)’ evBcU). 

Hence by Lemma 4.1 
2 

ue, s epzy”y2 Var,, B(u) = e-4545 Var, B(m). 
U2 
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But according to (4.9), 

Varo B(a) =-$I$$- 
cl 

Combining with (5.3), (5.2) follows. Finally the assertion for A2+2A > 1 is an easy 

consequence of (5.4), (5.5) and Lemma 4.2. 0 

One might note that the discussion of [29, 21 suggests that the approximations 

given in Section 4 and underlying Proposition 5.1 are not terribly accurate until the 

term of next order (O(K’)) are added. Presumably such refinements in the 

asymptotic form off(A) could be made and thereby provide a better approximation 

to the value Amin minimizing f(A) than just Ami,~O. We have not carried this out 

since some explicit calculations for the P/E case suggest that the resulting variance 

reduction would be small. 

6. Simulation of ruin probabilities in finite time 

An analysis similar to the one in Section 5 can be carried out also for T < 00. We 

first need to redefine i,. Since simulation goes on until the risk reserve becomes 

negative or time T has passed, the appropriate choice appears to be is = EOn A nr 

where 
n 

_n,=inf nil: C &>T 
k=l 

We then have the following extension of Proposition 5.1: 

Propostion 6.1. Suppose that TCQ E,, Y’/ u2 + Tog (0,~) subject to (4.1), (4.8). Then 

for all A > -1, 

U2 

$(l+A) - E. y2 =- E~~c,+A) A To (6.1) 

where 

ET~AT,=~{G(T,;~)-~~~~~(-T~“~-~T~’~)}+T,~~-G(T;,;~)}, (6.2) 

f~~,(~+~) = e -4S[e-&~ e(A*t2A)g2’2T~I( -rc < To) - G( T,; .$)‘I. (6.3) 

It should be noted that it is no longer required that A2+2A < 1. This is simply 

because TV when restricted to {TV < T,,} is bounded and hence has exponential 

moments of all order. A slight simplification in (6.3) occurs, however, if A2+ 24 < 1 

in view of the formula 

(6.4) 
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which is immediate by an exponential family argument. We have not been able to 

find closed expressions if p > 5=/2. 

Proof of Proposition 6.1. If C(T) is the wating time until the next claim following 

T, then 

TA T=Z,+. . .+Z,,.,,-C(T)l(_n,s_n). (6.5) 

Clearly, PO( C ( T) > c) = emaec. Therefore the last term in (6.5) vanishes in the limit 

and using Wald’s identity, we get 

proving (6.1). Obviously (6.2) is equivalent to 

(6.6) 

Now the class of distributions of rr given {TV < TO} form an exponential family 

with canonical parameter p = -5’/2 and densities 

ec 
e@ (0 < t < T,) 

G( To; 5) 
w.r.t. $= tK3’= ee”“” dt. 

n- 

Hence [4, Theorem 8.11 

Using (4.4), it is easily verified that 

aG/ag = 2 e2’@(- Till2 - [TA”) 

and since [=J-~E.L, we have a[/@ = -I/[ and (6.2) follows. 

In (6.3), we get from (4.7) that 

(Z&+&&+~j )’ = (cI( u)’ = G( T,,; -5)’ = ep45G( T,,; 5)‘. 

and (6.3) now follows immediately from (5.4), (5.5) since 

E O,(l+Li) &lid) = E,, exp{-(2y+8,A)X(~)+~~~,(e,A)}1(~< T) 

~exp{-(4+A)&}EeT~‘t(d2t2A)Z2’2Z(~~< TO). q 

In the same way as for T =CO, we are concerned with finding the value Amin of 

A for which 

g(A) =lim &,(~+A~G,(~+A)/u~ 

is minimized. 
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As the first main consequence of Proposition 6.1, it is immediately observed that 

it is no longer true that Amin = 0. That is, one can do better than to apply Lundberg 

simulation. 

To find closed forms for Amin does not look easy. A tabulation of g(A) (using 

(6.4) when possible and otherwise numerical integration) seemed to indicate that 

indeed a well-defined minimum of g(A) exists. Some values of 5 and To which we 

consider typical were selected, and Amin computed numerically, cf. Table 2. 

Table 2 

A mln as function of selected values of 5, T, 

\ 
5 0.5 1 2 5 

TO5 

0.5 2.717 1.395 0.636 0.148 

1 2.067 0.927 0.332 0.038 

2 1.640 0.614 0.148 0.005 

5 1.306 0.356 0.033 0.000 

It is seen that for T small is A,i, not only significantly different from zero but 

also larger than the value &- 1 which is critical when T = co. As expected, Amin 

approaches zero as To+ CO with 5 fixed. 

For a comparison of simulations with 8 = O1 or 0 = O,( 1 + A& it is straightforward 

to compute g(A,,,)/g(O) and we obtain a table of the asymptotic variance reduction 

(Table 3). It is also of interest to compare the two parameters to crude (0 = 0,) 

simulation. Here 

Q,=$(u, T)-cCl(u, U2= G(T,; -5X1-G(T,; -5)), 

Table 3 

Asymptotic variance reduction g(A,,,)/g(O) 

5 0.5 1 2 5 

T05 

0.5 0.15 0.21 0.35 0.69 

1 0.15 0.27 0.49 0.87 

2 0.14 0.32 0.66 0.98 

5 0.08 0.40 0.87 1 .oo 

and it follows exactly as above that 

u2 
i, = E,p A nT = -~ET_~ A To. 

E, Y2 

Now 

E~_(A T,lr~,<co)P(7_5<03)+ToP(7_5=cO) 

= ET< A To eC2’ + To( 1 
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Combining with (6.2), one can thus compute g, = lim i,v,/u* and Tables 4 and 

5 give the corresponding asymptotic variance reductions g(O)/g,, resp. g(A,i”)/gc 

when passing from 0 = 13~ to 0 = 0,, resp. 0 = 0,( 1+ Ami,). 

Table 4 
Asymptotic variance reduction g(O)/g, 

5 0.5 1 2 5 

To5 

0.5 4.4,, - 2 4.1,,-2 2.3,0-2 3.5,,-3 

1 1.9,0-2 1.6,0-2 6.4,, - 3 3.4,,-4 

2 3.0,,-3 2.6,, - 3 6.4,,-4 6.3,,-6 

5 8.6,, - 6 7.8,,-6 1.2,,-7 9.0,,- 11 

Table 5 

Asymptotic variance reduction g(A,,,)/g, 

5 0.5 1 2 5 

TO5 

0.5 6.5,,-3 8.6,, - 3 8.0,,-3 2.4,, - 3 

1 2.9,,-3 4.4,, - 3 3.2,,-3 2.9,,-4 

2 4.3,,-4 8.3,0-4 4.3,0-4 6.1,,-6 

5 6.9,,-7 3.1,,-6 6.2,,-7 9.0,0- 11 

It is seen that 0r is much preferable to &. In some cases the further variance 

reduction by passing on to tV,( 1-t Ami,) is considerable, in others not. 

As an illustration of how results of the above type may be applied in practice 

and of the accuracy of the approximations, we shall give a final example. 

Consider again the P/E case with /3 =p = 1, (Y ~0.85 and let u = 15, T = 100. 

Here y=O.15, 0i = a”*- (Y = 0.072 so according to (4.8) we let 5 = 8, u = 1.079. 

Finally let To = Ta,EoY2/u2= ~T/cY”~u*= 0.964. 

It was found numerically that A,,, = 0.8408. Simulations were performed with 

0 = &,, 0 = f+ and f3 = &(1 + A,J, each e allowed 5 seconds CPU time and the 

results can be summarised as in Table 6. 

Table 6 

Simulation estimates and empirical and asymptotic variances obtained by 5 seconds CPU time PO- 
simulation, P/E model, /3 =p= 1, u = 15, T= 100 

s2/ N in % 
rT s2/ N of 0,-value asymptotical (%) 

crude 0 = B0 0.068 3.1,,-4 100 g,/g, = 100 
Lundberg 0 = 8, 0.064 6.4,, - 6 2.0 g(O)/g, = 1.4 

optimal 0 = 0,( 1 + A,,,) 0.059 3.1,,-6 1.0 g(&,,)/g, = 0.4 
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As a comparison, approximation (5.8) of [2] gave $(u, T) = 0.062 where according 

to the numerical evidence of [2] all figures should be correct. 

It is seen that our theoretical results are supported qualitatively from Table 6: 0, 

is much preferable to 13” and f3,(1 +A,,,) even somewhat better. The quantitative 

agreement of the empirical and theoretical results (i.e., of the two last columns) 

occurs also reasonable at least when absolute (rather than relative) deviations are 

considered. 

7. Two more complex examples 

It might appear that the scope of the method developed so far is somewhat narrow 

by relying quite heavily on the structure of stationary independent increments of 

both signs, in particular for the definition of the exponential family (PO) and the 

Lundberg parameter 0,. Without claiming to demonstrate the opposite in any great 

generality, we therefore considered it worthwhile to sketch in some examples how 

one in fact can cope with problems which at a first sight look rather different and 

where simulation presumably is the only possibility. 

Our first example is motivated from a common objection to the compound Poisson 

risk model (with constant drift), viz. that it is unrealistic to assume that the company 

takes no action if the risk reserve U(t) = u-X(t) becomes close to zero. Thus 

assume that the premium rate p is a function of the current risk reserve u = V(f), 

say p = p(u). An example of the paths of the risk reserve process { V( t)}lao is given 

in Figure 2 for the case where p has only two values p,, > pm, p(v) = p. when u s u,, 

and p(u) = pm when u > uO. 

The input process Z(t) is again assumed to be compound Poisson, Z(t) =Cy Y,,. 

As a reasonable set of general conditions on p = p(u), assume that p is nonincreasing 

with limits po< a, pm> aEY as uJ0, resp. V?CO. Clearly, the risk reserve process 

A 
v(t) u-X(t) 
(p,=2,p,=0.51 “:,/I (F-1) 
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1 /’ 1: 

/ L’ / ; ,-X(r*iu)) 

"0 

0 
rlu) b 

t 
1 

Figure 2. 
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satisfies the storage equation 

l 

7 
V(T)=u-I(T)+ P( v(t)) dt ” 

as in [14], and the ruin probability is 

rcr(U) = P(r*(u) <co), 7*(u)=inf{taO: V(t)<O}. 

Since p(v) 2 p(m) > crEY, P( T( u) <co) < 1 for all u and crude simulation does 

not apply (neither is it immediately clear how to apply regenerative simulation in 

this case). Instead we note that T*(U) is a stopping time not only w.r.t. {V(t)} but 

also w.r.t. {I(t)} and hence w.r.t. {X(r)},,, where X( 1) = I(t) -Pt with some 

arbitrary choice of p. Thus (2.2) is applicable as before, and in summary, we suggest 

to proceed as follows: 

(1) Choose p E [pm, po] and consider the compound Poisson model X(t) = 

I(t)-@; 

(2) Solve the Lundberg equation for X; 

(3) Lundberg simulate I and keep track of both V and X. Stop when at time 

t = T*(U) V(t) (0 and observe the response RoI = e-“x’T*(u)) (see Fig. 2 for an 

illustration). Replicate the experiment a suitable number of times. 

The second example is a M/G/ 1 queue with an arrival intensity a(t) depending 

periodically upon time. It has been shown in [13] that if the traffic intensity p 

(defined in an appropriate sense) is less than one and W,, W,, . . . denote the actual 

waiting times, then $(u) = lim,,, P( W,, > u) exists. However, it is not obvious how 

to compute G(u) numerically and simulation may therefore be appropriate. 

If cr(t) is constant, then G(u) is simply the ruin probability studied so far, cf. 

Section 5, and our method applies immediately. To show how one can deal also 

with the period case, one may first use an operational time argument to reformulate 

the model as a queue with stationary Poisson arrivals at unit rate and the server 

working at a periodic rate dB*(t)/dt where B* is the inverse function of ji (Y(S) ds 

(B* may have jumps if (Y is identically zero on non-degenerate intervals). Let 

Y,, Yz, . . be the service times, V(t) the virtual waiting time at time t, B(t) the 

periodic extension of B*( - t) to [0, co) and b the period of B, B*. Then p = bEY/ B( b) 

and if p < 1, it may be deduced from [ 131 after some manipulations that G(U) = 

(l/b) l,” ccla(u) da where 

~~(u)=?li-~P(V(a+nb)>u)=P oyEy$Xa(t)>U 
( > 

where 

X,(t)= 3 Y,+B(a)-B(a+t). 
n=, 

If we write B(t) = tB( b)/ b + C(t), then C has period b, and defining 

X(c)= ? Y,,-tB(b)/b, u,(t)=u+C(a+t)-C(t), 
II=, 
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7, = inf{ t: X(t) > u,(t)}, we may rewrite (7.1) as +a( u) = P( r, < a). Furthermore 

{X(t)} has the desired structure so that we may form (PO), compute the Lundberg 

value 13 = 19~ and the corresponding changed parameters. Because of p < 1, we have 

P,,( TV < 00) = 1 and we may Lundberg simulate with R,, = exp{ - yX( r,)}, cf. (2.2), 

to estimate $a(u). It is strongly suggested from Sect. 3 that this is superior to 

regenerative simulation which otherwise would be the approach suggested by [13]. 

For simulation of CL(u), we simply have in each replicate to draw the parameter a 

uniformly on [0, b]. 
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