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a b s t r a c t

The goal of this study was to evaluate human accuracy at identifying people from static and dynamic pre-
sentations of faces and bodies. Participants matched identity in pairs of videos depicting people in motion
(walking or conversing) and in ‘‘best’’ static images extracted from the videos. The type of information
presented to observers was varied to include the face and body, the face-only, and the body-only. Iden-
tification performance was best when people viewed the face and body in motion. There was an advan-
tage for dynamic over static stimuli, but only for conditions that included the body. Control experiments
with multiple-static images indicated that some of the motion advantages we obtained were due to see-
ing multiple images of the person, rather than to the motion, per se. To computationally assess the con-
tribution of different types of information for identification, we fused the identity judgments from
observers in different conditions using a statistical learning algorithm trained to optimize identification
accuracy. This fusion achieved perfect performance. The condition weights that resulted suggest that sta-
tic displays encourage reliance on the face for recognition, whereas dynamic displays seem to direct
attention more equitably across the body and face.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the real world, we interact with people in motion. These inter-
actions typically begin at a distance and unfold over time, as a per-
son approaches, and ultimately stands ‘‘face-to-face’’ with us. The
recognition of a person in natural viewing conditions, therefore,
begins with a glimpse at the overall shape of a person and builds
toward more confident judgments as the particularities of the
movements, body structure, and face are integrated and processed.

The human face has generally been regarded as the most easily
accessible and accurate entry point into the task of determining a
person’s identity from visual cues. Despite evidence that humans
excel at recognizing familiar faces (Burton, Bruce, & Hancock,
1999a), performance is less impressive for relatively unfamiliar
faces (Hancock, Bruce, & Burton, 2000). In particular, there is evi-
dence to indicate that recognition can be poor under viewing con-
ditions that are non-optimal or are poorly matched to those in
which a face is learned. The difficulties humans have with unfamil-
iar face recognition can be mitigated potentially by relying on a
broader array of identity cues available in natural viewing condi-
tions. These include the shape and structure of the body, as well
ll rights reserved.
as gait and other gesture-based movements of the body. Body mo-
tions and gestures that are idiosyncratic or ‘‘identity-diagnostic’’
have been referred to previously as dynamic identity signatures
(O’Toole, Roark, & Abdi, 2002).

There is surprisingly little psychological work aimed at under-
standing the extent to which humans use visual information, be-
yond the face, to identify people. Most commonly, in past studies,
identity perception from biological motion stimuli has been exam-
ined. For example, Kozlowski and Cutting (1977) found poor, but
above chance performance, for identifying friends from point-light
motion displays. Westhoff and Troje (2007) demonstrated that
people could learn to discriminate a small number of individuals
using their motions. Moreover, Loula, Prasad, Harber, and Shiffrar
(2005) demonstrated that humans are most sensitive to point-light
motions of themselves and friends, but are not able to discriminate
the motions of strangers.

Using more natural dynamic viewing conditions, Burton, Wil-
son, Cowan, and Bruce (1999b) considered the relative contribu-
tion of the face versus body for recognition in dynamic viewing
conditions. They looked at identification of people captured on
CCTV as they walked through a door and found that observers per-
formed quite poorly when they were unfamiliar with the person in
the video, but were nearly perfect when the person was known to
them. Davis and Valentine (2008) confirmed the finding that
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matching unfamiliar identities in video is highly susceptible to er-
ror and found that this held across low-, moderate-, and high-qual-
ity video. Burton et al. (1999b) also found that identification
performance declined substantially when the face in the video
was obscured, but remained high when the body was obscured.
This result suggests that even with more complete information
about the face and body, recognition performance is supported
more strongly by the face than by the other information in the
video.

In static displays, Robbins and Coltheart (in press) likewise
demonstrated the importance of the face in identifying relatively
unfamiliar people. In that study, observers learned people from full
body pictures and were tested with composite images made from
the head of one person on the body of another person. People were
more accurate at identifying people from their heads than from
their bodies. Moreover, in integrating information from the com-
bined face and body, Robbins and Coltheart (in press) found a
greater degree of holistic processing across the right–left mid-line
halves than across the top- and bottom- halves of the full body im-
age. They conclude that the head is more important than the body
for recognition, but that the body can also provide identity infor-
mation, when the person is processed as an integrated whole.

In the context of viewing people in motion, Pilz, Bülthoff, and
Thornton (2006) have also considered the question of how we inte-
grate information across the face and body in making an identifica-
tion decision. They placed three-dimensional head models from
different people onto a single identical moving body, defined by
an avatar. Observers responded more quickly to a target face when
the body was approaching than when it was static. In a second
experiment, they found that faces learned on an approaching ava-
tar, were responded to more quickly than those learned on an ava-
tar that was static. These findings suggest that natural approach
motions may facilitate the processing of a face. However, the body
information in the Pilz et al. (2006) study did not vary. Thus, it re-
mains an open question if approach motion would likewise facili-
tate the processing of the body if it carried individuating
information.

From a neural perspective, the visual processing of faces and
bodies from dynamic and static displays is likely to involve a com-
plex network of brain regions. Based on evidence from human neu-
ropsychology and primate neurophysiology, Haxby, Hoffman, and
Gobbini (2000) proposed a distributed neural network that divides
the processing of the invariant and changeable aspects of faces into
two streams. According to this model, the invariant features of
faces, those useful for face identification, are processed in the ven-
tral temporal areas of the cortex near the fusiform gyrus (cf. fusi-
form face area, FFA, Kanwisher, McDermott, & Chun, 1997). The
changeable aspects of faces (e.g., expression, gaze), useful for social
communication, are thought to be processed in the posterior Supe-
rior Temporal Sulcus (pSTS) along the dorsal stream of visual pro-
cessing. (See Shultz & Pilz (2009) for a review of recent functional
neuroimaging results for viewing natural face motions.)

As noted by Haxby et al. (2000), the invariant information in
faces supports the function of identifying people, whereas the mo-
tion-based changeable information supports a social communica-
tion function. Given that the neural systems responsible for these
functions are, to a first approximation, functionally and anatomi-
cally distinct, the question arises as to how facial motions contrib-
ute to face recognition. The task of recognizing someone is based
presumably more on the invariant structure of a face. In theoretical
terms, O’Toole et al. (2002) proposed two ways that motion could
benefit face recognition. The supplemental information hypothesis
posits that we represent dynamic identity signatures in addition
to the invariant features of faces. The representation enhancement
hypothesis posits that motion benefits face recognition by percep-
tual structure-from-motion processes that enable a better three
dimensional representation of a face (O’Toole et al., 2002). To date,
there is strong support for the supplemental information hypothe-
sis, and hence the use of dynamic identity signatures for face rec-
ognition, but only limited support for the representation
enhancement hypothesis (O’Toole & Roark, 2010).

Although the Haxby et al. (2000) and O’Toole et al. (2002) mod-
els were proposed to account for face processing, some essential
elements of these perspectives may apply analogously to the rec-
ognition of people from natural viewing of full bodies. It has been
known for sometime that the pSTS plays an important role also in
processing body motion as well as the motion of individual body
parts (e.g., hands) (cf. Allison, Puce, & McCarthy, 2000; Pinsk, DeSi-
mone, Moore, Gross, & Kastner, 2005). As noted, for the face, and
possibly body, the role of pSTS may be primarily for processing so-
cial communication movements (Haxby et al., 2000). By extension,
the pSTS may also have a role in recognition via dynamic identity
signature processing (O’Toole et al., 2002).

The extra-striate body area (EBA) may likewise contribute to
the recognition of people from static images of bodies and body
parts (Downing, Jiang, Shuman, & Kanwisher, 2001). This region,
located in the lateral occipital cortex, responds to still images of
bodies and body parts more strongly than it responds to a variety
of control images, including faces. Downing et al. (2001) have sug-
gested a role for the EBA in representing the visual appearance of
bodies. In particular, they suggest a role for EBA in identification
when viewing conditions are poor and the face is not easily acces-
sible due to poor lighting, occlusion, or viewing direction. Some
studies have also proposed a role for EBA in processing body mo-
tions with the goal of understanding actions and intent (Astafiev,
Stanely, Shuman, & Corbetta, 2004), but this finding remains con-
troversial (Downing, Peelen, Wiggett, & Tew, 2006; Peelen &
Downing, 2005).

Combined, the data from functional neuroimaging studies indi-
cate a widely distributed network of neural regions involved in
processing faces and bodies, both from static and dynamic stimuli.
These studies also suggest that neural regions may differ in the ex-
tent to which they subserve different tasks, including the process-
ing of social signals (pSTS), the recognition of intent (pSTS, EBA),
and person recognition (FFA, EBA, and pSTS). The complexity of
the neural processing belies a simpler question about how humans
use the information in faces and bodies for identifying someone
under natural viewing conditions, when a face is attached to a
body and is experienced intermittently in motion and at rest. A
better understanding of how humans identify people from static
and dynamic information in the face and body can constrain the
interpretation of the neural data.

The goal of the present study was to systematically assess the
contribution of the face and body for making an identity judgment
in static versus dynamic presentation conditions. We also tested
the extent to which identification advantages in video could be ac-
counted for by the presentation of ‘‘more information about a per-
son’’ from the multiple-static images that comprise the video
sequence. We carried out a series of experiments in which partic-
ipants matched ‘‘person identity’’ (same or different?) in pairs of
static images/videos. We used this identity matching task to assess
the quality of information available perceptually, without requir-
ing longer-span memory resources. For all experiments, the task
was to determine whether two images/videos were of the same
person or of different people. The experiments differed only in
the type of stimulus used for the identity match. In Experiments
1a, 2a, and 3a, participants viewed pairs of videos. In Experiments
1b, 2b, and 3b, identifications were made on the ‘‘best’’ image ex-
tracted from the videos. The stimuli used in Experiments 1a and 1b
included both the face and body. For Experiments 2a and 2b, only
the face was visible and for Experiments 3a and 3b, only the body
was visible. As we shall see, the face and body and body-only



Table 1
In this table, we give a summary of the experiments, with their presentation and
information-type conditions. N is the number of participants in each experiment,
divided between the CC, CG, and GG conditions. The main effect of match type (CC,
CG, and CG) is reported in the last column and is significant in all but two cases (see
text for details).

Experiment Information Presentation N Main effect

1a Face and body Video 48 F(2,45) = 9.21, p < .001
1b Face and body Static 30 F(2,27) = 1.25, p < ns.
1c Face and body Multi-static 30 F(2,27) = 3.37, p < .05
2a Face-only Video 30 F(2,27) = 4.54, p < .001
2b Face-only Static 36 F(2,33) = 12.12, p < .001
3a Body-only Video 30 F(2,27) = 10.03, p < .001
3b Body-only Static 31 F(2,28) = 9.39, p < .001
3c Body-only Multi-static 30 F(2,27) = .36, p < ns.
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experiments yielded a video advantage. Therefore, we carried out
multi-static control experiments (Experiments 1c and 3c) to test
the extent to which the video advantage could be accounted for
by the extra image-based information in the video. Table 1 gives
a summary of stimulus conditions in each experiment.

Within each experiment, we also varied the types of videos pre-
sented for identity matching. In one condition, participants saw
pairs of ‘‘gait’’ videos, picturing a person walking toward a camera.
In a second condition, they saw pairs of ‘‘conversation’’ videos, pic-
turing the subject conversing with another person. In a third con-
dition, participants had to match the identity of the two people
between a conversation and gait video. We expected performance
to be best for the gait stimuli, because the quality and resolution of
the final frames of these videos were better than any of the images
in the conversation videos. The primary reason we used different
types of match conditions was to diversify the stimulus types,
allowing for a more general test of the main questions of the study.
These general questions focused on video versus static presenta-
tions and recognition from the face versus body.

Next, we applied a fusion strategy to the task of quantitatively
and qualitatively assessing how to optimally combine human iden-
tity judgments based on different information (face and/or body,
viewed in static or dynamic displays) to improve identification. Fu-
sion has been used widely in computer vision applications to im-
prove biometric identifications by combining information from
multiple sources (e.g., face and fingerprint, or face and iris) (Ross,
Nandakumar, & Jain, 2004). In general, the idea is that when par-
tially independent information about a person’s identity is avail-
able from multiple sources, the information can be combined to
improve accuracy over that of the best performing source. Fusion
algorithms vary in complexity from simple averaging of the judg-
ments from different sources to pattern classification algorithms
that learn a statistical mapping from the source judgments to the
identification status (e.g., same or different person). Here we used
a pattern classifier based on partial least squares (PLS) regression
to implement the fusion. PLS combines elements of principal com-
ponents analysis (PCA) and multiple regression and provides a set
of weights for the optimal combination of information across
sources. These weights can be used to assess the role of different
information sources in creating an optimal identity judgment. As
such, they can provide insight into the extent to which the infor-
mation used by humans across these presentation modes is com-
plementary, redundant, or independent.

2. Experimental methods

The methods were similar for all experiments, and so for brev-
ity, we describe them once and include a brief section that details
the stimulus manipulations undertaken in each experiment. We
conducted these experiments independently using different
observers so that we could use the same set of identity pairings
in each experiment. This allows for the fusion across experiments
to be based on independent participant judgments for single view-
ings of each identity pair.
2.1. Participants

Volunteers for the experiments were recruited from the under-
graduate student population enrolled at The University of Texas at
Dallas (UTD). Students received research credit as part of a course
requirement for psychology majors. A minimum of 30 volunteers
participated in each experiment. Exact numbers of participants
for each experiment are indicated in Table 1. None of the partici-
pants had any previous familiarity with the people filmed in the
images/videos.
2.2. Stimuli

A database of video clips and static images of faces and people
(O’Toole, Harms, Snow, Hurst, Pappas, Ayyad, and Abdi, 2005)
served as the source of stimuli for these experiments. There were
multiple gait and conversation videos available for each person in
the database. A gait video showed a person walking parallel to
the line of sight of a stationary camera, starting at a distance of
10 m. The person is filmed as they walk toward the camera and
veer off to the left to pass the camera (see Fig. 1 for a multi-frame
example of these videos). The gait videos varied across individuals
from 8 s to 11 s, depending on how quickly the individual walked.
The average duration of the videos was 9.6 s. We decided not to
edit these videos to a common duration in order to preserve natu-
ral differences in walking speed and style for individuals. A conver-
sation video showed a person conversing with a laboratory staff
member. The lab member stands with his/her back to the camera
and the subject faces the lab member. The distance between the
camera and the center point of the subject’s trajectory was
10.4 m. The videos were filmed from the top of a short flight of
stairs at a height of 3.5 m, looking down on the subject and the
lab member. To encourage gesturing in the videos, the subject
was asked to give directions to a building on campus. For the
experiments, these 10 s videos were edited to be 9.6 s in length
to match the average of the gait videos. Both types of videos were
filmed in a building foyer with high ceilings, enclosed entirely on
one side with glass windows. This environment approximates out-
door lighting and makes for variable lighting conditions across the
set of videos because the position and intensity of the light (mostly
the sun) varies on a stimulus-by-stimulus basis. There were two
sets of images and videos for each person: an original set and a sec-
ond, duplicate set of images and videos collected between one
week and six months subsequent to the original set. Thus, across
the two filming sessions, there are natural variations in the per-
son’s appearance including hairstyle, clothing, etc. This ensured
that participants in the identity matching experiments could not
base their decisions on transient cues such as clothing, or other
artifacts.

To create stimuli for the body-only experiments, we obscured
the face by blurring a circular region around and including the face
in each frame of the video. To create stimuli for the face-only exper-
iments, we applied a black-out mask to the entire image in each
frame, exclusive of a circular bubble around the face. For the static
presentations, we extracted the ‘‘best’’ still image from each video
as follows. For the gait videos, this was the image taken closest to
the camera that showed the face from the frontal view. For the
conversation video, we chose a good image that showed the face
from as close to a frontal view as possible. See Fig. 2 for examples
of the stimuli.



Fig. 1. Five frames extracted from an example of the conversation videos (top) and the gait videos (bottom).

Fig. 2. Five frames extracted from an example of the conversation videos (top) and the gait videos (bottom).
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To make stimuli for the multi-static control experiments, we
extracted one image per second for each of the videos. Specifically,
we took the first frame of each second of the video and presented
these frames in sequence at a rate of one image per second. As
noted previously, the original videos varied in length from 8 to
11 s. We did not shorten the videos to preserve the walking speed
of the individuals. Thus, for comparability, we likewise allowed the
number of multi-static frames to vary (between 8 and 11), keeping
the sampling rate constant. The images were presented in the se-
quence in which they actually occurred in the video (i.e., not in
random order), the image sampling was far enough apart in the vi-
deo to eliminate apparent motion.

For all stimuli, in all experiments, the images subtended a visual
angle of approximately 22.18� horizontally and 15.03� vertically.
These figures are approximate, because participants were free to
move their heads or the chair while they viewed the computer.

In all, there were 60 unique identities represented in the videos.
All were young adult males between 19 and 30 years of age.
Twenty identities were used to create identity-match pairs (i.e.,
two videos of the same person-presented in match trials). The
remaining 40 identities were used to create no-match pairs (i.e.,
two videos of different people).

2.3. Procedure

Participants in each experiment were assigned randomly to one
of three conditions. In the gait–gait (GG) condition, they matched
identity in a pair of stimuli created from the gait videos (with
the exact stimulus type determined by the experiment). In the con-
versation–conversation (CC) condition, participants matched iden-
tity in a pair of stimuli created from the conversation videos. In the
conversation–gait (CG) condition, participants matched identity
between stimuli created from a conversation video and a gait
video.

The participants viewed pairs of videos (images) and were
asked to determine if the people pictured were the ‘‘same person’’
or ‘‘different people’’. On each trial, they viewed the first video in
the pair on the left side of the screen, followed by the second video
presented on the right side of the screen. The screen went blank at
the end of each video. For the best-static image experiments, the
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first image appeared on the left side of the screen for 9.6 s (the
average duration of the videos) and the second image appeared
for 9.6 s on the rights side of the screen. Again, the screen went
blank at the end of each image presentation. Next a prompt ap-
peared with the following response choices: ‘‘(1) sure they are
the same person; (2) think they are the same person; (3) do not
know; (4) think they are not the same person; (5) sure they are
not the same person.’’ The prompt remained visible until the par-
ticipant pressed a response key.

There were 40 trials in all: 20 matched identity trials and 20
non-matched identity trials. The order of stimulus presentation
was randomized for each participant.

2.4. Results

The confidence ratings for the identity match task enabled the
construction of ROC curves. These appear in Fig. 3 and offer an
overview of performance across stimulus conditions (tests of sta-
tistical significance using the d’s computed from these data follow).
Identification performance appears best when both the face and
the body were presented in motion. In more detail, these curves
suggest three kinds of results. First, comparing the right–left ROC
curve pairs suggests an advantage for the video over static presen-
tations for the face and body and body-only conditions, but not for
the face-only condition. Second, performance for the face and body
appears to be better than performance for either the face or body
alone. Moreover, identification with the face-only is far better than
identification with the body-only. Third, the relative placement of
the ROC curves within each experiment indicates better perfor-
mance for the GG condition over the CC and CG conditions, in all
but the face-only video match condition. The CC and CG conditions
were roughly equivalent in all but the static face-only condition.

Although the ROC curves provide a complete account of the
data, these curves are difficult to test for statistical significance.
Thus, to test for statistical significance, we computed a d0 for dis-
criminating matched and mismatched identity pairs each individ-
ual in each condition of the experiments. As indicated in Fig. 3, the
bow-shape of the curves suggest that d0 is an appropriate summary
measure. To calculate a d0, the responses must be divided into cor-
rect matches (hits) and incorrect matches (false alarms), which re-
quires placing a somewhat arbitrary break in the confidence rating
scale to define match and non-match responses.1 The d’s were cal-
culated by dividing the rating scale into ‘‘match judgments’’ (ratings
of 1 or 2, in which the participant said ‘‘sure or think’’ same person)
and non-match judgments (ratings of 3, 4 or 5, do not know and sure
or think different people). We tabulated the proportion of hits and
false alarms as follows. Hits were defined as match pairs that received
ratings of 1 or 2 (i.e., sure or think that they are the same person).
False alarms were defined as non-match pairs that received ratings
of 1 or 2.

2.4.1. Overview experimental results
To examine the effects of video versus static presentation, as

well as the kind of information presented (face and body, body,
or face), we conducted a two-factor (video/static and information
type) meta-anova, combining data across the six experiments.2

An overview of the means for these conditions appears in Fig. 4. Con-
sistent with the figure, there was a main effect of video versus static
presentation, F(1,199) = 17.17, p < .0001, with video better than sta-
tic. There was also a main effect of the information presented,
1 We divided the scale to assign rating of 1 or 2 to ‘‘match’’ and responses of 3, 4 or
5 to non-match judgments, but we verified that the results were the same with the
second obvious break point between 3 and 4.

2 Because the effects of match type (GG, CC, and CG) were relatively consistent
across experiments, for simplicity we omitted match type from the meta-anova.
F(2,199) = 54.88, p < .0001, with face and body best, followed by
face-only and then body-only. Both main effects were qualified by
the presence of a significant interaction between video/static pre-
sentation and information type, F(2,199) = 4.81, p < .009. The source
of this interaction can be found in two results involving the face-only
conditions. First, static and dynamic presentations were equivalent
when only the face was presented. This was supported by simple
main effects tests of the effect of presentation mode (video/static)
in each information-type condition (face and body, face-only,
body-only). These showed a significant effect of presentation mode
in the face and body condition (F(1,72) = 19.76, p < .0001) and in
the body-only condition (F(1,55) = 9.71, p < .01), but not in the
face-only condition (F(1,60) < 1, ns). Thus, we conclude that observ-
ers did not benefit from seeing multiple images of the face from the
video, or from the motion of the face in the videos. The lack of a mo-
tion effect for the face condition is not surprising as the videos show
only rigid rotational and translation movements of the head.

The second component of the interaction is more interesting.
This is the equivalence of the static face-only condition (M = 1.75,
SE = .11) and the static face and body condition (M = 1.78,
SE = .10) (Tukey HSD test, ns). It is worth noting that the face
images from which the judgments were made in the static condi-
tion were included (identically) in the face and body static images.
By identically, we mean that the size of the face image in the static
face-only presentation was identical to the size of the embedded
face in the face and body image. This finding suggests that when
observers looked at the full person in a static image, they use only
the face for the identity decision. By contrast, in the video presen-
tation conditions, performance was better with the face and body
than with the face alone. The fusion data we present shortly offers
insight into this interaction.

Combined, the two components of the interaction result in
three conditions with roughly equal levels of performance: (1) sta-
tic presentation of the face and body; (2) static presentation of the
face only; and (3) dynamic presentation of the face-only. These
conditions stand in contrast to a substantial performance advan-
tage for video presentations of the face and body together. Sub-
stantially lower performance is seen for the conditions that
eliminate the face. These body-only conditions also show a video
advantage.

2.4.1.1. Multi-static controls. Given the video advantage found for
the face and body and body-only conditions we conducted a multi-
ple-static image version of each of these two conditions. The equiv-
alent performance for the face in the best-static image and video
conditions suggests that more information about the face (i.e.,
more images/frames) would not improve performance.3

Across the video, static, and multi-static experiments, three pat-
terns of performance are possible. A ‘‘pure motion advantage’’
should yield equivalent performance for the best-static and mul-
ti-static conditions. If both the motion and the additional static
images contribute to the video advantage, performance in the mul-
ti-static control should fall between the video and best-static con-
dition performance. If the video performance can be accounted for
by the multiple images in the video, then the multi-static control
condition will be at the same level as the video condition. We
found examples of all three patterns in our findings.

The results of the two multi-static control experiments are plot-
ted in Fig. 5 along with the video and best-static image results. Per-
formance in the multi-static condition, relative to the video and
3 Although it is logically possible to find better performance in the multi-static
ndition without a dynamic advantage, if this were to occur, it would likely reflect a

reference for presentation style (e.g., short exposures to multiple images might be
elpful in attending to the images). Here, we set aside that possibility to focus on
nderstanding the source of the motion advantages we obtained.
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Fig. 3. ROC curves for the experiments show a video advantage for the face and body conditions and the body-only condition, but not the face-only condition. They also show
a small advantage for the face and body conditions over the face and a stronger advantage for the face-only over body-only condition. There is a reasonably consistent GG
advantage over the CG and CC conditions.
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static presentations, yielded no ‘‘general’’ result. Starting with the
face and body and body-only presentations, the GG comparison
showed a pure video advantage, with the multi-static performance
well below the video at the level of the single static presentation.
This indicates that the video advantage in the GG conditions comes
from using inherently dynamic information for identification. The
fact that the pure video advantage appears only in the GG condi-
tion, where the motion in both videos (e.g., walking style) is similar
enough to be useful for identification, is a further indication of the
use of dynamic identity signatures.

At the opposite extreme, in the body-only CG and CC conditions,
presentation of multiple-static images completely accounted for
the video advantage. In the CG face and body condition, both the
motion and the extra information in multiple-static images con-
tribute to the video advantage. Again, the fusion simulations offer
insight into these findings.
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Fig. 4. An overview of the means for the first six experiments shows a video
advantage for the face and body and body-only conditions. There is also an
advantage for the face-only over the body-only conditions. Of note, the interaction
between factors highlights the equivalent performance for a static presentation of
the whole person and a static presentation of the face-only. Error bars indicate
standard error of the mean.
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Up to this point, the results show that human identification is at
its best when the whole person was seen in motion. This indicates
that people can benefit from complementary information about
the face and body and that seeing the whole person in motion
can, in some cases, add to the accuracy of the identification judg-
ment. There was also evidence that performance with the face-only
was far better than with the body-only. An interaction between
body part and presentation mode suggests that the face ‘‘carries’’
identification in static presentations that include both face and
body. Next, we consider the effects of match mode within the
experiments.
2.4.1.2. Within-experiment match mode comparisons. As noted ini-
tially, the primary reason we used different types of match condi-
tions was to diversify the stimulus types, allowing for a more
general test of motion versus static presentations and the use of
face versus body information. We assumed that differences in this
variable would be due to the specifics of the information each pro-
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Fig. 5. The multi-static control experiments show a range of results from a clear demons
multi-static images accounting for the video advantage (CG body-only, CC body-only), to
bars indicate standard error of the mean.
vides. To determine the effects of the matching condition (CC, GG,
and CG), in each experiment the data were submitted to a one-fac-
tor analysis of variance (ANOVA) with pair type as a between-sub-
jects factor and d0 as the dependent variable. A summary of results
appears in Table 1 and shows statistically different performance
across the CC, CG, and GG conditions in all but Experiment 1b,
the static face and body match, and in Experiment 3c, the multi-
static body match.

As expected, performance with the GG stimuli was generally
best. This is likely due to the fact that the person in the gait video
was quite close to the camera in the final frames of the video, offer-
ing a better view than any of the frames in the conversation videos.
Notably, the performance using face-only in the CC and CG condi-
tions was above chance, even given the small size and and low
quality of the images. This performance may be based more on par-
ticipants’ accurate rejection of non-matched pairs than on confi-
dent judgments of matched pairs. The GG advantage was found
in all but the video face-only experiment. We are uncertain why
the video face-only experiment differed from the others for the
GG advantage. Across the experiments the ordering of the CG
and CC conditions varied, but was largely undifferentiated. Of note,
for the static presentation of the face there was a relatively strong
advantage for the CG multi-modal face comparison over the CC
comparison. This seemingly odd result, where matching between
images of higher and lower quality is better than matching be-
tween two lower quality images, is consistent with previous work
(Lui, Seetzen, Burton, & Chaudhuri, 2003). Combined, these results
suggests that the higher quality image can bootstrap face process-
ing from the lower quality image.
3. Fusion

The purpose of the fusion simulations was to assess more quan-
titatively how the information presented to participants across the
different experiments can be combined to support more accurate
identity judgments. As noted, fusion methods are commonly used
in computer vision and biometrics applications when there are
multiple, but imperfect, sources of information that are useful for
identification. Fusion can improve performance when the contrib-
uting information is at least partially independent and when an
optimal formula for combining the information generalizes across
exemplars. In other words, fusion will improve performance when
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tration of the movement in improving performance (GG) to a clear demonstration of
a contribution from both movement and multiple images (CG face and body). Error
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the information or strategies humans employ in different condi-
tions are complementary. We used fusion here as a tool for assess-
ing how information across these sources is used by humans and to
see how the presentation modes (dynamic or static) affect this pat-
tern of use.

It is perhaps worth stressing that even if information is dupli-
cated in conditions (e.g., static face and static face-body), it is none-
theless still possible to improve human performance with fusion.
This could occur, for example, if viewing a particular type of stim-
ulus affects the way humans allocate attention to different parts of
the stimulus. We will see evidence of this type of effect in the fused
combination of conditions.
4. Methods

Fusion of the experiments was accomplished with PLS regres-
sion, a technique that combines elements of principal component
analysis and multiple regression (Abdi, 2003; Naes, Isaksson, Fearn,
& Davis, 2004). The technique is used to predict a set of dependent
variables from a set of independent variables. In other words, PLS is
a standard pattern classification algorithm. In the present applica-
tion, we used PLS to predict the true match status of the 40 pairs of
faces (i.e., same person or different people) from the estimates
made by humans (i.e., their ratings) under different conditions
(e.g., dynamic face-only, dynamic body-only, etc.). Specifically,
the classifier was trained to learn a statistical mapping from the
human estimates to the ground-truth identity match status of
the face pairs. The goal is to find a way to combine the human esti-
mates in different conditions to improve performance.

The choice of PLS is in part arbitrary and we would expect other
pattern classification algorithms to give similar results. We used
PLS because it gives a set of easily interpretable weights for indi-
vidual predictors. PLS yields a set of orthogonal factors, called la-
tent vectors t1, . . . , tl from the covariance matrix of the predictors
and dependent variables. The latent vectors (factors) are used to
predict the dependent variable(s) by appropriately weighting the
predictors. The set of weights is referred to as Bpls in the PLS-regres-
sion literature. Like other types of multivariate pattern analyses,
PLS solutions are specified in terms of the number of factors (latent
vectors) used (e.g., 2-, 3-, 4-factor solutions) for the prediction. We
report the solution that improves performance most.

Also, as is the case for other pattern classifiers, the PLS should be
tested for generalization using a cross-validation procedure. To
cross validate classifier results, the test of classification is made
on a stimulus (or stimulus set) not used in training the classifier.
We implemented cross-validation by training the classifier with
n � 1 face pairs (i.e., 39) and testing it with the left-out pair. This
procedure was implemented 40 times, iterating the left-out face
pair through the set of available pairs. Thus, the performance we
report is based on the proportion of times the correct match status
of the left-out pair was predicted by the classifier.

The fusions we report are as follows. First, we carried out a fu-
sion that combined identity judgments across all conditions of the
six video and static experiments. Based on the results of this first
fusion, three additional subset fusions were undertaken, combin-
ing data from within the stimulus type conditions (GG, CG and
CC) across the body information conditions (face and body, face-
only, and body-only).
4.1. Six-experiment fusion

The predictors used in this fusion were the estimates of the
match status of the 40 pairs of identities (20 matched identities
and 20 mismatched identities) from each of the three conditions
(CC, CG, and GG) of the video and static experiments (Experiments
1a and 1b, Experiments 2a and 2b, Experiments 3a and 3b). For
each pair of images/videos in each condition of each experiment,
we averaged the response ratings (i.e., 1: sure the same person to
5: sure different people) across participants for the individual iden-
tity pairs. These averages were used as real-valued predictors that
retain information both about the human participants’ estimates of
identity and their certainty. To equate the stability of the averages
across the different experiments which varied somewhat in num-
ber of participants, we averaged the first 10 participants in each
condition of each experiment. Recall that there were between 30
and 48 participants in each experiment, divided roughly equally
between the CC, CG, and GG conditions. Thus, the minimum num-
ber of participants in each condition was 10, and so we used data
from the first 10 participants in each component of the fusion.
Thus, the predictor for each pair was the average of the partici-
pants’ ratings of the likelihood that the people were the same.
We had 18 such estimates (six experiments, three estimates per
experiment) for each pair, that varied based on the type of infor-
mation (face and body, body, or face) and presentation type (video,
static) used in the different experiments. The dependent variable
was the actual match status of the pair (same person/different peo-
ple), quantified as 1 or 0.

A robust estimate of the fusion performance was determined in
a cross-validation test in which the PLS regression was computed n
times with n � 1 identity pairs and tested with the nth ‘‘left-out’’
pair. The fusion performance we report is based on the proportion
of correct match status classifications of the 40 face pairs. We
tested a range of retained PLS factors to find the best performance.
4.2. Fusions for GG, CG, and CC conditions

Three additional fusions within the stimulus type conditions
(GG, CG, and CC) were also conducted. For each of these, we ex-
tracted the appropriate stimulus type across Experiments 1a, 1b,
2a, 2b, and 3a, 3b. Each of these fusions used six predictors (video
and static presentations of face and body, face-only and body-only
conditions).
5. Results

The cross-validation six-experiment fusion classified the match
status of the face pairs with 100% accuracy for both the 3-factor
and 4-factor solutions. The weight patterns for these solutions
were similar and showed that high-valued weights (i.e., those con-
tributing most strongly) were concentrated in the GG conditions.
This is likely due to the general performance advantage for the
GG conditions across the experiments. For this reason, we divided
the fusions into the GG, GC, and CC subset fusions.

The cross-validation fusion for the GG conditions, by itself,
yielded perfect match classification accuracy, again for the 3- and
4-factor solutions. Thus, perfect performance was achievable from
the information presented in the GG conditions. Again, the pattern
of weights for the two solutions were similar, and so we averaged
them. These averaged weights appear in Fig. 6 and show an intrigu-
ing result. The strongly weighted components for the static presen-
tations are from the conditions that include the face (face and
body, face-only). For dynamic presentations, the conditions that in-
clude the body (face and body, body-only) are strongly weighted.
The result suggests that in the static presentation, the face domi-
nates, and the body seems to add little useful information for iden-
tification. In the dynamic presentation, however, the body
dominates with little independent or complementary contribution
from the face. The result also suggests that the combination of the
information humans assess most readily from the static presenta-
tions (the face) and information assessed most readily from the dy-
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Fig. 6. The weights on the fused conditions indicate that in static presentations, the
face dominates with the body adding little to the identification. In the video
presentation, the body dominates with little independent or complementary
information from the face.
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namic presentations (the body) produced perfect identification.
Note that the fusion does not indicate how humans combined
information across static and dynamic presentations, but rather,
how they might combine independent judgments made from the
two presentation modes to optimize identification accuracy.

The cross-validation fusion for the CG condition did not achieve
perfect match classification, although it did improve classification
over the next best condition. The weights in this case, however,
were roughly equivalent across all six sub-conditions used in the
fusion, suggesting that observers rely on complementary informa-
tion in each of the six conditions. The CC condition fusion did not
improve match status classification accuracy, but rather, in all
cross-validation solutions, proved worse than the best input condi-
tion. This suggests that there was no formula for combining the
identity information across these conditions in a way that general-
ized across the face pairs. More likely, different combinations of
condition-based estimates might be better suited to different sub-
sets of the identity pairs.

6. Discussion

When we recognize a person in the real world, we see the whole
person, in motion and at rest. In this study, we examined the effects
of dynamic and static presentations of the face and body for recog-
nizing people in relatively natural viewing conditions. The primary
finding of this study is that human identification is at its best when
the whole person was seen in motion. This indicates that identifi-
cation can benefit from both the face and body, and that seeing the
whole person in motion can add to the accuracy of the identifica-
tion judgment. In other words, recognition in the present study
was most accurate when the conditions approximated natural
viewing conditions, that include a person approaching.

In dissecting this natural viewing condition advantage, a strik-
ing finding was the equivalence of the static face and body and sta-
tic face-alone conditions. Consistent with previous studies (Burton
et al., 1999b; Robbins & Coltheart, in press), the present data con-
firm human reliance on the face for identification in static viewing
conditions, even when the body is available. From this result, it is
tempting to conclude that the static body does not, or cannot, pro-
vide useful information for human identification. This conclusion is
at odds, however, with the solid performance (i.e., d0 � 1.0) we
found in the static body-alone condition, indicating that humans
can use the body for identification. Rather, a better interpretation
of the combined findings is that body-based identity information
(i.e., structure) is more likely to be used when the face is unavail-
able, or in real world terms, when viewing conditions for the face
are poor.

In neural terms, areas in the inferior temporal cortex, including
FFA and OFA, are the likely neural sub-strates for face processing
from static images. Concomitantly, the use of static body informa-
tion in the present study accords well with the function proposed
for the EBA by Downing et al. (2001). Based on the particular
responsiveness of EBA to static bodies, Downing et al. (2001) pro-
posed a role for EBA in representing the visual appearance of
bodies when viewing conditions are poor or when the face is not
easily accessible due to poor lighting, occlusion, or viewing
direction.

The second component of our empirical findings concerns the
effects of motion on identification. Motion improved identification
accuracy when the body was visible. This suggests that the body
motions we see in natural viewing conditions can contribute to
the visual representation of identity. Of note, these body-based vi-
deo advantages came from different sources, which we probed by
comparing performance in the best-static and dynamic conditions
to a multi-static image control condition. The pure motion benefit
we found in the gait-to-gait comparisons indicates the use of dy-
namic identity signatures for identification and fits with the sup-
plemental information hypothesis (O’Toole et al., 2002), and thus
a role for the pSTS in in person recognition. A prerequisite for using
this information is that in the gait-to-gait comparisons, there was a
match between the types of motion signatures available. Thus, ste-
reotyped walking motions may have provided the supplemental
motion-based identity information. Sarkar, Phillips, Lui, Grother,
and Bowyer (2005) provide an overview of the computational is-
sues involved in using gait for identification.

Other body-based video advantages could be accounted for en-
tirely by seeing multiple images of the person. This was clearest for
the body-only conversation–conversation and conversation–gait
comparisons. This latter is a cross-modal comparison requiring
observers to match across rather different image formats. In these
cases, we found roughly equal performance for the video and mul-
ti-static conditions, at a level that exceeded performance for the
best-static image condition. Of note, the video/multi-static advan-
tage for the cross-modal case could not have been due to direct im-
age matching processes between the comparison pair. In fact, the
images embedded in the conversation and gait videos differed
markedly in viewpoint, illumination, distance, and resolution.
Rather the match task required observers to compare video/images
between a higher quality (gait) and lower quality (conversation)
stimulus. Consequently, the video and multi-static advantage had
to have been based on active internal processing, whereby multiple
images in the sequence are used to create a more robust represen-
tation than would be possible with the single image. Previous stud-
ies (Lui et al., 2003; Roark, Barrett, O’Toole, & Abdi, 2005) have
likewise shown a kind of bootstrapping from lower to higher qual-
ity face recognition. All three findings suggest a process that ac-
tively constructs a more robust representation from low-quality
stimuli, using internal resources from long term experience with
faces and bodies. A computational illustration of combining images
to improve the quality of a face representation for recognition can
be found in a recent paper (Jenkins & Burton, 2008).

It is worth noting that the lack of motion benefit with faces
should not be over-interpreted to suggest that we have no repre-
sentation of facial motion in the identity code. Indeed, previous
studies have demonstrated that non-rigid facial motions can be used
for identifying someone (Hill & Johnston, 2001; Knappmeyer,
Thornton, & Bülthoff, 2003). Under normal conditions, these non-
rigid motions are visible only when we view a face from a short
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distance. At this close distance, movement is generally not needed
for identification, because of the high quality of the pictorial codes.
Rather, consistent with distributed model, the primary function of
non-rigid facial motions is likely to be social.

In the introduction, we proposed that a better understanding of
how humans identify people from static and dynamic information
in the face and body could constrain the interpretation of the com-
plex neural network of brain areas that respond to faces and
bodies. The fusion data offer a functionally based mechanism for
applying these constraints to a complex data set. It is worth stress-
ing that the fusion applied here does not tell us specifically how
humans used the information in the various conditions, but rather
how human identification judgments made in different stimulus
and viewing conditions could be combined to optimize accuracy.
The fusion results suggest that humans access non-redundant
identity information from the face versus body to differing degrees
from moving versus static stimuli. Specifically, it indicates that
optimal performance can be achieved by combining human obser-
ver judgments from static viewing conditions that include the face
and dynamic viewing conditions that include the body. One reason
for the differential access of face versus body information from
moving and static stimuli, may be based on the complex structure
of neural areas processing face and body information for different
reasons.

In summary, human judgments of identity are likely to be based
on the collaborative computations of multiple representations of
face and body, and their associated motions in the high-level visual
processing network. A knowledge of how humans identify people
in natural viewing environments can ground theories of how this
identity information interacts in these neural networks.
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