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Abstract

The data from two experiments, both using stimuli simulating orthographically rotating surfaces, are presented, with the primary

variable of interest being whether the magnitude of the simulated gradient was from expanding vs. contracting motion. One ex-

periment asked observers to report the apparent slant of the rotating surface, using a gauge figure. The other experiment asked

observers to report the angular velocity, using a comparison rotating sphere. The results from both experiments clearly show that

observers are less sensitive to expanding than to contracting optic-flow fields. These results are well predicted by a probabilistic

model which derives the orientation and angular velocity of the projected surface from the properties of the optic flow computed

within an extended time window.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of how the human visual system extracts

three-dimensional (3D) information from motion (the
so-called structure-from-motion (SFM) problem) has

been debated for a long time (e.g., Braunstein, Hoffman,

& Pollick, 1990; Braunstein, Hoffman, Shapiro, Ander-

sen, & Bennett, 1987; Caudek & Proffitt, 1993; Landy,

Dosher, Sperling, & Perkins, 1991; Lappin, Doner, &

Kottas, 1980; Treue, Husain, & Andersen, 1991), and

several models have been proposed trying to account

both for veridical performance and biases in human
performance (e.g., Domini & Caudek, 1999; Hildreth,

Ando, Andersen, & Treue, 1995; Hildreth, Grzywacz,

Adelson, & Inada, 1990; Todd & Bressan, 1990; Todd &

Perotti, 1999). Most models of human SFM proposed so

far assume that the goal of the interpretation process is

the recovery of the Euclidean or affine structure of the

projected objects, and of their motion in 3D space. In a

series of papers (for a review, see Domini & Caudek, in
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press; Proffitt & Caudek, 2002), however, we have

shown that (1) the perceived 3D structure and motion

derived from a moving projection cannot be described

by Euclidean or affine geometry, and (2) the perceptual
solution to the SFM problem, in general, is not veridi-

cal.

To account for these results, we proposed a theory

based on a few simple hypotheses: (1) the visual system

measures a local property of the optic flow called de-

formation (the deformation is a scalar property defined

by the instantaneous velocities of three feature points––

see Koenderink, 1986), (2) the visual system groups to-
gether feature points that generate similar deformations

(Caudek & Rubin, 2001; Domini, Caudek, & Proffitt,

1997), and (3) the visual system derives the local orien-

tation and the 3D motion of the planar patches identi-

fied by the grouping process by means of a heuristic

procedure (Domini & Caudek, 1999).

The purpose of the present work is to further develop

our previous model so as to account for the smaller
sensitivity to expanding than to contracting optic-flow

fields revealed by human observers, as demonstrated by

our recent research (e.g., Domini, Caudek, & Skirko,

2003; Domini, Vuong, & Caudek, 2002). Before discuss-

ing the details of our model of human SFM, however,
served.
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we must clarify how its purpose differs fundamentally

from the purpose of the SFM algorithms developed in

the field of Computer Vision.
2. Computational models of structure-from-motion

The SFM problem is one of the most studied prob-

lems in Computer Vision and, from that point of view, it

can be described in the following terms. Given a se-

quence of photographic images of a fixed 3D scene, ta-

ken by a moving camera, the task is that of estimating (i)

a 3D geometric model of the scene (structure), and (ii)
the camera�s motion parameters (which are often ex-

pressed in terms of the instantaneous translation and

rotation of the camera). Some of the SFM modeling

work deals with a moving camera and deriving the ob-

server motion parameters. Much of the SFM work,

however, assumes a stationary viewer and moving ob-

ject, and recovers the 3D structure (and sometimes as-

pects of the 3D motion) of the object. Some of the
computer algorithms proposed in the literature repre-

sent a scene as a set of discrete 3D feature points. In this

simplified framework, the goal of the artificial SFM

system is to derive the 3D coordinates of these feature

points from their projected motion. Theoretical studies

performed in the last two decades have almost com-

pletely solved the geometry of this problem. In fact,

several geometric methods have been proposed to derive
the veridical 3D configuration of a set of feature points

from few orthographic or perspective views of a 3D

object. These methods allow the recovery of the 3D

projected structure by embedding in the interpretation

process only a few assumptions about the relative mo-

tion between the camera and the feature points. The

most common of these assumptions are, for example,

rigidity (Hoffman & Bennett, 1985; Hoffman &
Flinchbaugh, 1982; Ullman, 1979, 1984, 1986), fixed-

axis motion (Bennett & Hoffman, 1985; Hoffman &

Bennett, 1986; Ullman, 1979) and constant 3D angular

velocity (Hoffman & Bennett, 1986; Ullman, 1979).

An important factor in the development of viable

computational models (both for machine and human

vision) is the presence of noise in the measurements of

image motion in real-world situations. Different strate-
gies have been adopted to design robust SFM systems,

but two main categories of algorithms can be distin-

guished, based on how image motion is measured: (1)

The algorithms based on feature-correspondence (e.g.,

Longuet Higgins, 1981; Tsai & Huang, 1984), and (2)

the algorithms based on the optic-flow (e.g., Barron,

Fleet, & Beauchemin, 1994; Subbarao, 1988; Subbarao,

1989; Subbarao & Waxman, 1986; Waxman, Kamgar-
Parsi, & Subbarao, 1987). Most of the feature-based

algorithms treats the SFM problem like the stereo

problem: The 3D structure of the projected objects is
derived from two perspective (e.g., Faugeras, 1993;

Luong & Faugeras, 1996) or orthographic (e.g., Tomasi

& Kanade, 1993) views of a set of feature points. The

feature-correspondence methods are quite robust, but

they are limited by the fact that the correspondence

problem (matching the same feature-points in the two

different views) is hard to solve (Oliensis, 1996). The

algorithms belonging to the second category avoid the
correspondence problem by measuring either the in-

stantaneous velocity of projected feature points or spa-

tial and temporal intensity gradients. Since the measured

optic-flow is very small (being based on the maximum

displacements of few pixels between successive frames––

e.g., Barron et al., 1994), however, the algorithm output

is more sensitive to input noise (for a discussion, see

Chiuso, Brockett, & Soatto, 2000).
In order to reduce the influence of measurement noise

on the SFM derivation, a series of methods have been

proposed to improve the performance of both classes of

algorithms. Most of these methods make use of tem-

poral integration (Chiuso et al., 2000). Ullman (1984)

has been one of the first researchers to suggest the idea

that SFM may be better achieved by analyzing extended

sequences of the projected objects. In most cases, his
incremental-rigidity scheme converges to a veridical

solution by using each new sequence-frame to improve a

constantly updated internal 3D model, and Ando (1991)

has recently proposed a more robust variation of Ull-

man�s model by introducing a surface interpolation

procedure in the 3D reconstruction process.

The algorithms that are more relevant for the fol-

lowing discussion are those that have analyzed the
problem of planar surface motion (Subbarao & Wax-

man, 1986) and its representation through affine para-

meters (Koenderink &VanDoorn, 1991; Negahdaripour

& Lee, 1992). The work of Koenderink and Van Doorn

(1991), in particular, has prompted a large number of

psychophysical investigations aimed at establishing

whether the perceptual space obtained from the optical

flow has an affine structure (e.g., Norman & Todd, 1993;
Todd & Bressan, 1990; Todd, Oomes, Koenderink, &

Kappers, 2001).

Attempts have also been made to develop computa-

tional models of human performance. One of these

models has been proposed by Hildreth et al. (1995), and

is inspired by Ullman�s (1984) incremental-rigidity

scheme (see also Treue, Andersen, Ando, & Hildreth,

1995). The model of Hildreth and collaborators is mo-
tivated by the psychophysical findings showing that the

perceptual analysis of the optic flow (and the successive

or concurrent reconstruction of 3D shape) occurs within

an extensive temporal window (e.g., Atchley, Andersen,

& Wuestefeld, 1998; Burr & Santoro, 2001; Caudek,

Domini, & Di Luca, 2002; Eby, 1992; Hildreth et al.,

1990; Todd, Akerstrom, Reichel, & Hayes, 1988; Treue

et al., 1991; van Damme & van de Grind, 1996). Con-
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sistent with these findings, Hildreth et al. assumed that

3D shape reconstruction is mediated by a process of

temporal integration. After the initial measurement of

the 2D image velocities, their model computes the 3D

velocities so as to maximize the rigidity of the 3D con-

figuration. From these 3D velocities, the model recovers

the depths of the projected features. To cope with the

error of the image-motion measurements, in a successive
temporal-integration stage, themodel averages the depths

estimates over an extended time-period by means of an

approach based on Kalman filtering (Anderson &

Moore, 1979; Gelb, 1974). Finally, in a surface-recon-

struction stage, the model fits a smooth 3D surface to the

sparse depth values. The model of Hildreth et al. does not

always converge on the veridical solution and, thus, it is

able to account for several properties of human SFM.
There are, however, some psychophysical findings that

have been recently reported, which cannot be accounted

for neither by Hildreth�s model, nor by any other model

based upon standard Computer Vision algorithms.

These findings will be summarized in the next section.
3. Psychophysical findings incompatible with previous

computational models

Three sets of psychophysical findings are relevant

here. These findings show that (1) the metric properties

of the perceived 3D objects are unrelated to the 3D
Euclidean parameters of the projected objects; (2) the

global perceived 3D structure cannot be represented by

either Euclidean or affine geometry; (3) the assumptions

used by most computational models to restrict the space

of possible solutions of the SFM problem are not psy-

chologically plausible.

An example of the first set of findings is provided by

the research of Domini and Caudek on the perceptual
interpretation of the optic flow produced by the ortho-

graphic projection of a rotating random-dot planar

surface (see Domini & Caudek, in press; Proffitt & Cau-

dek, 2002). In these studies, we have shown that per-

ceived 3D shape depends only on the first-order temporal

information provided by the optic flow, even when sec-

ond-order information is available (see also Liter,

Braunstein, & Hoffman, 1993; Todd & Bressan, 1990).
We have shown, moreover, that perceived 3D orienta-

tion and angular velocity are not related to the simulated

parameters, even when the stimuli are sufficient for any

algorithm to derive a veridical solution (see also Todd,

Tittle, & Norman, 1995). Finally, we have demonstrated

that there is a unique nonlinear relationship between the

local properties of the velocity field (first-order optic

flow) and the perceived 3D properties. The perceptual
solution, moreover, can be well accounted for by a

maximum-likelihood interpretation of the stimulus dis-

plays (Domini & Caudek, 1999; see also Freeman, 1994).
An example of the second set of findings is provided

by a study by Domini, Caudek, and Richman (1998).

They asked observers to provide depth-order judgments

relative to two probe dots positioned on a random-dot

surface oscillating under orthographic projection about

a fixed axis, and found that (1) the ordinal structure of

the projected objects was not preserved in the relative-

depth judgments of the observers; (2) lines that were
parallel in the projected objects were not parallel in the

perceived shapes; (3) the local signing of the perceived

depth-order relations was incompatible with an inter-

nally consistent 3D structure. In a related study, Domini

and Braunstein (1998) asked observers to judge the

depth separation of two probe dots located on a ran-

dom-dot planar surface. Also in that case, they found

that the perceived 3D shape was internally inconsistent:
Different paths of integration gave different results and

the algebraic sum of the depth judgments along a closed

path was not zero.

An example of the third set of findings is provided by

a study by Domini et al. (1997) about the discrimination

between rigid and nonrigid 3D motion. Consistent with

what was found by other researchers (e.g., Griffiths &

Zaidi, 1998; Hogervorst, Kappers, & Koenderink, 1997;
Perotti, Todd, & Norman, 1996; Sparrow & Stine,

1998), Domini et al. found that the projection of rigid

motion does not necessarily support the perception of a

3D rigidly moving object. This finding questions the

hypothesis that a rigidity constraint is used to disambi-

guate the SFM problem, as assumed by several algo-

rithms (e.g., Hoffman & Bennett, 1986; Ullman, 1979,

1984). Likewise, it has been shown that, in certain cir-
cumstances, human observers tend to perceive a fixed-

axis rotation as a rotation about an axis with a changing

orientation, or they tend to perceive a rotation about an

axis with a changing orientation as a fixed-axis rotation

(Caudek & Domini, 1998). This questions the fixed-axis

assumption (e.g., Bennett & Hoffman, 1985; Hoffman &

Bennett, 1986). Furthermore, Domini, Caudek, Turner,

and Favretto (1998) showed that, in the appropriate
stimulus conditions, human observers report perceiv-

ing constant 3D angular velocity as nonconstant, and

nonconstant 3D velocity as constant. This questions the

constant-3D-angular-velocity assumption (e.g., Hoff-

man & Bennett, 1985).

The findings described above suggests that human

SFM should not be regarded as the veridical geometric

solution to the inverse-projection problem, but rather as
the most likely interpretation of the ambiguous stimu-

lus-information provided by the first-order optic flow

(Domini & Caudek, 1999). The perceptual solution to

the SFM problem, moreover, cannot be represented in

either Euclidean (Todd & Bressan, 1990) or affine space

(Domini & Braunstein, 1998; Domini, Caudek, & Rich-

man, 1998). Together, the findings described in this

section question the idea that the Computer Vision



atan(g1)

atan(g2)

x

y

z

lin
e of sig

ht

Fig. 1. Schematic representation of a planar surface with its center

coinciding with the center of the (x; y; z) coordinate system. g1 and g2

are the horizontal and vertical components of the depth gradient, re-

spectively.
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algorithms may be regarded as adequate models of hu-

man SFM. Even though an extension of Ullman�s incre-

mental rigidity scheme predicts some aspects of human

performance (see Hildreth et al., 1995), it is difficult to

imagine how any standard Computer Vision algorithm

may be capable of accommodating all the properties of

human SFM and, in particular, those concerning the

violations of Euclidean and affine geometry. Computer
Vision algorithms, in fact, are not intended to explain

the limitations of human performance, but rather to

provide a robust and unbiased 3D interpretation to a set

of 2D projections. A model of human SFM, conversely,

must account the specific properties (both accurate re-

sponses and biases) of human performance.

The model that we have previously put forward

(Domini & Caudek, 1999) predicts the psychophysical
findings described above, but it is limited in two re-

spects. First, it implicitly assumes that the visual system

is able to measure the properties of the instantaneous

optic flow. In other words, it disregards the fact that the

optic flow is measured by the visual system within an

extended time period (e.g., Burr & Santoro, 2001; Cau-

dek et al., 2002; Treue et al., 1995). Second, it does not

account for the different perceptual interpretations that
are derived from purely contracting or expanding flow

fields (Domini et al., 2003; Domini et al., 2002). The

purpose of the present paper is to modify our model so

as to overcome the two limitations outlined above. In

doing so, we will show that the different interpretations

of contracting and expanding flow-fields follow natu-

rally from the hypothesized strategy for measuring the

relevant properties of the optic flow. Before discussing
the revision of our model, however, we must briefly

summarize the relevant properties of the instantaneous

velocity field.
4. A maximum-likelihood approach for interpreting the

instantaneous velocity field

Every smooth surface can be locally approximated by

a planar patch. In a viewer-centered coordinate system,

the 3D orientation of a planar patch can be described

either in terms of the two depth-gradients gx and gy , or
in terms of slant (r ¼ ðg2

x þ g2
y Þ

1=2
) and tilt (s ¼ a�

tanðgy=gxÞ). Slant is the tangent of the angle between the

surface and the image plane and tilt is the direction in
which the surface slopes (see Fig. 1).

If the planar patch undergoes a rotation of magnitude

Da about the y-axis, 1 the y coordinate of each point P
1 It can be shown that a rotation about an arbitrary axis can always

be reduced to a rotation about an axis parallel to the image plane by

removing the rotation component about the z-axis (see Todd &

Bressan, 1990). When this is done, the y-axis can be chosen to be

orthogonal to the direction of the velocity vectors.
on the surface remains constant, whereas the x coordi-

nate of each point changes by an amount Dx according

to the following equation (see Appendix A):

Dx ¼ ð�gx sinðDaÞ þ cosðDaÞ � 1Þx� gy sinðDaÞy ð1Þ
Since we assume an orthogonal projection on the image

plane 2 (defined by the axes x and y), Dx represents the

2D displacement of each projected point P . This vector

field (which we will call displacement field) is linear in

the image coordinates x and y, and its horizontal (Ux)
and vertical (Uy) gradients are equal to:

Ux ¼ �gx sinðDaÞ þ cosðDaÞ � 1

Uy ¼ �gy sinðDaÞ
ð2Þ

Eq. (1) should be compared with the equation that

specifies the instantaneous velocity field (Domini &

Caudek, 1999):

vx ¼ �gxxx� gyxy ð3Þ
where x is the magnitude of the instantaneous 3D an-

gular velocity, and vx is the instantaneous 2D velocity of

the projected point P . Eq. (3) is also linear in the image

coordinates x and y, and ux ¼ �gxx, uy ¼ �gyx are the
vertical and horizontal velocity gradients, respectively.

Since these gradients depend on the choice of the co-

ordinate system, a more convenient description of the

velocity field is in terms of deformation (def ) calculated

as follow:

def ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x þ u2
y

q
ð4Þ
2 Since the field of view of our stimuli was only about 9� of visual

angle, orthographic projection is a good approximation of the more

‘‘realistic’’ perspective projection. In fact, perspective information in

motion displays becomes effective only for very large fields of view (e.g.

Cornilleau-Peres et al., 2002).
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The deformation component, however, does not al-

low a unique determination of the parameters of the

projected surface and of its 3D motion. It has been

shown, in fact, that def is the product of a one-param-

eter family of different combinations of r and x:

def ¼ rx ð5Þ

(see Domini & Caudek, 1999). Even though it is am-

biguous, however, the def component has been shown to
be the main determinant of perceived surface slant and

angular velocity from orthographic projections of

moving objects (e.g., Caudek & Domini, 1998; Caudek

& Rubin, 2001; Domini & Braunstein, 1998; Domini &

Caudek, 1999; Domini et al., 1997; Domini, Caudek, &

Richman, 1998; Domini, Caudek, Turner, et al., 1998;

Todd & Perotti, 1999). These findings, therefore, raise

the problem of determining how the visual system is able
to uniquely relate def to perceived surface orientation

and angular velocity.

In order to address this issue, Domini and Caudek

have shown that not all possible r, x pairs are equally

likely to have produced a given def (if certain assump-

tions are introduced in the interpretation process). If

uniform probability distributions are assumed for r and

x, for example, then the conditional probability of a r,
x pair given def is not uniform, but it has a maximum.

The maximum value of pðr;xjdef Þ is associated with the

r�, x� pair for which: 3

r� ¼ 1

kx

ffiffiffiffiffiffiffiffi
def

p

x� ¼ kx

ffiffiffiffiffiffiffiffi
def

p ð6Þ

Consistent with this analysis, Domini and Caudek

(1999) hypothesized that the visual system recovers

surface orientation and angular velocity by determining

the r, x pair to which is associated the maximum con-

ditional probability for def. Their empirical data, to-

gether with those of other investigators (e.g., Todd &
Perotti, 1999) support this hypothesis.
5. The revised model

The model previously described assumes that the vi-

sual system has access to the instantaneous properties of

the optic flow. This assumption is implausible, however,

since it has been shown that a biological system requires

an extended time-window to measure the properties of a
velocity field (e.g., Burr & Santoro, 2001; Caudek et al.,
3 In the Monte Carlo simulation reported below, kx takes on the

value of 0.68. The value given to kx was estimated empirically (on a

different data-set) by Domini and Caudek (1999), who used a least

square procedure to minimize the squared differences between the

magnitudes of r and x reported by the observers and those predicted

according to Eq. (6).
2002; Treue et al., 1995). In order to overcome this

limitation, in the revision that we propose here for our

model, we assume that the actual input for the percep-

tual analysis is provided by the displacement field (i.e.,

the measurement of the image features at the times t0
and t0 þ Dt). On the basis of this information, then, we

estimate the deformation component at the time t0 þ Dt.
By using the estimated deformation, subsequently, we
compute the local surface-slant and angular-velocity by

means of the maximum-likelihood approach described

by Domini and Caudek (1999).

Let us examine, therefore, the problem of how the

deformation component may be estimated by using the

displacement field. We propose that the visual system

solves this problem through a process of statistical

learning. We hypothesize that, by means of a statistical
analysis of the visual input, the visual system learns to

associate the expected value of def at the time t0 þ Dt to
the gradients of the displacement field defined by the

time-interval Dt. We will not speculate here how this

learning process takes place. Instead, we will show that,

by making only a few assumptions about the properties

of the parameters involved in this statistical analysis, it

is possible to derive from Ux and Uy an estimate of the
expected value of the deformation that is consistent with

the qualitative pattern of the empirical data obtained in

the present investigation.

In the Monte Carlo simulation that we have per-

formed, the following assumptions were introduced:

(1) The slant (r) and tilt (s) specifying the orientation of

a planar patch relative to the observer were uni-
formly distributed in the intervals [0�, 70.0�] and

[0�, 90�], respectively (see Domini & Caudek, 1999).

(2) The average angular velocity �xx during the time in-

terval Dt was uniformly distributed in the range

[)2.1, 2.1] rad/s (Da ranging from )120� to 120�, ap-
proximately).

(3) Due to the measurement noise, the gradients of the

displacement field were defined within the uncer-
tainty intervals [Ux, Ux þ DUx] and [Uy , Uy þ DUy ].

On the basis of the previous assumption, the best

estimate of def at the time t0 þ Dt corresponds to the

expected value of def, given that the gradients of the

displacement field fall in the uncertainty intervals speci-

fied above:

d̂def ðt0 þ DtÞ ¼ E½def ðt0 þ DtÞjUx0 6Ux < Ux0 þ DUx;Uy0

6Uy < Uy0 þ DUy 
 ð7Þ

In order to estimate the expected value of the deforma-

tion component, we ran a computer simulation in which
we randomly selected 5,000,000 values for gxðt0Þ, gyðt0Þ
and �xx, according to their hypothesized a priori proba-

bility distributions. For each triplet [gxðt0Þ; gyðt0Þ; �xx], we
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calculated the corresponding values Ux and Uy of the

displacement field through Eq. (2) by specifying

Da ¼ �xxDt. We then sampled the Ux, Uy pairs falling

within the intervals [Ux0 6Ux < Ux0 þ DUx] and

[Uy0 6Uy < Uy0 þ DUy ], where Ux0, Uy0 are the values of

the gradients of the displacement field used in the present

experiments, and DUx, DUy are the assumed levels of

measurement noise. To each of these pairs corresponds a
triplet [gxðt0Þ; gyðt0Þ; �xx], and each of these triplets allows

us to compute an estimate of the instantaneous velocity

gradients at the time t0 þ Dt:

ûuxðt0 þ DtÞ ¼ -
gx0 cosð-ðt0 þ DtÞÞ þ sinð-ðt0 þ DtÞÞ
cosð-ðt0 þ DtÞÞ � gx sinð-ðt0 þ DtÞÞ

ð8Þ

ûuyðt0 þ DtÞ ¼ -
gy0

cosð-ðt0 þ DtÞÞ � gx sinð-ðt0 þ DtÞÞ
ð9Þ

From each pair ûuxðt0 þ DtÞ, ûuyðt0 þ DtÞ, then, we can

obtain an estimate of the deformation component at the

time t0 þ Dt:

d̂def ðt0 þ DtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ûu2

xðt0 þ DtÞ þ ûu2
yðt0 þ DtÞ

q
ð10Þ

In this manner, we define a distribution of def magni-
tudes. The average of this distribution, therefore, cor-

responds to an estimate of the expected value of the

deformation component, given that gx, gy and �xx are

distributed as indicated above, and given the uncertainty

level DUx, DUy , for the measurement of the displacement

field (see Appendix A). Before presenting the results of

this simulation, however, we must distinguish between

expanding and contracting flow fields.
6. Expanding and contracting flow fields

The stimuli used in the simulation were generated by

the factorial combination of five magnitudes of the

gradients of the displacement-field (Ux and Uy). The

magnitudes of these gradients matched the magnitudes

of the average velocity-fields used in the actual experi-

ments: )0.36, )0.09, 0, 0.09, 0.36 s�1. Nine of the 24 flow

fields so generated are reported in a schematic form in
Fig. 2 (the condition Ux ¼ 0, Uy ¼ 0 was obviously dis-

carded).

Note that the flow is expanding when Ux P 0, and

contracting when Ux < 0. An expanding flow is pro-

duced by a rotation of a planar surface toward the

fronto-parallel plane; a contracting flow is produced by

a rotation of a planar surface away from the fronto-

parallel plane.
What is interesting to note for the present purposes is

what happens when the output of our revised model is

plotted against jUxj, for each of the five values of Uy used
in the present experiments. Fig. 3 indicates that the

relative variation of the estimated expected value of def

is smaller for expanding than for contracting flow fields.
If the visual system estimates the deformation compo-

nent in a manner that is consistent with the model dis-

cussed above, therefore, we should expect that observers

judge surface orientation and angular velocity differently

when presented with displays that, in principle, convey

the same information about surface orientation and

angular velocity, but through expanding vs. contracting

motion.
This prediction can be contrasted with what is ex-

pected according to a model which makes use of the

instantaneous deformation. In this second case, in fact,

the magnitude of def does not change for contracting

and expanding flow-fields (see Eq. (4)). Consequently,

the same surface orientation and angular velocity should

be perceived for contracting and expanding flow fields.

Two more things must be highlighted in the results of
our simulation. First, contracting and expanding fields

produce similar estimated deformations when Dt (the

time-window necessary for measuring the optic flow) is

very small (50 ms––see Fig. 3, left panel). The relative-

variation of the estimated def is larger for contracting

than for expanding flow-fields, conversely, for Dt of at

least 150 ms. This result is consistent with the psycho-

physical data indicating that the visual system needs at
least 150 ms for obtaining reliable measures of the optic

flow (e.g., Caudek et al., 2002). Second, the asymmetry

of the model�s output for contracting and expanding

fields is very robust to noise. The qualitative pattern of

results reported in Fig. 4, in fact, does not change even

when the measurement uncertainty takes on enormous

values (see Fig. 4, right most panel).
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In the following experiments we tested the predictions

of our revised model by measuring perceived slant

(Experiment 1) and perceived angular velocity (Experi-

ment 2) for expanding or contracting flow fields. The
same horizontal and vertical velocity gradients were

used in both experiments.
7. Experiment 1

In Experiment 1 observers were asked to report the

apparent slant of a simulated rotating surface. The
stimuli consisted of constant optic-flow fields, and were

generated by a factorial combination of five horizontal

and vertical velocity gradients. According to the pre-
dictions of our revised model (see Fig. 3), we expected a

larger sensitivity for contracting flow fields.
7.1. Method

Participants. Eight paid observers, recruited from the

Brown University community and naive to the purpose

of the experiment participated in this investigation. All

participants had normal or corrected-to-normal vision.

Stimuli. The stimuli were moving high-luminance

random-dots presented on a low-luminance background

on a monitor. The motion of the dots defined a linear
velocity field in which the dots were translated only in

the horizontal direction, with the displacement Dx being

equal to: Dx ¼ /�
xxþ /�

y y (see Section 1), where the x, y
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coordinate-system had the origin at the center of the

monitor screen. The horizontal (/�
x) and vertical (/�

y )

gradients of the average velocity field could take on five

values: )0.36, )0.09, 0, 0.09 and 0.36. Each stimulus

sequence, lasting 1336 ms, was repeated until an ob-

server key press indicated the beginning of the next trial.

There was a temporal gap of one second between each

repetition of the sequence. Being constant over time, our
stimuli do not represent a natural physical stimulus

motion. Nevertheless, observers report perceiving them

like surfaces whose slant increases over time (see Domini

et al., 2002).

A probe was shown at the center of the screen within

a circular gap of the stimulus display. The gap had a

diameter of 2.9� of visual angle. The probe, similar to

that used by Domini and Caudek (1999), depicted a
hemisphere specified by 14 meridians and 7 parallels,

and subtended 2.4� of visual angle. The slant and tilt of

the base of the hemispherical probe could be adjusted by

the participants by means of a mouse connected to the

workstation.

Apparatus. The displays were presented on a high-

resolution color monitor (1280� 1024 addressable

locations) under the control of a Hewlett-Packard Vi-
sualize X550 Workstation. The screen had a refresh rate

of 60 Hz. The participants sat approximately 90 cm

away from the screen and viewed the displays mono-

cularly through a reduction screen placed approximately

2 cm away from the monitor. The circular aperture of

the reduction screen limited the visible portion of the

monitor to a region with a diameter of approximately

8.9� of visual angle. In the experiment, the moving
pattern of the stimuli covered the full 8.9� visible area of

the display. Approximately 500 dots were visible though

this aperture. Dot density was kept constant, and dots

were randomly removed or added during the sequence

to fulfill this constraint. A chin-rest was used to restrict

head movement. The experiment was run in a dark

room.

Design. The two within-participants variables were
the intensities ()0.36, )0.09, 0, 0.09 and 0.36) of the

horizontal and vertical gradients of the velocity field.

Each participant viewed five presentations of the 25

different experimental conditions in five different blocks.

Procedure. Participants were asked to judge the per-

ceived orientation of the rotating planar surface evoked

by the linear velocity field. The task was performed by

adjusting the slant of the base of the hemispherical
probe until it was perceived to be parallel to the 3D

surface. The tilt of the hemispherical probe was kept

fixed, and it was determined by the ratio between the

vertical and horizontal gradients of the velocity field.

The slant of the base of the probe was varied by pressing

the left and right buttons of a mouse connected to the

workstation. Time was not restricted. No feedback was

provided.
7.2. Results and discussion

Fig. 5 reports the average judged slant magnitudes as
a function of the absolute value of the horizontal gra-

dient (/�
x) for the different values of the vertical gradient

(/�
y ). In order to test the hypothesis that observers are

less sensitive to the velocity gradients for expanding flow

fields, we performed a linear regression analysis on the

data of Fig. 5 by using as the independent variables the

horizontal velocity gradient, a dummy regressor coding

for expanding vs. contracting flows, and an interaction
regressor coding for the different slope in the two

groups. R2 for the fitted model was equal to 0.91

½F ð3; 24Þ ¼ 79:53, p < 0:001
. Consistent with our hypo-

thesis, the slope of the fitted regression line for con-

tracting flow fields was significantly higher than the

slope for the expanding flow fields ½F ð1; 24Þ ¼ 63:046;
p < 0:001
.
8. Experiment 2

Experiment 2 replicated the same design of the pre-

vious experiment, the only difference being that ob-

servers were asked to report the apparent angular

velocity of the simulated rotating surface. Also in this
case, we expected a larger sensitivity for contracting flow

fields.

8.1. Method

Participants. Eight paid observers, recruited from the

Brown University community and naive to the purpose

of the experiment participated in this investigation. All
participants had normal or corrected-to-normal vision.

Stimuli. The stimuli were identical to those of the first

experiment, except for the fact that the probe used in the
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previous experiment was replaced by a sphere. The

sphere subtended 2.4� and was specified by a wire-frame

depicting 14 meridians and 14 parallels. The angular

rotation of the sphere could be varied.

Apparatus. The apparatus was identical to that used

in the first experiment.

Design. The design was identical to that of the pre-

vious experiment.
Procedure. Participants were asked to judge the per-

ceived angular velocity of a 3D random-dot rotating

planar surface by adjusting the angular velocity of the

central wire-frame sphere. Participants were asked to

judge the perceived 3D angular velocity of the rotating

planar surface evoked by the linear velocity field. The

task was performed by adjusting the angular velocity of

the spherical probe until it was perceived to rotate by the
same angular velocity as the random-dot 3D surface.

The angular velocity of the probe was varied by pressing

the left and right buttons of a mouse connected to the

workstation. Time was not restricted. No feedback was

provided.

8.2. Results and discussion

Fig. 6 reports the average judged 3D angular velocity

magnitudes as a function of the absolute value of the

horizontal gradient (/�
x) for the different values of the

vertical gradient (/�
y ). As for Experiment 1, to test

the hypothesis that observers are less sensitive to the

velocity gradients for expanding flow fields, we per-

formed a linear regression analysis on the data of Fig. 6

by using as the independent variables the horizontal

velocity gradient, a dummy regressor coding for ex-

panding vs. contracting flows, and an interaction re-

gressor coding for the different slope in the two groups.
R2 for the fitted model was equal to 0.64 ½F ð3; 24Þ ¼
13:97, p < 0:001
. Consistent with our hypothesis, the

slope of the fitted regression line for contracting flow
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fields was significantly higher than the slope for the ex-

panding flow fields ½F ð1; 24Þ ¼ 5:822, p < 0:05
.
9. General discussion

A growing body of empirical evidence has recently

shown that the perceptual derivation of 3D information

from motion is based primarily on the information

provided by the first-order velocity field (e.g., Braunstein

et al., 1990; Domini et al., 1997; Lappin et al., 1980;

Liter et al., 1993; Rubin, Hochstein, & Solomon, 1995;

Todd & Bressan, 1990). It has also been shown mathe-
matically that a veridical recovery of the slant (r) and

angular velocity (x) of a projected surface requires the

analysis of the second-order temporal properties of the

velocity field (i.e., acceleration). Being a first-order

property, in fact, def defines a one-parameter family of

different combinations of surface orientations and an-

gular velocities (see Eq. (5)). Regardless of this inherent

ambiguity, however, also in the absence of second-order
temporal properties, human observers provide consis-

tent judgments of surface-slant and angular-velocity

magnitudes from a velocity field (e.g., Domini &

Caudek, 1999; Todd & Perotti, 1999). Domini and

Caudek (1999) explained this phenomenon by hypothe-

sizing that, in the absence of better information, the

visual system interprets the optic flow by choosing

the surface slant and angular velocity that have the
maximum conditional probability, given def.

The model of perceived SFM proposed by Domini

and Caudek (1999), however, is limited in two respects.

First, it makes use of the properties of the instantaneous

optic flow, whereas it is obvious that the visual system

has access only to those properties that can be measured

within an extended time-window. Second, it is incon-

sistent with the psychophysical results showing that
different perceptual interpretations are obtained from

contracting or expanding flow fields (Domini et al.,

2003; Domini et al., 2002). In trying to overcome these

limitations, in the present paper we revised our previous

model by determining how def may be estimated from

the displacement field. Having estimated def, surface

slant and angular velocity are then derived as indicated

by Domini and Caudek (1999).
One important consequence of our revised model is

that a different interpretation is obtained from expand-

ing and contracting flow fields: As is shown in Fig. 3, in

fact, the relative-variation of the estimated def magni-

tudes is smaller for expanding than for contracting flow

fields. This prediction of our revised model has been

tested by asking observers to judge the slant (Experi-

ment 1) and 3D angular velocity (Experiment 2) of ex-
panding or contracting flow fields. Consistent with the

predictions of our model, we found that observers were

less sensitive to expanding motion (see Figs. 5 and 6).
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It is important to clarify how, in our revised model,

the notion of ‘‘statistical learning’’ relates to the esti-

mation of the deformation component. Even though the

Monte Carlo simulation described in the introduction

makes use of the distal parameters gx and gy (defining

the depth gradients of the projected surface) to estimate

the expected value of def, this does not mean that we

hypothesize that the visual system has access to these
(unknown) parameters. If gx and gy were already known,

in fact, there would no need to estimate def in order to

compute surface orientation and angular velocity. With

the simulation described in the introduction, instead, we

intend to point out the fact that, if certain assumptions

about the distributions of gx and gy are satisfied, then the

expected value of def can be estimated on the basis of the

displacement field alone. At the core of our revised
model, therefore, we hypothesize that an estimate of def

is associated with a given displacement field through a

process of learning, as a consequence of repeated ex-

position in the course of perceptual experience.

What makes the previous hypothesis appealing is

that, in order to compute estimates of def that are

consistent with our empirical data, it is necessary to

satisfy only two assumptions: (1) the orientation and
average velocity of the projected surfaces are uniformly

distributed, and (2) the gradients of the displacement

field are measured with the uncertainty intervals

[Ux;Ux þ DUx] and [Uy ;Uy þ DUy ].

In conclusion, in the present study we described a

probabilistic model for deriving surface orientation and

3D motion from a linear displacement field. The pro-

posed model addresses the problems of how the visual
system may (1) estimate the properties of the optic flow,

and (2) derive the orientation and the angular velocity of

the projected surface from these estimated properties.

The predictions of our probabilistic model are consistent

with the present empirical results (i.e., different perceived

surface orientations and angular velocities for expand-

ing and contracting velocity fields), as well as with pre-

vious psychophysical findings (e.g., Caudek & Domini,
1998; Domini & Caudek, 1999; Domini et al., 1997;

Domini, Caudek, & Richman, 1998; Domini, Caudek,

Turner, et al., 1998; Todd & Perotti, 1999).
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Appendix A

If a planar surface zðx; yÞ ¼ gxxþ gyy rotates about the
vertical axis by an amount Da, the new x and z coordi-

nates of a generic point Pðx; y; zÞ on the surface will be:
x0 ¼ x cosðDaÞ � z sinðDaÞ
z0 ¼ x sinðDaÞ þ z cosðDaÞ

ðA:1Þ

or

x0 ¼ x cosðDaÞ � ðgxxþ gyyÞ sinðDaÞ
z0 ¼ x sinðDaÞ þ ðgxxþ gyyÞ cosðDaÞ

ðA:2Þ

if z is replaced with the equation of a planar surface. It is

then obvious that Eq. (3) can then be obtained from

(A.2) by calculating Dx ¼ x0 � x0.
After the rotation through Da, the values of the

gradients of the planar surface change. If x as described

by (A.2) is substituted in the equation for z0 in (A.2), the

equation for z0 becomes:

z0 ¼ gx cosðDaÞ þ sinðDaÞ
cosðDaÞ � gx sinðDaÞ x

0 þ gy
cosðDaÞ � gx sinðDaÞ y

0

ðA:3Þ
Note that y 0 is equal to y, since the rotation is about the

vertical axis. The coefficients for x0 and y0 represent the

values of the horizontal and vertical depth gradients

after the rotation. If the depth gradients are multiplied
by the instantaneous angular velocity (see Eq. (3)) the

instantaneous velocity gradients are obtained (Eqs. (8)

and (9)).
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