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Abstract Erythrocyte glyceraldehyde-3-phosphate dehydroge-
nase (G3PD) is a glycolytic enzyme containing critical thiol
groups and whose activity is reversibly inhibited by binding to
the cell membrane. Here, we demonstrate that the insertion of
ferriprotoporphyrin IX (FP) into the red cell membranes exerts
two opposite effects on membrane bound G3PD. First, the en-
zyme is partially inactivated through oxidation of critical thiols.
Dithiothreitol restores part of the activity, but some critical
thiols are irreversibly oxidized or crosslinked to products of
FP-induced lipid peroxidation. Second, G3PD binding to the
membrane is modified and the enzyme is activated through dis-
placement into the cytosol and/or release from its binding site.
� 2005 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Heme (ferric protoporphyrin IX, FP) accumulates inside red

blood cells (RBCs) in hemoglobinopathies [1] or patients with

G6PDH deficiency [2]. Heme is also found in the plasma of

patients with hemolytic diseases [3] as well in malaria, although

the actual concentration and disposition have not been well

quantified, yet. We and others have previously shown that

FP rapidly binds to lipid bilayers of artificial liposomes as well

as macrophages or RBCs inducing a time- and dose-dependent

membrane lipid peroxidation [4–8]. In RBCs, membrane and

cytoskeleton proteins are particularly susceptible to oxidative

damage which is thought to reduce whole cell deformability

[9,10] and cause microrheologic abnormalities similar to those

observed in sickle RBCs [11]. It has been previously reported

that intercalation of the porphyrin into the membrane is fol-

lowed by the oxidation of protein�s thiols and lysis of RBCs

[8,12]. The latter has been attributed to a colloid-osmotic

mechanism and/or peroxidative crosslinking of cytoskeleton

proteins [12,13].

On the basis of these results, we reasoned that membrane

associated enzymes, in particular those containing critical thi-
Abbreviations: G3PD, glyceraldehyde-3-phosphate dehydrogenase;
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ols, might be affected by FP. The aim of this study was to elu-

cidate the influence of FP insertion into the membrane on

glyceraldehyde-3-phosphate dehydrogenase (G3PD). G3PD

is a glycolytic enzyme containing critical thiols, which plays

a key role in RBC metabolism and whose activity is modulated

by its dynamic association with the cell membrane [14,15].
2. Materials and methods

2.1. Materials
Human A-positive blood from healthy donors was used within 10

days from withdrawal with CPD (citrate/phosphate/dextrose) as anti-
coagulant.
All biochemicals were purchased from Sigma (Sigma Italia, Milan,

Italy), anti-G3PD monoclonal antibody from Chemicon; nitrocellulose
membrane and the enhanced chemiluminescence developing system
(ECL) from Amersham Bioscience.
FP stock solutions were prepared daily. A weighed amount of FP

was resuspended in 0.02 N NaOH and then diluted to the appropriate
concentration in isotonic phosphate buffered saline (PBS). The heme
equivalents were quantified by dissolving an aliquot in 1 N NaOH
and reading the absorbance at 385 nm (�385 hematin = 6.1 · 104

M cm�1).

2.2. Preparation of RBC, free cell extracts and RBC membranes
Aliquots of blood were centrifuged at 1850 · g at 4 �C for 5 min, the

buffy coat removed and the erythrocyte pellet washed three times with
10 vol of cold (4 �C) PBS. Cells were gently resuspended with PBS-
5 mM glucose and used immediately.
RBCs at 10% hematocrit (Htc) in PBS-glucose were treated with

different doses of FP from stock solutions (10–20 ll). Incubation was
performed in plastic vessels for different times at 37 �C under shaking.
In some experiments, the RBC suspension was pre-incubated with vita-
min E (50 lM) and then washed before the addition of FP. RBCs were
then pelleted by centrifugation at 1850 · g for 10 min, washed twice
with cold PBS to remove the unbound porphyrin and lysed with a
proper volume of water just before the assay of G3PD activity. RBC
cytosol was prepared by hypotonic shock in 5 mM NaHPO4 buffer
pH 8.0 (5P8 buffer) or 3 freeze–thawing cycles in PBS. When the effects
of FP on G3PD activity were studied in cell free extracts, RBC were
lysed and diluted to 10% Htc with 5P8 buffer and the suspension incu-
bated at 37 �C with FP for 30 min.
In some experiments, membranes were prepared from control or FP

exposed RBCs by hypotonic lysis and extensive washing in 20 vol of
5P8 buffer containing 0.1 mM EDTA and 0.2 mM phenylmethylsul-
fonyl fluoride (PMSF). White ghosts were stored at �80 �C in a small
volume of the same buffer containing a protease inhibitor cocktail (Sig-
ma) (5 ll/200 lg proteins).

2.3. G3PD assay
G3PD (E.C. 1.2.1.12) activity was measured according to Beutler

with minor modifications [16]; since G3PD is inactive in its mem-
brane-bound state [15,17], the determination of the membrane activity
was performed in the presence of 0.02% Triton X-100. Enzyme activity
ation of European Biochemical Societies.
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was referred to the hemoglobin content calculated spectrophotometri-
cally from the absorbance at 412 nm (A412) for intact RBC and RBC
cytosol or to the phospholipid phosphorus, determined according to
Bartlett [18], for RBC ghosts.

2.4. Gel electrophoresis and Western blot analysis
About 20 lg of membrane proteins were solubilized in 2· loading

buffer, incubated for 15 min at 60 �C and separated by 10% sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE)
[19]. Proteins were stained with Coomassie blue R-250 and quantified
by densitometric analysis (CAMAG VideoScan) or transferred to
nitrocellulose membrane at 100 mA, overnight. Blots were blocked
with 10% non-fat dry milk in Tris buffered saline-1% Tween-20
(TBS-T) and incubated for 1 h at room temperature with monoclonal
anti-G3PD antibody (1:2000 in 5% no-fat milk in TBS-T). Blots were
washed in TBS-T, followed by incubation at room temperature for 1 h
with anti-mouse IgG (1:10000 in TBS-T) and finally detected with
ECL.
3. Results and discussion

The treatment of RBC with FP results in a time and dose-

dependent insertion of the porphyrin into the membrane, fol-

lowed by oxidation of protein sulfhydryl groups and hemolysis

[8]. On this basis, we investigated the effect of FP on the activ-

ity of G3PD, a glycolytic enzyme containing critical thiol
Fig. 1. (A) Effect of different concentrations of FP (30 min, 37 �C) on the ac
activity of RBC ghosts is also shown. With the exception of samples exposed
different from controls (P < 0.001). (B) Increased G3PD activity of whole RB
glucose were exposed to FP for 30 min at 37 �C under gentle shaking. The en
the incubation, washed with PBS and lysed immediately before the enzymati
Ghosts were exposed to different concentrations of FP (30 min, 37 �C). After
were subjected to SDS–PAGE and immunoblotting with anti-G3PD antibod
groups [20]. It is known that G3PD is a tetrameric protein

bound through electrostatic interactions to the N-terminal

cytoplasmic tail of the anion-transport protein band 3 [14].

The binding site for band 3 is located in the catalytic domain

of G3PD and therefore the enzyme is inactive in its bound

state [15]. The association is reversed by elevation of the ionic

strength [21], free oxygen radicals [22] or S-nitrosylation by

NO donors [23]. In a first set of experiments, a pure G3PD

solution was incubated with FP for 30 min: a significant and

dose-dependent inhibition of activity was observed (Fig. 1A,

dotted line). A similar sensitivity to inactivation by FP was

seen with G3PD associated to RBC ghosts. FP almost com-

pletely abolished the enzyme activity at doses above 40 lM
(Fig. 1A) and it was active at very low concentrations

(1–5 lM), as well. This suggests that the sulfhydryl group at

the active site of G3PD is sensitive to oxidation by FP and that

it is only partially protected by the association of the enzyme

to the membrane. A similar pattern of enzyme inactivation is

observed with H2O2.

To investigate the changes of G3PD activity in whole eryth-

rocytes, RBC were incubated with doses of FP ranging be-

tween 10 and 80 lM, at 37 �C, for 30–180 min. At the end of

treatment, lysed cells were discarded and the enzymatic activity

measured in the intact cells recovered by centrifugation,
tivity of pure G3PD and G3PD of RBC ghosts. H2O2 effect on G3PD
to 1 lM H2O2 all samples treated with FP or H2O2 were significantly
C as a function of FP concentrations. RBC at 10% Htc in PBS 5 mM
zyme activity was measured on the erythrocytes recovered intact after
c assay. *P < 0.01 vs. control. (C) Release of G3PD from RBC ghosts.
centrifugation proteins recovered in the soluble fraction and the pellet
y.



Fig. 2. G3PD activity (expressed as percentage of the control) of the
cytosol and total RBC lysate after treatment with different doses of FP.
*P < 0.05, **P < 0.01 vs. control.
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washed with PBS and lysed just before the assay. As shown in

Fig. 1B, a 2-fold increase of total G3PD activity compared to

controls was observed, with a plateau at 40 lM FP after

30 min of incubation. No further increase was seen after a

longer incubation time (data not shown). This finding led us

to hypothesize that G3PD could be activated by displacement

from the membrane following the treatment with FP. The FP

capability of displacing G3PD was confirmed by incubating

control ghosts with increasing amount of FP. After 30 min

treatment at 37 �C, the membranes and the surnatants were

recovered by centrifugation and subjected to SDS–PAGE, fol-

lowed by Western blotting with anti-G3PD antibody. The re-

sults, shown in Fig. 1C, demonstrate a dose-dependent

release of G3PD from the membrane and a parallel recovery

of the protein in the supernatant.

To verify the displacement of the enzyme in intact cells, as

well, we measured the G3PD activity on the cytosol of FP-

treated RBC. Intact RBC recovered after incubation with

40 lM FP, were lysed by three cycles of freezing/thawing or

by 2 min mechanical homogenization in a glass potter and

the cytosol was separated from the membranes by centrifuga-

tion for 30 min at 20000 · g. G3PD activity in the cytosol

was significantly increased (140–145% compared to controls),

although to a lesser extent than in the whole cell (data not

shown and Fig. 1B). Taking into account that in the presence

of FP, RBC become spherocytic [12], this result is in agree-

ment with the recent observation of Campanella et al. [24]

showing by specific antibody and confocal microscopy that

G3PD is partly displaced into the cytosol in spherocytic or

otherwise abnormal (senescent, dehydrated) cells. Interest-

ingly, no increase of G3PD activity was found when the cyto-

sol was prepared by hypotonic lysis of RBC, compared to

mechanical or thermic shock (data not shown). This latter

finding suggests that the FP-induced displacement of G3PD

into the cytosol is a transient event, requiring a ionic strength

of physiological value (0.15 M) and that G3PD can re-associ-

ate to the membrane when the cells are lysed in hypotonic

buffer.

The lower increase of activity in the cytosol compared to the

whole cell, suggests that the displacement of the protein into

the cytosol cannot completely account for the FP-induced acti-

vation of G3PD and that most of the enzyme might be acti-

vated in the membrane-bound state. In fact, FP insertion

into the membrane might interfere with the interaction be-

tween band 3 and the bound subunit of G3PD, leading to a

greater accessibility of the substrate to the catalytic site and/

or relieving the allosteric inhibition on the other three G3PD

subunits [15]. This hypothesis is supported by the finding of

Muronetz et al. [25] showing that G3PD is capable of function-

ing in a membrane-bound state, as well. Phosphofructokinase

too, whose activity is modulated by the association to band 3,

can be activated without changes in the amount of enzyme

bound to the membrane [26,27].

In subsequent experiments, control RBC were lysed and the

total RBC lysate or the cytosol alone (total lysate minus the

membrane fraction) were exposed to FP (Fig. 2). In agreement

with the results reported above, no increase of G3PD activity,

but rather a 30% inhibition, was observed after treatment of

the RBC cytosol with FP, due to a partial inactivation of the

enzyme. The effect observed after treatment of the total lysate

with FP was in between that observed in the whole cell and in

the cytosol alone, being the resultant of two opposing effects:
enzyme activation, due to the modified G3PD binding or re-

lease from the membrane, and enzyme partial inactivation

due to direct exposure to FP.

The association of G3PD to the membrane was investi-

gated in membranes isolated from RBCs incubated with FP

(40 lM, 60 min 37 �C). The analysis was performed on mem-

branes of RBC recovered intact after FP treatment as well as

membranes of FP-lysed RBC. Membrane of FP-intact RBCs

were isolated after freezing–thawing of the cells, the proteins

were separated by SDS–PAGE and the electrophoretic

pattern subjected to quantitative densitometric analysis using

actin as ‘‘reference standard’’ (Fig. 3A and C). G3PD corre-

sponds to band 6, a 37 kDa protein, as confirmed by the

immunoblotting analysis using anti-G3PD antibodies

(Fig. 3B). Densitometric analyses demonstrate that G3PD de-

creases only 10% in the membranes of erythrocytes recovered

intact after treatment with increasing amounts of FP

(Fig. 3C). Similar results were obtained after longer times

of exposure (data not shown) confirming that after FP treat-

ment most of G3PD is still bound to the membrane of intact

cells. However, considering that in resting RBC the bulk of

G3PD (75–80%) is associated with the membrane [14], even

this small decrease could account for the 40–45% increase

of activity shown in the cytosol.

Differently from intact RBC, G3PD is almost completely

lost from the membrane of RBC that undergo lysis during

exposure to FP (Fig. 3A and C). Such phenomenon is not ob-

served when RBC are lysed by hypotonic buffer (Fig. 3A, con-

trol). In addition, in FP-lysed erythrocytes, we observed a

significant decreased of a and b chain of spectrin (240 and

210 kDa proteins) (7% of the total proteins vs. 32% of control)

(Fig. 3A). Spectrin is a major structural component of the

RBC cytoskeleton, sensitive to sulfhydryl reagent and specific

target for oxidative damage of RBC [28–30]. Therefore, based

on the present and previous findings [8], disappearance of

G3PD is strictly dependent on the FP-induced destabilization

of the cytoskeletal network.

In spite of the similar amount of membrane-bound enzyme,

ghosts prepared from RBC pretreated for 60 min with increas-

ing concentration of FP showed a lower G3PD activity (Fig. 4,

white bars). Incubation of the membranes for 30 min with

1 mM dithiothreitol (DTT) reversed the inhibition, but was

unable to completely restore the enzymatic activity (Fig. 4,



Fig. 3. (A) 10% SDS–PAGE visualized by Coomassie blue staining of membrane proteins prepared from control and FP-treated RBC (60 min,
37 �C). RBC recovered intact or lysed after FP exposure were analysed separately. (B) Identification of band 6 as G3PD using anti-G3PD antibody.
(C) Densitometric quantification of Coomassie blue stained gels of membranes prepared from RBC control or exposed to different concentrations of
FP (60 min, 37 �C). *P < 0.001 vs. control.

Fig. 4. Decreased G3PD activity of ghosts prepared from RBC treated
with different amount of FP and partial recovery of the activity after
30 min treatment of the membranes with 1 mM DTT. *P < 0.005 vs.
control, #P < 0.05 vs. the correspondent sample without DTT.
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grey bars). The same result was obtained when the membranes

were incubated for 30 min with 2 mM GSH (data not shown).

On the contrary, the membrane-bound activity was com-

pletely preserved in RBC pre-incubated for 30 min with

50 lM a-tocopherol, a known scavenger of thiyl radicals and

of 4-hydroxy-2-nonenal (HNE) production [31,32] prior to

the exposure to FP (data not shown). These findings indicate

that FP-induced inactivation of G3PD is only partly due to

the reversible oxidation of the thiol group at the catalytic site

of the enzyme. It is likely that in the presence of FP, thiyl rad-

icals and HNE, originating from the lipid peroxidation pro-

cess, are generated [31,33,34] and irreversibly inactivate

G3PD by either oxidation of the thiol at the catalytic site to

sulfonic acid (RSO3H) or by alkylation.

In conclusion, these results demonstrate that insertion of FP

into the membrane, besides the effects exerted on the structural

properties of the erythrocyte, may have important functional

implications with regard to the energy metabolism of the cell.

FP in fact, exerts two opposite effects on the membrane bound

G3PD. On the one hand, it causes a partial inactivation of the

enzyme through reversible or irreversible oxidation of critical

thiols or crosslinking to products of FP-induced lipid peroxi-

dation. On the other hand, it modifies the binding properties
of the enzyme to the cytoplasmic tail of band 3, thereby acti-

vating G3PD through displacement into the cytosol and/or re-

lease from its original binding site. Since most of the enzyme is

concentrated at the membrane surface in a inactive state

[14,15], the FP-induced modulation of the binding affinity of

even a small number of molecules might play a significant

influence in the erythrocyte metabolic control. Further experi-

ments are in progress to investigate whether other membrane-

bound glycolytic enzymes [27] are similarly affected by the

porphyrin and to understand the mechanisms underlying such

effect.
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