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In image processing by computer, the transformation from the original con- 
tinuous-domain image to the degraded and sampled discrete observation image is 
usually modelled as a linear transformation with additive noise. The relation 
between two types of filters, the Wiener filter (WF) and the projection filter (PF), 
for the restoration of the original image from the observation is discussed. The lat- 
ter is based on the same principle as pseudoinverse filtering but also suppresses the 
additive noise. The PF and the WF are shown to be closely related under a con- 
dition depending on the degradation-sampling operator and the Karhunen-Lo&e 
expansion for the family of original images. The relation between the PF and the 
Gauss-Markov estimator is also clarified. 0 1986 Academic PI~SS, hc. 

1. INTRODUCTION 

In image processing applications such as biomedical and remote sensing 
applications, our observations are usually degraded images. With f(x) 
denoting the original image intensity at the two-dimensional spatial 
position x and fd(x) denoting the degraded image, obtained from f by a 
linear mapping H, the image restoration problem is to estimatef from fd. 
There are three kinds of problems: (1) the operator H usually has no 
inverse; (2) in estimating the original image from its degraded observation 
by using a digital computer, we can only use values of the degraded image 
at a finite number of sample points; and (3) in practice there will be quan- 
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tization and other errors, which are conveniently modelled as independent 
additive noise. Thus the digital image restoration problem is to estimate a 
continuous-domain function from a finite dimensional vector made up from 
the sample values of the degraded image and corrupted by additive random 
noise. 

A number of estimation criteria have been suggested (see, e.g., [2]) 
either for the continuous-continuous case, in which both f and fd are con- 
tinuous-domain images, or for the discretediscrete case, when both are 
discretized images. They include minimum variance filtering, pseudoinverse 
filtering, maximum entropy filtering, maximum likelihood estimation, and 
Bayesian estimation. For computational reasons, most practical methods 
rely on least-squares criteria and linear filters. In the continuous-con- 
tinuous case, Fourier transform techniques are widely used, while for the 
discrete-discrete case an approach based on matrix algebra is taken. 

Estimation in the continuous-discrete image degradation model has 
received much less attention, although it is the most natural model of 
image formation in practice. An exception is the case of band-limited signal 
processing. In Hilbert space methodology, the central tool when consider- 
ing band-limited signals is the reproducing kernel of the space of such 
functions, allowing, e.g., the convenient sampling expansion. In image 
processing applications, the space of degraded or transformed images fd 
may well be “bandJimited” but not necessarily with respect to the Fourier 
transform. For discrete sampling, it is only important that this space 
should have some reproducing kernel, but in what follows no assumptions 
are made regarding this kernel. 

In the general solutions to discrete-continuous image restoration, the 
approach has been to choose a priori a set of basis functions, say, cubic or 
linear splines [2, 43, and to compute the best estimate to fin terms of these 
fixed basis functions. Henceforth, such basis functions will be called 
restoration functions. Determining them in an optimal way from the point 
of view of some optimization criterion instead of for computational ease 
only is an important theoretical problem which has not been properly 
addressed in signal restoration literature. 

In the case of linear estimation without additive noise, the family of 
estimates for all the original images constitutes a linear subspace 9 of the 
space of images, spanned by the restoration functions. The best 
approximation to an image f by elements of 9 is the orthogonal projection 
off onto 3, with the approximation criterion thus depending on the inner 
product of the image space. The optimal linear image restoration problem 
in the noiseless case can be formulated as follows: obtain the orthogonal 
projection off onto a subspace 9 as a linear function of the vector g made 
up from values {~Jx,), m = 1, 2 ,..., M} of the degraded observationf, at a 
finite number of sample points {x,, m = 1, 2 ,..., Mf. 
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When there is additive noise, the restoration is a sum of two com- 
ponents: the “image component,” which is a linear function of the degraded 
and sampled image only, and the “noise component” which results from 
the same linear operator applied to the additive noise. A reasonable 
criterion is that the estimation of the image component only, regardless of 
noise, should reduce to the above problem. Then there is the extra problem 
of minimizing the noise component or maximizing the signal-to-noise ratio 
in the restored image. 

In Section 2, the notation for the continuous-discrete image degradation 
model and the image and noise statistics are given. After that, the Wiener 
or minimum-variance filter is shortly reviewed in Section 3. In Section 4, 
those subspaces of the space of images f are characterized onto which the 
orthogonal projection of any f can be obtained as a linear mapping of the 
degraded and sampled vector g. The maximal subspace among them is 
determined. This provides the optimal set of restoration functions. The pro- 
jection is optimal for each individual image f instead of being optimal in a 
statistical sense only. It is shown how the variance of the additive noise can 
be minimized in this case, leading to the so-called projection filter, earlier 
suggested by one of the present authors [7]. A relationship of the projec- 
tion filter estimate and the Gauss-Markov estimate in statistical linear 
models is discussed. 

A relation between the Gauss-Markov estimators and the pseudoinverse 
estimators has been given earlier by [ 111. The estimators are equal if the 
columns of the coefftcient matrix in the linear model are linear com- 
binations of the eigenvectors of the noise covariance matrix. The purpose of 
Section 5 is to establish a somewhat similar relation between the Wiener 
filter and the projection filter. A condition is given under which an 
orthogonal projection can be computed on the subspace of Wiener 
estimates. It turns out that this condition depends on the relationship of 
the degradation mapping and the Karhunen-Loeve (KL) subspaces, span- 
ned by eigenfunctions of the covariance kernel of images f: all the 
restoration functions must be linear combinations of the eigenfunctions. 

2. THE CONTINUOUS-DISCRETE MODEL 

Throughout this paper, we resort to the following notation for the linear 
image degradation-sampling model: 

g=Af (1) 

with A a linear mapping on Z, the separable real Hilbert space of con- 
tinuous-domain images A into W”, the vector space of the degraded and 
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sampled images g. With the additive quantization and other noise the 
model becomes 

g=Lq”+n (2) 

with n the random noise vector. The linear restoration mapping on 9”” 
into 2 is denoted by B, hence 

fi = Bg = BAf $ Bn (3) 

with f, the restored image. 
The following will be assumed of the family of images: 

E(f)=m, E((f-m,f-m))=R (4) 

where m is the mean off in 2 and R is the nonnegative covariance kernel 
off, a linear operator on A? into 2’. The notation ( ., . ), indicates a dyad, 
defined as (f,, f2)f3=(f3, f2)fi. The inner product of c?‘? is (.;) and the 
norm induced by this inner product is /(. 11. For a finite-dimensional X, 
say, 2 = gN, m is an N x 1 vector and R is an N x N matrix. We also 
assume that E 11 f - m 1) 2 < co, which implies that R has finite trace. For X, 
the L, norm and inner product can be used as a concrete example, but X 
could be any separable Hilbert space. 

The noise ensemble satisfies the following: 

E(n) = 0, E((n,n))=Q (5) 

with Q an A4 x A4 nonnegative matrix. We also assume E( (n, f - m )) = 0. 
If an unbiased estimator is desired, i.e., 

E(f,)=m, (6) 

then the mapping from g to f, must be affine linear. Therefore, in practice 
(3) may be replaced by 

f, = Bg + b. (7) 

Then E( fi) = BE(g) + b = BAm + b = m if and only if 

b= (I- BA) m. (8) 

The restoration becomes then 

,fi=Bg+(Z-BA)m, 

= BAf + Bn + (I- BA) m, 

=m+BA(f-m)+Bn, 
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or 

A=f,-m=B[A(f-m)+n], 
= Bg, 

with 

,g=A(f-m)+n=AY+n, 
=g-Am. (9) 

If m is known, g can be computed from the discrete image g andTi can be 
obtained by the linear restoration filter B. If m is not known and no 
reasonable approximation is available, then usually the covariance kernel 
R is unknown. Then R should be replaced by the correlation kernel in (4) 
b is put to zero, and the requirement of unbiasedness is dropped. Then the 
orthogonality of noise and image is replaced by the assumption that n and 
fare uncorrelated. 

Throughout this paper, the following convention in notation will be 
used: (1) If E(f) = m is known, then f, f, , and g will denote the normalized 
zero-mean variables (f; 7,) and g in Eqs. (9)) and R will be the covariance. 
The estimates will be unconditionally unbiased. (2) If E(f) =m is not 
known, then f and g stand for the original image and sampled image, 
respectively, f, = Bg, and R is the correlation kernel off: 

3. WIENER RESTORATION IN THE CONTINUOUS-DISCRETE MODEL 

The Wiener filter (WF) is a linear restoration mapping such that the 
original image f and the restoration fi satisfy 

E 11 f-f, II2 = minimum. (10) 

Let A* denote the adjoint operator of A and tr( .) the trace of an operator. 
The WF is provided by 

LEMMA 1. The functional (10) has a minimum value if and only if B 
satisfies 

B(ARA*+Q)=RA*. (11) 

In this case the minimum value is given by 

E (I f -fi (1’ = tr(R - BAR). (12) 



42 OGAWAANDOJA 

Proof: The proof of Eq. (11) is analogous to the proof given in [2, 
p. 1331. Equation (12) follows by direct substitution. 

Equation (11) gives the standard form of the Wiener restoration filter. If 
ARA* + Q is nonsingular, then 

B=RA*(ARA*+Q)-‘, (13) 

a well-known result. Note that ARA* + Q is an Mx M matrix even if X is 
infinite dimensional. 

For the discrete-discrete degradation model it is usually assumed that A 
is homogeneous and the image field f and noise vector n are stationary. 
When all block Toeplitz forms are approximated by block circulant 
matrices, the DFT can be used for the effective computation of (13) [2]. 
Good restoration results are obtained with the WF especially in favorable 
signal-to-noise ratio cases. 

4. PROJECTION FILTER 

Consider first the following model without additive noise: 

g=M (14) 

,f, = Bg = BAf: (15) 

Equation (15) implies that for any f,f, is in the subspace L%( BA), the range 
space of the operator BA. In this subspace, there is exactly one point which 
is closest to the original imagef: the orthogonal projection off on .@(BA). 
It would be the optimal restoration. However, it is possible that the projec- 
tion cannot be obtained in practice, since the restorations must be linear 
operations on g. We may ask: what are the subspaces of A? such that we 
can compute the orthogonal projection of any f on them as a linear 
operation on g? It turns out that among all the subspaces of J? there is 
exactly one maximal subspace that satisfies this criterion. 

In answering the question, we resort to the concept of the pseudoinverse 
of a linear operator [S]. It follows that if A is any linear bounded operator 
on a Hilbert space, with 9(A) closed, then A has a unique pseudoinverse 
A + satisfying the well-known Penrose equations: 

AA+A=A, A+AA+ =A+, 

(AA+)*=AA+, (A+A)*=A+A. (16) 

Since A in (14) has a finite-dimensional range, it has a unique pseudoin- 
verse. Especially, the projection operator with range W(A*) is P = A + A. 
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LEMMA 2. Let 9’ be a subspace of ~9’. We can obtain the orthogonal pro- 
jection of any f E X on 9 as a linear operation on g = Af if and only if 
s!Gc(A*). 

Proof. Denote the orthogonal projection operator on L? by P,. Then 
the projection is P,f, and it is obtained as some linear operation K on g if 
and only if 

KA=P,. (17) 

Assume first that 9 s&?(A*). This is equivalent to P,A + A = P,, with 
A ‘A the orthogonal projection operator on .%(A*). But then K = P, A + 
is a solution to (17). Second, assume that (17) has a solution. Then 

PyA+A=KAA+A=KA=Pp, 

hence 9 c &?(A*). 
This result means that &(A*) is the maximal subspace on which we can 

project .f in such a way the projection can be computed as Bg with some 
known linear operator B. Hence, any function basis of .4?(A*) provides the 
optimal restoration basis. Typically, by Eq. (14) A is an Mx 1 vector 
whose elements are kernel functions, e.g., convolution kernels. These M 
functions span .!%(A *). Equivalently, because &!(A*) = 9?(A*A) for 
operators with finite-dimensional range, such an optimal basis is provided 
by the orthogonal eigenfunctions of the self-adjoint operator A*A belong- 
ing to nonzero eigenvalues. 

The mapping B which yields the orthogonal projection on .@(A*) is 
obtained from Eq. (17). It follows that 

BA=A’A. (18) 

The pseudoinverse filter, B = A + [2] is a special case of (18). For instance, 
every operator of the form B= (A*SA) + A*S with S positive definite also 
satisfies (18). It is intuitively clear that this non-uniqueness of the solution 
of (18) should be used somehow to optimize among all the possible 
solutions. This is exactly what is done in defining the projection filter for 
the case of additive noise. 

Consider now the more realistic case that f is random with correlation 
kernel R and there is additive zero-mean noise with correlation matrix Q, 
according to Eq. (2). An estimation criterion 

E, (( A $- Af-f, (1’ = minimum, (19) 

where E, denotes expectation with respect to noise n, was originally used in 
[6, S] to define the projection filter (PF). In this paper we give another 
criterion, leading to the same result. 
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The estimatef, can be written as 

fi = Bg = BAf+ Bn, 

zfl” +fl”‘, (20) 

with f’,i) the “image component” and fy) the “noise component.” A 
reasonable estimation criterion is that f’,i) is the orthogonal projection off 
on the maximal computable subspace, i.e., on B(A*), and the signal-to- 
noise ratio (SNR) defined as E lify) /I ‘/E I( f$“) )I * is maximum. The operator 
E can be either expectation over both f and n or the expectation over n 
only. The result of Lemma 3 will be the same in both cases. In the latter 
case, 

SNR = II f’l” II ‘/En II fl”’ II 2, 

and the signal-to-noise ratio will be maximized then for each individual 
image f: 

LEMMA 3. Assume BA = A + A. Then the signal-to-noise ratio E 
II fli’ II */E II fl”) II 2 is maximized if and only if 

tr(BQB*) = minimum. (21) 

Proof. We have 

SNR = tr(BARA*B*)/tr(BQB*), 

= tr( A + ARA + A )/tr( BQB*). 

Since the numerator is independent of B, this is maximized exactly when 
the denominator is minimized, yielding (21). 

Also the criterion (19) yields Eq. (21), as shown in [6]. 
We might note the similarity of (18) and (21) with the formulation of the 

Gauss-Markov estimator or BLUE (best linear unbiased estimator) [ 11. 
For the linear model g = Af+ n with f a deterministic parameter vector and 
n the zero-mean noise with covariance matrix Q, the BLUE for f, f, = Bg is 
a solution to the problem 

BA=I, 

tr( BQB* ) = minimum. (22) 

The condition BA = I guarantees conditional unbiasedness and 
tr(BQB*)=E, If-f1 l12. 

There is an essential difference between the image degradation model 
given here in Eq. (2) and the conventional linear statistical model. While 
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the latter is usually overdetermined, with the number of scalar 
measurements exceeding that of the parameters, the situation is opposite in 
Eq. (2). Hence, A can never be of full “column rank” and BA = I never has 
a solution. Hence the usual requirement of conditional unbiasedness, 
E,(f, ( f) =f for all f, cannot hold. It is replaced by the condition fr) = 
J%(f,If)=A’Aff or all f, i.e., the average of the restoration over noise is 
equal to the orthogonal projection of the original image f on the maximal 
computable subspace W(A*). For this reason, the estimate obtained by the 
PF could also be termed the best linear projection estimate (BLPE). 

The problem (18) (21) was solved in [6] and the result is 

LEMMA 4. The solution of ( 18) and (21) is 

B=A+A[A*G+A]+ A*G- +D(Z-GG-), (23) 

with D arbitrary, 

G=AA*+Q, (24) 

and G ~ any operator satisfying, 

GG-G=G. (25) 

The solution (23) allows many special cases. One such special case is 
implied by the assumption that Q is positive definite. Then we have 

LEMMA 5. If Q z=- 0, then (23) is equal to 

B=(A*Q-‘A)+ A*Q-‘. (26) 

Proof: Now G=AA*+Q>O, hence G-=Gf=G-‘, and Eq.(23) 
yields 

B= A+A(A*G-‘A)+ A*G-‘. 

This implies further 

B= (A*G-‘A)+ (A*G-‘A)(A*G-‘A)+ A*G-’ = (A*G-‘A)+ A*G-‘, 

because in general A + A = (A *SA) + (A *SA ) for a positive definite 
operator S. We now make use of the identity 
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which is established by multiplying both sides by Q + AA*. Substituting 
this above yields: 

B= (A*[Q-‘-Q-‘A(Z+A*Q~-‘A)-’ A*Q-‘1 A} + A*G -I, 

={A*Q-‘A-A*Q-‘A(Z+A*Q-‘A)-‘A*Q-‘A}+A*G-’, 

= {A*Q-‘A(Z+A*Q-‘A)- ‘}+ A*G-‘, 

=(A*Q-‘A)+ (Z+A*Q-‘A)A*G-‘, 

= (A*Q-‘A)+ A*Q ‘(AA* + Q) G -‘, 

= (A*Q-‘A)+ A*Q-‘, 

which concludes the proof. 
Note that (26) has the form of the Gauss-Markov estimator [ 11. 

However, A*Q- ‘A is an operator on Z@ into Y? and it has no inverse if 
dim J? > A4, which is the case in the continuous-discrete degradation 
model. The operator B may be computed in some cases by the singular 
value decomposition technique applied to the operator A. Since A has finite 
range, it has only a finite set of singular values which are the square roots 
of the eigenvalues of the M x A4 matrix AA *. In a discrete-discrete case, the 
computational problem of the projection lilter has been studied in [lo]. 

5.PF, WF, AND THE KL SUBSPACES 

The questions that are addressed in this section are: (1) When do the 
Wiener filter, given by (ll), and the projection filter, given by (23), coin- 
cide? (2) If they do not coincide, when can we compute the orthogonal 
projection of any S on the subspace of the Wiener estimates? 

If case (1) follows, then the Wiener filter is optimal by two criteria. First, 
it is the minimum variance filter with respect to both signal and noise, and 
second, the image component in the estimate is the orthogonal projection 
off on &?(A*) for each image S separately, with the signal-to-noise ratio 
minimized. Case (2) means the following: the image component in Wiener 
restoration is f’,i’ = BAf and the noise component is Bn, with the operator 
B given in (11). The orthogonal projection off on 9(BA) is BA(BA) + j If 
we can express BA(BA) + in the form 

BA(BA)+ =XA, 

for some operator X, then using X as the restoration filter yields 

Xg = XAf+ Xn = BA( BA ) + ,f+ Xn. 

(27) 

(28) 
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In this decomposition, the image component will be &l(M)+ f and the 
noise component Xn. It follows that 

II X4--f II 6 II W-f II for each J (29) 

Hence, if noise n is not taken into account, the restoration is improved in 
terms of the norm of 2. 

However, since the Wiener filter is optimal in the sense that the total 
estimation error variance E I/ f-,fi 11’ = E (I f-fii) 1)’ + E II fp) )I ’ is 
minimized, bringing j-Ii) closer to f means that the variance of the noise 
component will be increased. The above procedure means a trade-off 
between correcting the degradation and reducing the additive noise. 

The question of the equivalence of the two filter types means that the 
operator sets WF= {BJB(ARA*+Q)=RA*} and PF= {BlBA=A+A 
and tr(BQB*) is minimum} are the same. Here we restrict to the case when 
both WF and PF contain only one element, i.e., the two filters are both 
unique. A sufficient condition for the uniqueness is that either ARA* or Q 
is nonsingular. In this situation, the following two theorems hold: 

THEOREM 1. Assume ARA* is nonsingular. Then 

(i) PF= {A + }. 
(ii) WF= {RA*(ARA* + Q)-‘1. 
(iii) If Q # 0, then PF# WF. 
(iv) rf Q = 0, then PF = WF if and only if 

%‘(RA*) &%‘(A*). (30) 

(v) With B= RA*(ARA* + Q)-‘, the operator equation 
BA(BA) f = XA has a solution X if and only if (30) holds, and the unique 
solution is 

X=BA(BA)+ A+. (31) 

THEOREM 2. Assume Q is nonsingular and A # 0. Then 

(i) PF= {(A*Q-‘A)+ A*Q-‘1. 
(ii) u/F= {RA*(ARA* + Q)-‘l. 
(iii) PF# WF. 
(iv) With B= RA*(ARA* + Q)-‘, the operator equation 

BA(BA)+ = XA has a solution X if (30) holds, and the solution is 

X=BA(BA)+ A+ +C(Z-AA+) (32) 

with C an arbitrary linear operator on GfM into ~6’. 

409 114’1.4 
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Proof of Theorem 1. (i) If ARA* i s nonsingular, then the rank of A is 
44, implying AA + = I. But then the operator equation BA = A + A, which is 
always satisfied by the PF, has a unique solution B = A +. 

(ii) This is trivially true. 
(iii) Assume that WF = PF, i.e., 

A+ =RA*(ARA*+Q)-l. 

This implies RA* = A’(ARA* + Q), hence ARA* = AA+ARA* + 
AA + Q = ARA* + Q. Thus Q = 0. The result follows by contraposition. 

(iv) Now PF = WF is equivalent to AfARA* = RA*. But this is 
equivalent to S?(RA*) c W(A*). 

(v) The equation BA(BA) + = XA has solutions in X if and only 
if BA(BA)+ A+A = BA(BA)+, in which case the general solution is 
given by Eq. (32). Now BA(BA)+ A +A = BA(BA)+ is equivalent to 
A+ABA(BA)+ =BA(BA)+ which is easily shown to be equivalent to 
A +ABA = BA. Assume first that A ‘ABA = BA holds. Then substituting B 
from (ii) yields A+ARA*(ARA*+Q)-‘A=RA*(ARA*+Q)-‘A which 
multiplied on the right by RA*(ARA*)-’ (ARA* + Q) yields A+ARA* = 
RA*. This implies (30). Assume then (30), hence A + ARA* = RA*. This 
implies directly A+ARA*(ARA* + Q)-’ A = RA*(ARA* + Q))’ A, which 
is equivalent to A + ABA = BA. It remains to show that the solution X is 
indeed given by (31). This follows from the general solution (32) when 
AA + = I is substituted. This concludes the proof of Theorem 1. 

Proof of Theorem 2. (i) Since Q is always nonnegative, this follows from 
Lemma 5. 

(ii) This is trivially true. 
(iii) Assume that PF= WF, i.e., 

(A*Q-‘A)+ A*Q-’ = RA*(ARA* + Q)-‘. 

This implies RA* = (A*Q-‘A)’ A*Q- ‘(MA* + Q)= (A*Q-‘A)+ 
(A*Q-‘A) RA* + (A*Q-‘A)+ A* = A+ARA* + (A*Q-‘A)’ A*, since 
it follows that (A*QplA)+ (A*Q- ‘A) = (A*Q-“‘Q-“*A)+ A*Q-“’ 
Q-‘/*A=(,-‘/*,)+ ,-‘/*A h’ h h w ic IS t e orthogonal projection operator 
on B?(A*Q-‘I*) =W(A*), hence equal to A+A. Further, we obtain from 
the above that ARA* = ARA* + A(A*Q-‘A)+ A*, hence 
A(A*Q-‘A)+ A* =O. But then (A*Q-‘A)(A*Q-lA)+ (A*Q-‘A) = 
A*Q - ‘A = 0, hence A = 0. The result follows by contraposition. 

(iv) According to the proof of (v) in Theorem 1, it is sufficient 
to show that (30) implies A+ABA= BA. Now (30) implies AfARA* = 
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RA*, hence A+ARA*(ARA* + Q)-’ A = RA*(ARA* + Q)-’ A, hence 
A +ABA = BA. This concludes the proof of Theorem 2. 

The condition expressed in Eq. (30) of Theorems 1 and 2 can be given a 
convenient interpretation in terms of a well-known expansion for 
stationary second-order stochastic processes, the Karhunen-Loeve expan- 
sion (see, e.g., [9]). The eigenfunctions and eigenvalues of the covariance 
kernel R are given by 

Rui=liu,, i= 1, 2 ,..., (33) 

with the ui E Z and the li are real numbers. By a Karhunen-Loeve sub- 
space of R we mean any subspace of X that is spanned by a subset of the 
U; functions. We have 

THEOREM 3. %?(RA*) G W(A*) ifand only $&?(A*) is a Karhunen-Lo&e 
subspace of the covariance kernel R. 

Proof It is clear that if %!(A*) is spanned by a set of eigenfunctions of 
R, then B(RA*) is a subspace of g(A*). To prove the converse, assume 
W(RA*)zSZ(A*). Let P be the orthogonal projection operator onto 
&?(A*). Since R* = R, &?(A*) is a reducing subspace of R [3]. Hence we 
have RP = PR. Consider now the operator R, = RP. Since R, is a selfad- 
joint operator with finite dimensional range, there exists an orthonormal 
basis {v, ,..., > of 2 such that 

Assume that exactly the first s eigenvalues 11, ,..., pL, are nonzero. It follows 
that 

which by definition of P must be in W (A*). This yields v, E &!(A*) for 
n = l,..., s. Then v, is also an eigenfunction of R since 

Rv, = RPv, = R, v, = p,,v,. 

We consider now the following two cases: 

(a) s = dim 5f(A*). Then &?(A*) is spanned by the functions v1 ,..., v, 
which are also eigenfunctions of R. 

(b) s < dim &!(A*). Let now JV be a subspace spanned by the 
v, )...) 0,. Then & is also a subspace of %?(A*) and the orthogonal com- 
plement JV’ is the null space of R,. This shows that for any orthonormal 
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basis y., + , ,..., y, of %(A*) 0 A?, with d= dim 9(A *), it follows that 
R, yi= 0. Since yjc9(A*), we have 

Ry,= RPyi= R, yi=O, 

showing that yi is in fact an eigenfunction of R corresponding to eigenvalue 
zero. When we let y, = II, for j< s, then ?%?(A*) is spanned by the basis 
yI ,..., y, which are eigenfunctions of R. This concludes the proof of 
Theorem 3. 

In practice, if A*g is given by 

(A*g)(x)= f gihitx)Y (34) 
i= I 

for any real vector g= (g,,..., g,)r in g”, then &?(A*) is spanned by the 
functions hi. Equivalently, the hi functions could be eigenfunctions of A*A 
belonging to nonzero eigenvalues. If 

hi(x)= f Yjl”jtx) (35) 
j= 1 

for some scalars yji, then (30) is satisfied, and it is possible to obtain the 
orthogonal projection off on the subspace of Wiener estimates. 
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