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Posttranslational modifications constitute a major field of emerging biological significance as mounting
evidence demonstrates their key role in multiple physiological processes. Following in the footsteps of protein
phosphorylation studies, new modifications are being shown to regulate protein properties and functions in
vivo. Among such modifications, an important role belongs to protein arginylation — posttranslational tRNA-
mediated addition of arginine, to proteins by arginyltransferase, ATE1. Recent studies show that arginylation
is essential for embryogenesis in many organisms and that it regulates such important processes as heart
development, angiogenesis, and tissue morphogenesis in mammals. This review summarizes the key data in
the protein arginylation field since its original discovery to date.

© 2011 Elsevier Inc. All rights reserved.
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Introduction we summarize the historical development as well as the most recent

Since the discovery of protein phosphorylation, posttranslational
modifications have been emerging as highly important biological
regulators, critical for many physiological processes. During the past
decades numerous studies continue to unveil their complexity and
the intricate networks of the metabolic pathways whose proper
function depends on tight posttranslational control. Many of these
regulatory modifications are coming into focus only now. Among
them, a prominent role belongs to arginylation — tRNA-dependent
posttranslational addition of Arg onto proteins. In this short review,
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findings in the field of protein arginylation. For recent reviews with
the emphasis on the relation between arginylation and protein
ubiquitination see Dougan et al. (2010); Hershko et al. (2000); Ravid
and Hochstrasser (2008); Varshavsky (2006).

Arginylation is mediated by arginyltransferase (ATE1), an enzyme
present in all eukaryotic cells. A similar modification also exists in
prokaryotes, where a homologous enzyme L/F transferase modifies
proteins by addition of Leu and Phe. Thus, tRNA-dependent posttrans-
lational addition of amino acids to proteins is highly conserved in
evolution.

Every organism from yeast to human contains an Ate1 gene, which
encodes a single protein in lower eukaryotes, and multiple isoforms in
higher species (Hu et al., 2006; Kwon et al., 1999; Rai and Kashina,
2005). Recent projects involving global gene knockout screens in
different organisms reveal that while in lower eukaryotes, from yeast
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to C. elegans, Atel gene is non-essential (i.e., not required for the
organism's viability), starting with Drosophila knockout of Atel
results in embryonic lethality (Table 1). Thus, it is clear that ATE1 is
highly important physiologically, and that its function in advanced
developmental processes is required for survival.

Over the years, many research groups attempted characterization of
the ATE1 enzyme, its biological targets, and mechanisms of function,
obtaining puzzling and often controversial results. The recent break-
throughs in genome sequencing, mass spectrometry, and mouse
transgenesis enabled more targeted studies, finally elucidating some
of the older mysteries that surrounded arginylation since its original
discovery. This review will provide a comprehensive overview of all the
available data on arginylation, its mechanisms, molecular targets, and
physiological role in various developmental pathways.

Identification of arginylation enzymes and insights into the
chemistry of arginylation

In 1963, a group of researchers discovered that in cell-free extracts
depleted of the components for conventional protein synthesis (such as
ribosome, mRNA, GTP and other factors) proteins can incorporate
radioactive amino acids by mechanisms dependent on tRNA but
independent of conventional translation. This phenomenon, observed
both in prokaryotes (Kaji et al., 1963a, 1965a,b; Momose and Kaji, 1966)
and in mammalian systems (Kaji, 1968; Kaji et al., 1963b) was surprising,
since it was assumed that tRNA-dependent amino acid incorporation into
proteins must be coupled to de novo formation of protein chains by
ribosomes. However, it soon became clear that the new phenomenon is
not an alternative translation process, but constitutes a previously
unknown posttranslational modification, which is restricted to highly
specific amino acids (Kaji et al,, 1963a,b, 1965a,b; Momose and Kaji,
1966). To date, only tRNA-dependent addition of Arg in eukaryotic cells
and Leu and Phe in bacteria has been observed. Interestingly, an
independent group of enzymes have also been shown to modify proteins
by addition of amino acids, including glycylation, glutamylation, and
tyrosination (reviewed in (Bulinski, 2009; Hammond et al, 2008).
However, these enzymes display a number of important differences from
arginyltransferases and bacterial L/F transferases. First, they act by direct
transfer of amino acids onto proteins rather than via aminoacyl-tRNA.
Second, they have only one major intracellular target, tubulin (which is
exclusive for tyrosination and predominant for glycylation and glutamy-
lation), while R- and L/F-transferases have a much broader range of
substrates (see following discussion).

Table 1
Ate1 knockout phenotypes in different organisms.

Follow-up studies further characterized the arginyl transfer reaction
(Kaji, 1968; Kemper and Habener, 1974; Soffer, 1968) and identified the
enzymes that mediate Arg transfer in plants (Manahan and App, 1973),
in guinea-pig hair follicles (Lock et al., 1976) and yeast (Balzi et al.,
1990), and Leu/Phe transfer in E. coli (Kaji et al, 1963a, 1965a,b;
Leibowitz and Soffer, 1969, 1970; Momose and Kaji, 1966). It has been
determined that these enzymes, similarly to the translation machinery,
utilize aminoacyl tRNA to conduct the amino acid transfer to protein
substrates, and thus depend on the presence of Arg-tRNA synthetase
(Ciechanover et al., 1988). It was also found that the bacterial Leu/Phe
(L/F) transferase prefers N-terminally exposed Arg as an acceptor site,
while Arg-transferase (named ATE1, for Arginine Transfer Enzyme
1) shows a preference for N-terminally exposed Asp and Glu (Leibowitz
and Soffer, 1970, 1971; Soffer, 1970a,b, 1971b, 1973a,b; Soffer and
Horinishi, 1969).

Identification of Atel in multiple species from yeast to human
(Balzi et al., 1990; Kwon et al., 1999; Manahan and App, 1973; Rai and
Kashina, 2005) enabled more in-depth characterization of these
enzymes. It was found that evolutionarily higher organisms have
multiple ATE1 isoforms generated by alternative splicing, that differ
by activity, tissue specificity, and intracellular localization (Hu et al.,
2006; Kwon et al., 1999; Rai and Kashina, 2005).

Based on the Arg-tRNA dependence of the reaction and on the fact
that it apparently occurs only on the residue(s) with an N-terminally
exposed amino group, it has been postulated that the arginylation
reaction results in the formation of a peptide bond between the alpha
amino group of the N-terminal residue of a protein and the carboxy
group of the added Arg (Kaji, 1968; Soffer and Horinishi, 1969).
In agreement with this, added Arg on proteins could be identified by
N-terminal Edman sequencing (Kaji, 1968; Kwon et al., 1999; Rai and
Kashina, 2005). However, recent studies showed that Arg can also be
added to a mid-chain Glu residue in the biological regulatory peptide
neurotensin (Eriste et al., 2005) — a modification that can only happen
if the amino group of Arg reacted with the carboxy group of the Glu
side chain, suggesting that the chemistry of arginylation may be more
complex than originally believed and/or additional enzyme(s) may be
involved in this novel side chain arginylation. It was also found that
proteins could be modified not only at the N-terminus but also at the
internal sites in the amino acid chain (Rai et al., 2008; Wong et al.,
2007), presumably via transiently exposed alpha amino groups of the
mid-chain residues, but potentially also via linkages to the amino acid
side chains in the protein back bone. These new data suggest that the
arginylation reaction may be more complex than originally believed

Organism Phenotype Screen References Related information
Saccharomyces Viable, no observable defects. Yeast deletion project  http://www-deletion.stanford.edu/YDPM/
cerevisiae Balzi et al. (1990)
C. elegans No observable defects. http://www.wormbase.org/db/gene/gene? The following phenotypes were not observed in
name = WBGene00010615;class = Gene Atel knockout: larval lethality, slow growth,

sterile progeny, organism morphology variant,
lethal, larval arrest, postembrynic development
variant, embryonic lethal, maternal sterile.

Drosophila Lethal P element screen Spradling et al. (1999); Mutsuddi et al,, (2004)  Overexpression of human SCA8, a noncoding

melanogaster

Mus musculus Embryonic lethal Targeted gene

knockout

Arabidopsis
thaliana

Delayed leaf senescence. Abnormal
shoot and leaf development and
defects in seed germination.

Kwon et al. (2002)

RNA involved in neurodegeneration, causes
rough eye phenotype which is enhanced in
the Ate1 knockout background.

Heart development, and angiogenesis defects

Yoshida et al. (2002)
Holman et al. (2009)
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Fig. 1. Summary of the arginylation reaction. According to the conventional theory,
ATE1 transfers Arg from tRNA onto the N-terminally exposed amino group of the
acceptor protein, forming a peptide bond (circled on the bottom of the diagram).
Recent finding also demonstrates an example of Arg addition to the side chain of the Glu
residue of neurotensin (circled on the side of the diagram). If mediated by ATE1, this
reaction constitutes an additional or alternative mechanism of protein arginylation.

and possibly occurs by more than one mechanism. The currently
known forms of chemical linkage of Arg to proteins are summarized in
Fig. 1.

Over the years, attempts have been made to reconstitute the
arginylation reaction in vitro and determine the essential components
in this reaction. Several groups have reported success with partially
purified ATE1 fractions, yielding insights into the molecular re-
quirements for enzymatic Arg transfer (Ciechanover et al., 1988;
Horinishi et al., 1976; Kato and Nozawa, 1984; Soffer, 1970b).
However, only very recently have the sufficient purity in an in vitro
arginylation system been achieved, enabling direct testing of the
molecular requirements and components utilized by ATE1 (Wang
et al., 2011). Using this system, it has been found that ATET1 is a self-
sufficient enzyme that does not require ATP or the presence of any
protein components besides the substrate to conduct the Arg-transfer
reaction. It has also been determined that different ATE1 isoforms
possess different activity and substrate specificity and are differen-
tially modulated by intracellular factors, suggesting that they play
distinct physiological roles. Moreover, it has been found that ATE1 can
also undergo self-arginylation, pointing to another level of potential
self-regulation of this enigmatic enzyme (Wang et al., 2011).

Arginylation and ubiquitin-dependent protein degradation

Earlier studies demonstrated that knockout of Atel in yeast (Balzi
et al., 1990) and L/F transferase in E. coli (Deutch et al., 1977) do not
visibly perturb their growth, deeming these enzymes non-essential. It has
been found, however, that engineered proteins containing N-terminal
Arg can be metabolically unstable in yeast (Bachmair et al., 1986; Gonda
et al., 1989) and that addition of N-terminal Arg can target proteins for
ubiquitination (Elias and Ciechanover, 1990), suggesting that N-terminal

arginylation might play a role in ubiquitin-dependent protein regulation
and turnover. In support of this, researchers observed degradation of
arginylated proteins in the cytosol of various cells (Bohley et al., 1988a,b,
1991), and arginylation-dependent targeting of proteins with acidic
N-termini for ubiquitination and degradation (Ciechanover et al., 1988).
It was shown that ubiquitin associates with aggregates of arginylated
proteins in injured nerves (Jack et al., 1992) and that arginylation and
ubiquitin-dependent proteolysis are involved in nerve regeneration
(Chakraborty and Ingoglia, 1993; Zanakis et al., 1984).

Arecent study demonstrated that in some cases protein arginylation
and subsequent ubiquitination may occur co-translationally (rather
than posttranslationally), and that the metabolic fate of such co-
translationally arginylated proteins may differ depending on the rate of
their translation and folding (Zhang et al.,, 2010). By this mechanism,
proteins that translate and fold slowly become targets for ubiquitination
and rapid degradation, while those fast-synthesized proteins that
bypass this co-translational ‘checkpoint’ are able to exist in vivo in an
arginylated state, which likely regulates their structure and functions in
the cell. This mechanism appears to be one of arginylation's regulatory
mechanisms; it ensures that only those proteins that can fold, traffic, and
function properly once arginylated will persist in vivo.

Oxidized proteins were also shown to be targets for arginylation
(Zhang et al., 1998). Follow-up studies demonstrated that in
specialized cases involving proteins with N-terminal Cys, arginylation
can happen only after nitric oxide-dependent Cys oxidation and that
such oxidation-dependent arginylation likely targets proteins for
degradation, suggesting that arginylation can play a role in nitric
oxide signaling and oxygen sensing (Davydov and Varshavsky, 2000;
Hu et al., 2005). However, other studies suggested that Cys can also be
arginylated in an unmodified form, and that many proteins do not
become metabolically unstable upon arginylation (Wong et al., 2007).

Overall, while protein degradation appears to play a selective role
in determining the intracellular stability of some arginylated proteins,
global effects of arginylation likely extend beyond the regulation of
the proteins' metabolic fate and constitute a general regulatory
mechanism that affects protein structure, molecular interactions, and
in vivo functions.

Proteins arginylated in vivo

Growing evidence demonstrates that a multitude of proteins in
different organisms, cell types, and subcellular fractions can serve as
posttranslational acceptors of Arg. It has been found that secreted
proteins, including BSA and alpha-lactalbumin, can be arginylated after
the removal of signal peptides in the presence of crude preparations of
ATE1 (Ciechanover et al., 1988). Other secreted proteins, such as bovine
thyroglobulin (Soffer, 1971a), were also found to be targets for
arginylation, raising a possibility that ATE1 activity might be coupled
to the endoplasmic reticulum and protein transport through the
membrane. In support of this, it was also found that some regulatory
peptides and hormones that exist in the plasma and extracellular liquids
can serve as substrates in the arginylation reaction, including neuro-
tensin (Eriste et al., 2005), beta-melanocyte stimulating hormone
(Soffer, 1975), insulin (Zhang et al., 1998) and angiotensin II (Soffer,
1975), and that in the case of angiotensin arginylation appeared to alter
its ability to induce cellular responses (Soffer, 1975), suggesting that this
posttranslational modification may constitute a novel regulatory
mechanism not only for proteins but also for biological peptides.
Human erythrocyte membranes that consist largely of alpha or beta
lipoproteins whose N-termini are aspartic or glutamic acid were found
to incorporate arginine (Kaji and Rao, 1976). While at present it is
unclear how ATE1 can exert its activity on the secreted proteins and
plasma peptides, it is possible that arginylation constitutes a step in their
intracellular processing prior to secretion, or that ATE1 itself might be
secreted in complex with arginylated tRNA, which is essential for the
Arg-transfer reaction.
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Other arginylated proteins have been identified in multiple
studies, include chromosomal proteins (Kaji, 1968, 1976), ornithine
decarboxylase (Bohley et al., 1988a,b; Kopitz et al., 1990), as well as at
least 25 different additional cytosol proteins in hepatocytes and at
least 15 different proteins in Dictyostelium discoideum (Bohley et al.,
1991). It was found that 16 soluble proteins can incorporate labeled Arg
in rat brain extracts (Hallak et al, 1985), and multiple soluble Arg
acceptor proteins have been observed in different regions of the rat
tissues (Lamon and Kaji, 1980; Takao and Samejima, 1999), brain (Hallak
etal., 1991), bovine lens (Wagner and Margolis, 1991), and cultured cells
(Fissolo et al., 2000; Rao and Kaji, 1977a). Studies measuring the
correlation between protein's in vivo stability and its arginylation state
have identified several members of the regulator of G-protein signaling
(RGS) family as targets for arginylation-dependent degradation in vitro
(Davydov and Varshavsky, 2000) and in vivo (Lee et al., 2005). It was
found that arginylation of beta amyloid peptide increases the probability
of alpha-helix formation, suggesting that arginylation may play a role in
preventing neurodegeneration (Bongiovanni et al., 1995). It was also
found that arginylation of calreticulin induces its association with the
stress granules (Carpio et al., 2010; Decca et al., 2007), suggesting an
additional role of arginylation in intracellular stress responses and the ER
function.

Recent development of high precision mass spectrometry and its
applications to posttranslational modifications enabled higher
throughput screens for identification of proteins arginylated in vivo
(Wong et al., 2007; Xu et al., 2009). Using such screens, additional 43
proteins arginylated on highly specific sites in mouse embryonic and
adult tissues have been identified (Wong et al., 2007). The functions of
these proteins range from structural to metabolic, and include
transcription factors, tumor-related genes, and glycolytic enzymes.

R-neurotensin

A

A prominent cytoskeleton protein - non-muscle beta actin - was
found to be dependent on arginylation in performing its role at the cell
leading edge (Karakozova et al., 2006) via mechanisms that affect its
interaction with other proteins and regulate actin intracellular
polymer level (Saha et al., 2010), apparently independent of its
metabolic stability. For many proteins it has been found that
arginylation occurs on the surface sites, exposed after the completion
of folding and the assembly of the protein's tertiary structure (Wong
et al., 2007), suggesting that arginylation of these proteins may
regulate their properties and protein-protein interactions at the
arginylated sites. Many of these proteins are highly abundant and
stable, suggesting that their regulation by arginylation is independent
of their metabolic stability.

Thus, in vivo functions of arginylation appear to be highly diverse
and include regulation of large numbers of different proteins and a
wide range of physiological processes. Fig. 2 summarizes some of the
intra- and extracellular processes regulated by arginylation.

Developmental events and physiological pathways regulated
by arginylation

Studies through the years have reported that changes in intracellular
arginylation levels correlate with such fundamental physiological
processes as aging (Kaji et al., 1980; Lamon and Kaji, 1980), stress
(Lamon et al., 1980), rat liver regeneration (Tanaka and Kaji, 1974),
temperature sensitivity and heat shock (Bongiovanni et al., 1999; Rao
and Kaji, 1977b), nerve regeneration (Chakraborty and Ingoglia, 1993;
Wang and Ingoglia, 1997; Xu et al., 1993), and protein degradation in
skeletal muscle (Solomon et al., 1998). A breakthrough in these studies
came with the identification of arginyltransferases in multiple species
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Fig. 2. Biological processes regulated by arginylation. ATE1 forms different complexes in vivo with roles in various intracellular processes that occur in the cytosol, nucleus, and the

extracellular space.
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(Kwon et al,, 1999) and characterization of the mouse Ate1 gene (Kwon
et al, 1999, 2002). It was found that mouse Atel knockout results in
embryonic lethality and defects in cardiovascular development and
angiogenesis — a discovery that showed for the first time that
arginylation plays an essential physiological role. Follow-up studies
demonstrated that mammalian ATE1 can serve as a nitric oxide sensor
that controls the levels of multiple biological regulators (Hu et al., 2005,
2008), and that arginylation regulates neural crest morphogenesis
(Kurosaka et al,, 2010), cardiac contractility (Rai et al, 2008), and
gametogenesis (Leu et al., 2009). Postnatal deletion of Atel results in
loss of fat and increased metabolic rates and affects spermatogenesis
and the nervous system (Brower and Varshavsky, 2009). Thus, it
became evident that arginylation is not only essential, but also takes part
in a number of highly diverse physiological pathways. The currently
known developmental processes regulated by arginylation in mice are
summarized in Figs. 3 and 4.

Studies in other organisms have shown that the essential role of
arginylation is not confined to mammals. In Arabidopsis thaliana
arginylation knockout causes delayed leaf senescence (Lim et al.,
2007; Yoshida et al., 2002), abnormal shoot and leaf development
(Graciet et al., 2009) and defects in seed germination (Holman et al.,
2009). In Drosophila, high throughput genomic studies demonstrated
that Ate1 knockout results in embryonic lethality (Table 1). Interest-
ingly, such studies also demonstrated that Ate1 gene is non-essential
for survival in C. elegans (Table 1), suggesting that the evolutionary
boundary defining the global importance of arginyltransferases for an
organism's viability manifests only in species evolutionarily higher
than worms.

Several of the identified ATE1 substrates have been implicated in
exerting these biological effects. Proteins of the RGS family, which
become metabolically unstable upon arginylation (Davydov and
Varshavsky, 2000; Lee et al., 2005), are known regulators of
cardiovascular development and are implicated in cell motility and
related responses. Conceivably, lack of arginylation can lead to
accumulation of these proteins, facilitating some of the developmen-
tal defects seen in Atel knockout mice. Another striking example
concerns arginylation of non-muscle beta actin and actin cytoskeleton
proteins (Karakozova et al., 2006; Wong et al., 2007), which have been
functionally linked to impaired lamella formation (Karakozova et al.,
2006), defective cell adhesion, and a dramatic reduction of actin
polymer level in cells (Saha et al., 2010) — the effects that likely
underlie the impairments in cell migration and adhesion seen in vivo.
Given the large list of identified arginylation targets, it is only a matter
of time before the researchers uncover more molecular links and
identify the role of arginylation in regulation of the specific functions
of individual proteins.

In summary, multiple studies show that arginylation is a global
physiological regulator that modifies many proteins in vivo to
modulate their functions in many critical pathways during embryo-
genesis and adulthood.

Physiological regulators of protein arginylation

While mounting evidence shows that arginylation is apparently a
global regulatory mechanism, very little is known about how
arginylation itself is regulated in vivo. It has been shown that the
levels of arginyltransferase expression rise and fall during embryonic
development (Kwon et al., 1999) and aging (Lamon and Kaji, 1980)
and vary between different tissues in the embryos and adult
organisms (Rai and Kashina, 2005), however deletion of one copy of
the Atel gene in mouse (that could potentially reduce the protein
level by ~50%) does not produce detectable physiological effects
(Kwon et al.,, 2002). Numerous studies have shown that various
proteins, drugs, and physiological compounds can inhibit in vivo
arginylation levels, including hydrocortisone (Lamon et al., 1982),
heparin (Kato, 1983), arsenite (Berleth et al., 1992; Klemperer and

Fig. 3. Mouse Atel knockout phenotypes. Top two panels, complete deletion of Atel
results in embryonic lethality at and after E12.5, with severe defects in cardiovascular
development and angiogenesis (Kwon et al., 2002) (embryos shown at E12.5). Middle
panel, deletion of Atel in Wntl-expressing migratory neural crest cells results in
perinatal lethality accompanied by general retardation and defects in craniofacial
morphogenesis (Kurosaka et al., 2010) (pups shown at postnatal day P6). Bottom panel,
deletion of Ate1 in premeiotic germ cells driven by Tek promoter results in early post-
implantation lethality (littermate control and mutant embryos at E12.5 are shown in
bottom and top rows, respectively) (Leu et al., 2009). Arrows in all panels indicate
mutant embryos/pups. Photos courtesy of N. A. Leu (University of Pennsylvania).

Pickart, 1989; Li and Pickart, 1995a,b), tripeptide L-Glutamyl-L-Valyl-
L-Phenylalanine (Bohley et al., 1991), RNase, canavanine, hemoglobin,
and hemin (Goz and Voytek, 1972). A peptide that inhibits
arginylation in rat brain has been reported (Yu et al., 1993). It was
also shown that serine protease inhibitors reduce arginylation levels
(Yuetal, 1994), and that the increase of arginylation observed during
nerve regeneration can be influenced by exogenously added Arg, S-
adenosylmethioninie, and polyamines (Cestaro, 1994). While the role
of some of these compounds in the arginylation reaction can be
explained based on the available data — including RNase, which likely
destroys Arg-tRNA and thus makes it unavailable for the reaction, or
Glu-Val-Phe tripeptide, which could conceivably act as a competitor
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Fig. 4. Schematic representation of the major known organogenic defects resulting from Ate1 knockout in mice.

to other ATE1 substrates — the role of other compounds in inhibiting
arginylation reaction remains to be elucidated. Some of these
compounds (such as hemoglobin, a demonstrated arginylation
substrate (Wong et al., 2007)) could also act by competition with
other proteins arginylated by ATE1 for the enzyme recognition and
availability, others could potentially act as the inhibitors of the
enzyme itself or its molecular complex, and might be involved in the
regulation of arginylation in vivo.

Recent work suggests extensive parallels between protein arginy-
lation and such major regulatory modifications as phosphorylation
(Kaji and Kaji, 2011; Wong et al., 2007). Understanding of the
biological role of arginylation, its involvement in different physiolog-
ical pathways, and the mechanisms of its regulation, constitute
exciting directions of further studies.
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