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An approximate model accounting for incipiently non-isothermal effects is
derived from a well-known model of porous catalyst for appropriate, realistic
limiting values of the parameters. In this limit, the original model is a singularly
perturbed, m-D reaction�diffusion system, and the approximate model is given by
the m-D heat equation with nonlinear boundary condition, coupled with infinitely
many (if m�2) 1-D semilinear parabolic equations, one for each point of the
boundary of the spatial domain. Some limiting cases are still considered in the
approximate model that lead to further simplifications. � 1999 Academic Press

1. INTRODUCTION

The reaction�diffusion system

L�u��t=2u&,2f (u, v), �v��t=2v+;,2f (u, v) in 0, (1.1)

has received great attention in the literature, as a prototype for several
physical problems dealing with an exothermic, irreversible chemical reac-
tion in a spatial domain 0. Here u>0 and v>0 are the non-dimensional
reactant concentration and temperature, respectively, L>0 (Lewis number)
is a ratio of thermal to material diffusivity, ,2 (Damko� hler number) is a
measure of the reaction rate relative to the diffusion rate, and ;>0 is the
non-dimensional, chemical heat release (;L is the ratio of the heat of
reaction to the thermal energy in the domain 0). If f is as given in Eq. (1.4)
below then the system (1.1) is the simplest thermo-diffusive model for a
premixed flame in Combustion theory [1]; in this case 0 is usually an
unbounded cylinder (to model the burner) and the relevant solutions are
travelling waves propagating along the axis of the cylinder. This model also
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applies in porous catalyst theory [2]. In this case 0 is usually bounded (to
model a catalyst particle), and the following boundary conditions are
imposed,

�u��n=_(1&u), �v��n=&(1&v) at �0, (1.2)

to model mass and heat exchange with the outer unreacted fluid. Here n is
the outward unit normal to the smooth boundary of the domain 0 and
the material and thermal Biot numbers, _>0 and &>0, are the ratios of
the rates of mass and heat transfer between the surface of the catalyst and
the external fluid to the corresponding rates of mass and heat transfer
within the catalyst. The appropriate initial conditions are

u=u0(x)>0, v=v0(x)>0 in 0, at t=0, (1.3)

and the relevant solutions are the attractors as t � �, which may be steady
states, limit cycles, and quasi-periodic and more complex chaotic attrac-
tors. The nonlinearity f depends on the type of global kinetic law that is
assumed to model the several physico�chemical processes (adsorption of the
reacting species at the internal surface of the porous body, chemical
reaction in the adsorbed state, and desorption; see [2]) that are present
(in addition to inertia and diffusion). The usual Arrhenius and Langmuir�
Hinshelwood (also named after Michaelis and Menten in the mathematical
Biology literature; the model above is also appropriate for enzymes) kinetic
laws lead to the following nonlinearities,

f (u, v)=up exp(#&#�v), (1.4)

f (u, v)=up[u+k exp(#a&#a �v)]&q exp(#&#�v), (1.5)

where p>0 and q>0 are reaction orders, k>0 is the adsorption�desorption
constant and #�0 and #a�0 are the activation energies.

Precise statements about the large time behavior of (1.1)�(1.3.) (with f as
given in (1.4) or (1.5)) require direct numerical simulation except in some
limiting cases (fortunately, those of practical interest) when simpler
asymptotic submodels apply that are more amenable to purely analytical
treatment. This paper deals with the rigorous derivation of one such
submodel, which is posed by

�v��t=2v in 0, �v��n=&(1&v)+;, |
0

&�
f (u, v) d! at �0;

(1.6)
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where, at each point p # �0, the function u=u(!, t) is given by

(L�,2) �u��t=�2u��!2& f (u, v) in &�<!<0, (1.7)

u=0 at !=&�, �u��!=(_�,)(1&u) at !=0, (1.8)

where the function v=v(t) is in (1.7) the temperature v at p. The new
rescaled variable ! is

!=,', (1.9)

where ' is a coordinate along the outward unit normal to �0 at p. Thus
this submodel consists of the heat Eq. (1.6) coupled (through the nonlinear
boundary condition (1.6)) with infinitely many 1-D semilinear parabolic
equations (i.e., the Eqs. (1.7)), one for each point of �0. At first sight this
(somewhat non-standard) model seems to be more involved than the
original model (1.1)�(1.2), but this is not really so and in fact the submodel
exhibits several advantages that will be explained in Section 4.

A formal derivation, via singular perturbation techniques, of (1.6)�(1.8),
was given in [3], in the distinguished limit

; � 0, , � �, _ � �, ;_,�(,+_)t&tL�,2
t1. (1.10)

In fact, in this paper we shall derive the submodel (1.6)�(1.8) in a range of
limiting values of the parameters wider than that in (1.10); see assumption
(1.11) below. That limit is realistic because the parameters appearing in
(1.1) vary in the range [2]

10&2<;<1, 10&6<,2<2500, 5<_<102,

10&2<&<5, 10&3<L<102.

Inside this parameter range, ; and &�_ are frequently small because porous
catalysts usually exhibit a large thermal conductivity.

The main interest of the submodel (1.6)�(1.8) is that it exhibits a large
variety of codimension-two and -three bifurcations [3] that predict com-
plex large-time dynamics. This is in contrast to other submodels of (1.1).
For instance, if ; � 0, ;,_�(,+_) � 0, and & � 0 then one obtains two
isothermal submodels (for ,=O(1) and , � �), first considered in [4, 5],
which seem to exhibit no more complex attractors than steady states and
limit cycles; see [5�7] for the (first formal and then rigorous) derivation of
these submodels, [5, 8, 9] for several properties of the submodels concern-
ing the steady states, local bifurcations, and global stability properties, and
[10�13] for related submodels of general reaction�diffusion problems.

Let us now explain intuitively how this submodel is obtained in the limit
(1.10). Since ,2 is large the chemical reaction is quite strong and, after
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some time, the reactant (is consumed and its) concentration u becomes
very small in 0 except in a thin boundary layer near �0 (where it cannot
be that small because of the boundary condition (1.2)). Since in addition,
f (0, v)=0, the reaction term becomes also quite small outside the bound-
ary layer and the temperature v thus evolves according to the heat equa-
tion. The appropriate boundary condition (1.8), to be imposed at the inter-
nal edge of the boundary layer, accounts for the heat flux through this
internal edge, which equals the heat exchange with the external medium
(the first term in the right hand side) plus the total heat produced by the
chemical reaction, in the boundary layer, along each normal to �0
(the second term). Notice that this balance relies on three approximations,
namely, (i) a quasi-steady approximation for the evolution of the
temperature in the boundary layer that requires the thermal inertia vt to be
appropriately bounded, (ii) a quasi-one-dimensional approximation that
requires the thermal diffusion along each normal to �0 (essentially,
�2u��'2) to dominate the transversal diffusion (2� v, where 2� stands for the
Laplacian along the hypersurfaces parallel to �0) for, otherwise heat
exchange with other neighboring normals to �0 should also be taken into
account in the above-mentioned heat�flux balance, and (iii) a quasi-isother-
mal approximation along each normal in the boundary layer that requires
the thermal gradient along the normals to be appropriately bounded. The
evolution of the reactant concentration u in the boundary layer, at each
normal to �0, is given by (1.7)�(1.8) if, again, a quasi-one-dimensional
approximation (requiring 2� u to be appropriately controlled) holds.

The main object of this paper is to provide a rigorous derivation of
(1.6)�(1.8), which will be made in Section 2. More precisely, we shall prove
that, after some time T, (i) u is quite small except in a thin boundary layer
near �0, and (ii) the concentration u in the boundary layer and the
temperature v satisfy (1.6)�(1.8) in first approximation, uniformly in t�T.
The fact that the remainders are uniformly small as t � � is essential if we
pretend that our model provides the large-time dynamics of (1.1)�(1.2) in
first approximation. The approximate model (1.6)�(1.8) will be briefly
analyzed in Section 3.

Let us now state precisely the assumptions to be used below. We shall
consider the limit

, � �, ;,_�[(,+_) &]=O(1),

_&1=O(1), &=O(1), ,&1�3=O(;,_�(,+_)), (1.11)

log(1+,�L)=O(,).

The first two conditions are essential for the asymptotic model to apply, as
we explain now. , must be large for the boundary condition near �0 to

82 MANCEBO AND VEGA



develop, and ;,_�[(,+_) &] must be bounded for the temperature v to be
uniformly bounded; in order to physically explain the latter, notice that the
total heat produced in the boundary layer (i.e., the second term in the right
hand side of (1.6), which is of the order of ;,_�(,+_), must be compen-
sated by the heat loss through the boundary, &(v&1), in order to control
the temperature inside 0. The last four conditions of (1.11) are only
imposed for technical reasons and could be deleted if a more involved way
of deriving the asymptotic model (than that below) were followed. The
domain 0 and the nonlinearity f will be assumed to be such that

(H.1) 0/Rm (m�1) is a bounded domain, with a C4+: (for some
:>0) boundary. Notice that then 0 satisfies uniformly the interior and
exterior sphere conditions: there are two constants, \1>0 and \2>0, such
that, for each x # �0, two hyperspheres of radii \1 and \2, S1 and S2 are
tangent to �0 at x and satisfy S1 /0 and S� 2 & 0� =[x] (with overbars
standing hereafter for the closure).

(H.2) The C1-function f : [0, �[_[0, �[ � R is such that f (0, v)
=0 for all v�0, and f (u, v)>0 whenever u>0 and v>0.

(H.3) There is a continuous, increasing function g1 : [0, �[ � R
such that

f (u, v)� g1(u) if u�0 and v�0.

(H.4) There are two strictly positive constants, k1 and k2 , and a
positive, continuous, decreasing function, g2 : [0, �[ � R, such that

k2 u� f (u, v)�k1 u if 0�u�2 and v�1�2,

0<ug2(u)� f (u, v) if u>0 and v�1�2.

(H.5) There are three constants, k3>0, k4>0, and k5>0 such that

k3< f $u(u, v)<k4 , | f $v(u, v)|�k5 u

if 0�u�_�(_+, - k2 �2m) and v�1�2.

In addition, the initial conditions (1.3) will be assumed be such that

(H.6) &u0 &C(0� )=O(1) and &v0&C(0� )=O(1) in the limit (1.11).

The assumptions (H.1)�(H.6) are the same as those imposed in [7] to
derive the second quasi-isothermal submodel, and deserve the same
remarks made there, which are not repeated here for the sake of brevity.
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2. MATHEMATICAL DERIVATION OF THE
APPROXIMATE MODEL

Under the assumptions (H.1)�(H.3) the parabolic problem (1.1)�(1.3)
is readily seen to have a unique classical solution in 0�t<�. In order to
derive the asymptotic model (1.6)�(1.8) we could proceed in a somewhat
straightforward manner, following the main ideas in our intuitive justifica-
tion given above, as follows. We would first prove that after some time:

(i) The concentration u (and thus the reaction term ,2f (u, v); see
assumption (H.2)) becomes quite small except in a thin boundary layer
(whose thickness is of the order of ,&1) near �0, and the temperature v
becomes uniformly bounded by a O(1) quantity in 0� .

(ii) |vt | is bounded by a O(1) quantity in 0� , and the first derivative
of v along the normals to �0 is bounded by a O(1) quantity in the
boundary layer.

(iii) The first derivatives of u and v along the normals to �0, and the
first and second derivatives of u and v along the hypersurfaces parallel to
�0, become small as compared to the corresponding second derivatives of
u and v along the normals to �0, in the boundary layer.

Notice that properties (ii) and (iii) would justify the quasi-steady and
quasi-isothermal approximations for v and the quasi-one-dimensional appro-
ximations for u and v (in the boundary layer) that were mentioned above.
Properties (i)�(iii) would allow us to readily obtain the asymptotic model
(1.6)�(1.8) for (a) the heat Eq. (1.6) would apply (in first approximation)
in the bulk (i.e., outside the boundary layer) according to property (i); (b)
the (1-D) Eq. (1.7) would apply (in first approximation) to u in the bound-
ary layer, according to property (iii); and (c) the boundary condition (1.6),
at the internal edge of the boundary layer (which coincides with �0 in first
approximation) would be readily obtained upon integration of the second
Eq. (1.1) along each normal to �0, from the internal edge of the boundary
layer up to the boundary (notice that, according to properties (ii) and (iii),
only the second derivative along the normals to �0 and the nonlinear term
need to be considered in first approximation). Now, property (i) readily
comes from Lemma 2.1 below, which is a straighforward extension of
results already proven in [7]. But, in order to prove properties (ii) and (iii)
we would need to follow a fairly involved and technical process. Notice
that the problem is singularly perturbed and usual a priori estimates do not
directly provide the required results; these estimates provide bounds for the
derivatives of u and v that are much weaker than needed (see Lemma 2.1
below). Thus we shall not pursue the ideas above. Instead, for the sake of
brevity, we shall follow a somewhat tricky and ad hoc approach, which
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relies on the following decomposition of the temperature v for t�T1 (with
T1 as defined in Lemma 2.1 below),

v=v1+V, (2.1)

where v1 and V are defined as

�v1 ��t=2v1&,2�3v1+;,2f (u, v) in 0,
(2.2)

�v1 ��n=&,v1 at �0,

�V��t=2V+,2�3v1 in 0,
(2.3)

�V��n=&(1&V)+(,&&)v1 at �0,

for t>T1 , with initial conditions

v1( } , T1)=0, V( } , T1)=v( } , T1) in 0� . (2.4)

The main idea in this decomposition is connected with the main difficulty
of obtaining close bounds on the derivatives of v from the second Eq. (1.1),
namely, that the nonlinearity f has the bad sign in this equation, and the
spatial derivatives of f in the boundary layer are quite large because |{u|
is quite large there; thus, the usual a priori estimates applied to the equa-
tions giving the derivatives of v (which are obtained upon derivation of the
second Eq. (1.1)) give results that are not good enough for our purposes.
In our decomposition of v, the nonlinearity f appears only in the equation
giving v1 ; but because of the dissipative terms we have introduced in both
the equation and the boundary condition (2.2) (namely, &,2�3v1 and
&,v1, respectively) we can show that both v1 and their derivatives are
appropriately small. Of course, there is a price for the introduction of these
dissipative terms, namely, that they appear as forcing terms in (2.13); but
these forcing terms are not too strong and both V and their derivatives can
be controlled.

A further simplification in the analysis below will result from our use of
local time averages and local spatial averages along the hypersurfaces
parallel to �0 when bounding both the remainders that are neglected in the
asymptotic model and the difference between their solutions and those of
the original model (in the proof of Theorem 2.4 below). Then we shall not
obtain optimal results (because of the loss of precision associated with the
averaging process) but the derivation will be greatly simplified because we
shall only need to obtain bounds of the first-order spatial derivatives of u,
v1 , and V and of the (1�2)-temporal-Ho� lder oscillation of u and v1 (instead
of the bounds of the second-order spatial derivatives and first-order
temporal derivatives that will be needed in order to obtain optimal results).
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This section is organized as follows. In Section 2.1 we first give (in
Lemmata 2.1�2.3) the above-mentioned bounds on u, v, v1 , and V, and on
their first-order spatial derivatives and (1�2)-temporal-Ho� lder oscillation.
With these bounds at hand, we shall obtain the asymptotic model in
Theorem 2.4, which is the main result of the paper. For the sake of clarity,
we omit in Section 2.1 the proofs of Lemmata 2.1�2.3, which are given in
Section 2.2 along with the statements and proofs of some additional, purely
technical results that are also needed.

2.1. Derivation of the Model

Let us begin with some notation. If \1 is as defined in assumption (H.1)
(at the end of Section 1), we consider the domain 01 /0, defined as

01=[x # 0 : d(x)<\1�2], (2.5)

where d(x) stands hereafter for the distance from x to �0. Notice that the
hypersurfaces parallel to �0 are well defined and smooth in 01 , where we
can use a curvilinear coordinate system based on these hypersurfaces and
on their common normals. Also, the intrinsic gradient operator,

{� =gradient along the hypersurfaces parallel to �0, (2.6)

which will be frequently used below, is well-defined in 01 . For convenience,
we shall use below the Ho� lder, temporal, local oscillation bound, defined
as

(w) (:)
t =sup[ |w(x, t$)&w(x, t")|�|t$&t"|: : t�t$<t"�t+1],

for 0�:�1, (2.7)

with 0<:�1. Notice that (w) :
t depends on x and t, and that its lower,

upper bound in x # 0� is the usual :-Ho� lder temporal seminorm in
0� _[t, t+1]; see, e.g., [14].

Lemma 2.1. Under the assumptions of (H.1)�(H.4) and (H.6) (at the end
of Section 1) every solution of (1.1)�(1.3) is such that

+0 exp[&- 2k1 ,d(x)]<u<+1 exp[&- k2 �m ,d1(x)],

1�2<v<1+;,+1 �&, (2.8)

(L�,) &u&C0, 1�2(0� _[t, t+1])+|{u|<,+1 exp[&- k2 �m , d1(x)],
(2.9)

&v&C1, 1�2(0� _[t, t+1])<1+;,+1+;+1, (2m+5)�(m+3),
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whenever x # 0� and t�T1 , where \1 , k1 , and k2 are as defined in assump-
tions (H.1) and (H.4), d(x) is the distance from x to �0, d1(x)=
min[d(x), \1] and T1 , +0 , and +1 satisfy

T1=O(1+(L�,2) log(2+_�,+,�_)+(1�&) log(2+;,2�&))

+&1
0 =O((_+,)�_), +1=O(_�(_+,)),

in the limit (1.11). Also, +0 and +1 depend only on the quantities

,, _, ;, &, (2.10)

and T1 depends only on these quantities, L, &u0&C(0� ) , and &v0 &C(0� ) .

Lemma 2.2. Under the assumptions (H.1)�(H.6) (at the end of Section 1)
let (u, v) be a solution of (1.1)�(1.3), and let v1 and T1 be as defined in (2.2),
(2.4), and Lemma 2.1. Then we have

|v1 |<+2 in 0� ;
(2.11)

|{v1 |<+2 �$(x), (v1) (1�2)
t <+2 �$(x)5�4 in 0� 1 ,

|{v1 |+(v1) (1�2)
t <+2 in 0"01 , (2.12)

for all t�T1+1, where $(x)=,&1 or ,&2�3 depending on whether d(x)<
,&2�3 or d(x)�,&2�3 (d(x)=distance from x to �0, as above) and +2

depends only on the quantities (2.10), +2=O(;_�(,+_)) in the limit (1.11).

Lemma 2.3. Under the assumptions of Lemma 2.2, let {� be the gradient
along the hypersurfaces parallel to �0 and let ( } ) (1�2)

t be as defined in (2.7).
If (u, v) is a solution of (1.1)�(1.3), and v1 and V are as defined in (2.2)�(2.4)
then the following estimates hold,

|{� u|+(u) (1�2)
t <[+3 ,_�(,+_)] exp[&- k�m ,d(x)�2],

(2.13)
|{� v1 |+(v1) (1�2)

t <+3 , |{V|<+3,,

if x # 0� 1 and t�T2 , where 01 is as defined in (2.5), k=min[k2 , k3], with
k2 and k3 as defined in assumptions (H.4)�(H.5), d(x) is as in Lemma 2.1,
the quantity +3 depends only on the quantities (2.10), and +3=
O(;_,1�3�(,+_)) and 0�T2&T1=O(1+L�,2) log(,+,2�L) in the limit
(1.11).

The results in lemmata above provide the ingredients for the derivation
of the asymptotic model (1.6)�(1.8) that will be made in the proof of
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Theorem 2.4 below. For convenience, let us write down the asymptotic
model again as

�V
�t

=2V+�1(x, t) in 0, (2.14)

�V
�n

=&(1&V)+;, |
0

&�
f (U, V) d!+�2(s, t) at �0, (2.15)

where at each point s # �0, U satisfies

L
,2

�U
�t

=
�2U
�!2 & f (U, V(s, t)) in &�<!<0, (2.16)

U=0 at !=&�,
�U
�!

=
_
,

(1&U) at !=0. (2.17)

Theorem 2.4. Under the assumptions (H.1)�(H.6) (at the end of
Section 1), there are two constants, *>0 and +>0, and for each solution of
(1.1)�(1.3), there is a solution of (2.14)�(2.17) and a constant T� �0 such
that:

(i) * depends only on the domain 0 and on the nonlinearity f, +
depends only on 0, L, f and on the quantities (2.10), and T� depends only on
0, L, f, on the quantities (2.10), and on &u0&C(0� ) and &v0&C(0� ) .

(ii) + and T� are such that

+=O(;,2�3_�(,+_)), (2.18)

T� =O(L�,2+1�&) log(2+_�,+,�_)+O(2+L�,2) log(,+,2�L), (2.19)

in the limit (1.11).

(iii) For all t�T� we have

|V(x, t)&v(x, t)|<+, |�1(x, t)|<+ if x # 0� ,
(2.20)

|�2(s, t)|<+ if s # �0,

|U(&,d(x), s, t)&u(x, t)|<[+_�(,+_)] exp[&*,d(x)]

if d(x)<\1 �2, (2.21)

where d(x) is the distance from x to �0, s # �0 is the point where such a
distance is reached, and \1 is as defined in assumption (H.1).
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Proof. For each x # 0� such that d(x)<\1 �2, let H(x) be the hypersur-
face parallel to �0 passing through x and let B(x) be defined as

B(x)=[ y # H(x) : $(x, y)<#(x)], (2.22)

where $ is the geodesic distance along H(x) and #(x) is selected such that
the measure of B(x) equals ,&2(m&1)�3, that is,

|
B(x)

dS=,&2(m&1)�3. (2.23)

Thus B(x) is a geodesic hypersphere of H(x) centered at x, and the
geodesic radius of B(x) is of the order of ,&2�3 as , � �, uniformly in
d(x)<\1 �2. Now, let us define the functions U1 and V1 as

U1=,2(m&1)�3 |
B(x)

u( } , t) dS, (2.24)

V1=,2(m+1)�3 |
t+,&4�3

t _|B(x)
v1( } , t) dS& d{. (2.25)

Notice that, according to Lemma 2.3 and the mean value theorem we have

|V1&v1 |�C1+3,&2�3,

|U1&u|�C1[+3,1�3_�(,+_)] exp[&*,d(x)] (2.26)

if d(x)>\1 �2 and t�T� ,

where +3 is as in Lemma 2.3, C1>0 depends only on the domain 0, and

*=- k�8m, T� =T2 , (2.27)

with k and T2 as in Lemma 2.3. Also, * and T� satisfy the stated properties
(see Lemmata 2.1�2.3).

Now, for each point s # �0, let ' be a coordinate along the outward unit
normal to �0 at s. If we take into account the expression for the Laplacian
operator in Lemma 2.8 below, and the equations and boundary conditions
(1.1)�(1.2) and (1.4), then U1 and V1 are seen to satisfy

�2V1��'2+;,2f (U1 , V(s, t))=.1(', s, t), (2.28)

L �U1 ��t&�2U1 ��'2+,2f (U1 , V(s, t))=.2(', s, t)

if &\1 �2<'<0, (2.29)
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�V1 ��'+,V1=.3(s, t),
(2.30)

�U1 ��'&_(1&U1)=.4(s, t) at '=0,

�V1 ��'=.5(s, t) at '=&,&2�3, (2.31)

where V=V(x, t) is as defined by (2.3)�(2.4) and

.1(', s, t)=,2(m+1)�3 _|B(')
[v1( } , t+,&4�3)&v1( } , t)] dS

&(m&1) |
t+,&4�3

t

�
�' |

B(')
Mv1 dS d{&

+,2(m+1)�3 |
t+,&4�3

t _|B(')
(,2�3v1&;,2f (u, v)) dS

&|
�B(')

{� v1 } n~ dS1& d{+;,2f (U1 , V(s, t)), (2.32)

.2(', s, t)=,2(m&1)�3 _|B(') \(m&1)
�
�'

(Mu)&(m&1)2 M 2u

&,2f (u, v)+ dS&|
�B(')

{� u } n~ dS1&
+,2f (U1 , V(s, t)), (2.33)

.3(s, t)=&(m&1) ,2(m+1)�3 |
t+,&4�3

t
|

B(0)
Mv1 dS,

(2.34)

.4(s, t)=&(m&1) ,2(m&1)�3 |
B(0)

Mu dS,

.5(s, t)=,2(m+1)�3 |
t+,&4�3

t
|

B(&,&2�3)
[�v1��'&(m&1) Mv1] dS d{.

(2.35)

Here {� and n~ are the gradient operator and the outward unit normal to
�B(') along the hypersurfaces parallel to �0 and M is the mean curvature
of such hypersurfaces and, in addition to integrating by parts, we have
taken into account Eq. (2.52) below. If, in addition, we use the assumption
(H.5) (at the end of Section 1) and the results in Lemmata 2.1, 2.2, and 2.3,
and apply the mean value theorem, then we obtain the following estimates,
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} |
0

&,&2�3
.1(', s, t) d' }<+4 ,

(2.36)

|.2(', s, t)|<[,2+4_�(,+_)] exp(*,'),

|.3(s, t)|<+4 , |.4(s, t)|<C2_�(,+_),

|.5(s, t)|<+4 , if &\1�2<'<0, s # �0 and t�T� , (2.37)

where C2>0 depends only on the domain 0, and +4 depends only on 0,
f and the quantities (2.10) and satisfies +4=O(;,2�3_�(,+_)) in the limit
(1.11).

If we now integrate Eq. (2.28) in &,&2�3<'<0, take into account
(2.30) and (2.31), and add ,v1(s, t) to both sides of the resulting equation,
we obtain the following expression for v1(s, t),

,v1(s, t)=;,2 |
0

&,&2�3
f (U1 , V(s, t)) d'+.6(s, t), (2.38)

where the remainder .6(s, t) is given by

.6(s, t)=,[v1(s, t)&V1(s, t)]+.3(s, t)&.5(s, t)&|
0

&,&2�3
.1(', s, t) d',

and, according to (2.26), (2.36), and (2.37) satisfies

|.6(s, t)|<+5 if s # �0 and t�T� ,

with +5 depending only on 0, f, and the quantities (2.10), and satisfying
+5=O(;,2�3_�(,+_)) in the limit (1.11).

Now, for each s # �0, let U=U(', s, t) be the unique solution of

L�U��t=�2U��'2&,2f (U, V(s, t)) in &�<'<0,
(2.39)

�U��'=_(1&U) at '=0,

if t�T� , with initial conditions

U(', s, T� )=U1(', s, T� ) if &\1 �2�'�0, (2.40)

U(', s, T� )=U1(&\1 �2, s, T� ) exp[- k1 �2m ,('+\1 �2)]

if &�<'<&\1 �2, (2.41)
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where k1 and T� are as defined in assumption (H.4) and Eq. (2.27).
Since k2U< f (U, V)<k1 U (assumption (H.4)) and 0<U(', s, T� )<
[_�(, - k2 �m+_)] exp[&- k2 �2m ,d(x)] (see Eqs. (2.8), (2.24), and
(2.40)�(2.41)) maximum principles readily imply that

0<U(', s, t)<[_�(, - k2 �m+_)] exp(- k2 �2m ,')

if &�<'�0, s # �0, and t�T� , (2.42)

and assumption (H.5) and the mean value theorem readily imply that

f (U1 , V)& f (U, V)=h(', s, t)(U1&U), with h�k3

if &\1 �2<'<0, s # �0, and t�T� .
(2.43)

Then if * is as defined in (2.27) and +6 is defined as

+6=max[2+4 _�[k3(,+_)], C2_�[*,(,+_)],

[_(, - k2 �m+_)] exp(&- k2 �2m ,\1 �4)], (2.44)

the functions w\=+6 exp(*,')\(U1&U) are readily seen to satisfy (see
(2.29)�(2.30), (2.36)�(2.37), and (2.39)�(2.43)) for all s # �0,

�w\ ��t&�2w\ ��'2+,2h(', s, t) w\>0

in &\1 �2<'<0, if t>T� ,

w\>0 at '=&\1 �2,

�w\ ��'+_w\>0 at '=0, if t>T� ,

w\>0 in &\1 �2<'<0 if t=T� ,

and maximum principles readily imply that w\>0, i.e., that

|U1&U|�+6 exp(*,') if &\1 �2�'�0, s # �0 and t�T� .
(2.45)

Also, according to the definition (2.44), +6 depends only on 0, f, and
the quantities (2.10), and satisfies +6=O(;,2�3_�(,+_)+,&1) _�(,+_) in
the limit (1.11).

Now, Eqs. (2.16) and (2.17) are readily obtained from (2.39) when using
the rescaled variable

!=,', (2.46)
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and the estimate (2.21) readily follows from the estimates (2.26) and (2.45),
with the upper bound + satisfying the stated properties. Also, Eqs. (2.14)
and (2.15) are obtained from Eqs. (2.3) and (2.38) if the variable (2.46) is
used, with

�1(x, t)=,2�3v1 ,

�2(s, t)=&&v1+;, _|
0

&,1�3
f (U1 , V(s, t)) d!&|

0

&�
f (U, V(s, t)) d!&

+.6(s, t)).

Finally, when using Lemma 2.2, assumption (H.5), and Eqs. (2.26) and
(2.42), and applying the mean value theorem, |�1 |, |�2 | , and |v&V|=|v1 |
are seen to satisfy the inequalities (2.20), with the upper bound + satisfying
the stated properties. Thus the proof is complete.

Remarks 2.5. Four Remarks about Theorem 2.4. (a) The result in
Theorem 2.4 shows that, after an initial transient 0�t�T� , the solution of
(1.1)�(1.3) becomes close to a solution of the asymptotic model
(2.14)�(2.17) in the sense of the estimates (2.20) and (2.21). Notice that in
the limit (1.11), +<<;,_�(,+_) and +<<1. Since, on the other hand (see
Lemma 2.1 and Eqs. (2.20)�(2.21)), Ut_�(,+_), |V&1|t;,_�(,+_) &,
and |2V| is, at least, of the order of & |V&1|, we have |u&U|<<U,
|v&V|<<V, |�1 |<<|2V|, and |�2 |<<& |V&1|. Thus, both the errors,
|u&U| and |v&V|, and the remainders, |�1 | and |�2 |, are appropriately
small.

(b) The heat Eq. (2.14) applies in the whole domain 0, and not in a
slightly smaller sub-domain (i.e., outside the boundary layer) as our
physical explanation in Section 1 suggested. This has been so because
Eq. (2.14) applies to V and not to the original variable v.

(c) A close look at the proofs of Lemmata 2.2 and 2.3 and Theorem
2.4 shows that our estimates are not optimal. But, as pointed out at the
beginning of this section, in order to avoid a too technical and lengthy
derivation, we did not pretend any optimality.

(d) The estimates (2.20)�(2.21) hold uniformly in T� <t<�. This is
essential, for if, according to these estimates, we consider the distance
associated with the norm

&(U( } , } , t), V( } , t))&=sup[U(!, s, t) exp(&*!): &\1,�2<!<0, s # �0]

+sup[ |V(x, t)|: x # 0],

then the solutions of the original problem and of the asymptotic model
remain close in finite time intervals (after the initial transient), as readily
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seen via maximum principles. As a consequence, the exponential attractors
as t � � of both problems are close to each other; of course, non-exponen-
tial attractors need not be close. This is the sense in which the asymptotic
behavior as t � � of the original model may be approximated by that of
the asymptotic model.

2.2. The Proof of Lemmata 2.1�2.3 and Some Technical Results

In order to prove Lemmata 2.1�2.3, which is the object of this subsection,
we need four technical results, which are considered first. The following
result provides the key ingredient to obtain the estimates (2.5) in Lemma 2.1.

Lemma 2.6. Under the assumptions (H.1)�(H.4) and (H.6) (at the end of
Section 1), there is a constant T0 , depending on &u0 &C(0� ) , &v0&C(0� ) , L, and
the quantities (2.10) such that (i) T0=O((L�,2) log(2+_�,+,�_)+
(1�&) log(2+;,2�&)) in the limit (1.11), and (ii) the solution of (1.1)�(1.3)
satisfies

u1<u( } , t)<u2 , 1�2<v( } , t)<2+v̂1 in 0, if t�T0 ,

where u1 , u2 , and v̂1 are the unique solutions of the following linear problems,

2u1=2k1 ,2u1 in 0, �u1��n=_(1&u1) at �0

2u2=k2 ,2u2 �2 in 0, �u2��n=_(1&u2) at �0

2v̂1+;k1 ,2u2=0 in 0, �v̂1 ��n=&&v̂1 at �0

with the constants k1>0 and k2>0 as defined in assumption (H.4).

Proof. [7, Lemma 2.2]. Notice that the scaling of the time variable
here is different from that in [7].

In order to bound the functions u1 , u2 , and v1 appearing in Lemma 2.6
we shall need the following technical result, which will be also needed in
the sequel.

Lemma 2.7. Under the assumption (H.1) (at the end of Section 1), let u~
and v~ be the solutions of

2u~ =42u in 0, �u~ ��n=_(1&u~ ) at �0, (2.47)

2v~ +=42u~ =0 in 0, �v~ ��n=&#v~ at �0, (2.48)
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where 4, =, _, and # are strictly positive. Then the following estimates hold,

[_�(_+$1)] exp[&$1 d(x)]

�u~ (x)�[_�(_+$2)] cosh[$2(\1&d1(x))]�cosh($2\1),

0<v~ (x)<$3 ,

for all x # 0� , where \1 is as defined in assumption (H.1), d(x) is the distance
from x to �0, d1(x)=min[d(x), \1], and the positive constants $1 , $2 , and
$3 satisfy

$2=4�- m, |$1&4|=O(4&1)
(2.49)

$3=O(=_(4+#)�((_+4)#))) as 4 � �,

uniformly in =>0, _>0, and #>0.

Proof. The estimates for u~ and the lower estimate for v~ are proven in
[7, Lemma 2.1]. The upper estimate for v~ is readily obtained when taking
into account the fact that v~ 1=v~ &=[_�(_+$2)&u~ ] satisfies 2v~ 1=0 in 0,
�v~ 1 ��n=&#v~ 1&=#[_�(_+$2)&u~ ]+=_(1&u~ ) at �0. But, according to the
estimates for u~ , we have _�(_+$1)�u�_�(_+$2) at �0, and thus when
maximum principles [15] are applied, we get v~ 1�=_$1 �((_+$1)#) in 0� , or
v~ �=_�(_+$2)+=_$1 �((_+$1) #) and the upper estimate for v~ readily
follows. Thus the proof is complete.

The following result provides a decomposition of the Laplacian operator
in terms of the derivatives along the outward unit normal to the boundary
and the intrinsic Laplacian operator along the hypersurfaces parallel to the
boundary.

Lemma 2.8. Under the assumption (H.1) (at the end of Section 1), the
Laplacian of a function w # C2(01) at p # 01 is given by

2w=�2w��'2&(m&1) M( p) �w��'+2� w at p,

where ' is a coordinate along the outward unit normal to �0, M( p) is the
mean curvature of the hypersurface H passing through p (with the sign of M
chosen according to the outer unit normal to H) and 2� is the (intrinsic)
Laplacian operator along H.

Proof. Let x=x0('2, ..., 'm) be a C3-regular parametric representation
of a neighborhood of p in H such that the associated parametric lines are
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orthogonal everywhere and x0'k } x0'l=$kl (=the Kronecker symbol) at p.
If n=n('2, ..., 'm) is the outward unit normal to H, then

x='1n('2, ..., 'm)+x0('2, ..., 'm)

defines a C2-coordinate system in a neighborhood N of p in Rm such that
the hypersurfaces '1=constant are precisely those parallel to H (and to
�0), and

'1='&d( p). (2.50)

Also, the co- and contra-variant components of the associated metric
tensor are such that

g11= g11=1, gkl= gkl=0 if k{l in N;
(2.51)

gkk= gkk=1 at p for all k.

If G is the determinant of the m_m matrix (gij), then we have

�G��'1=2 :
m

k=2

n� 'k } x� 0'k=&2 :
m

k=2

Lkk=&2(m&1) M( p), at p.

(2.52)

Here we have used (2.51), the definition of the mean curvature [18], and
the Weingarten equations (see [18, p.115] or [19, Vol. III, p.11]) applied
to H at p that, according to (2.51), may be written as

n'k=& :
m

l=2

gllLkl x0'l at p,

where Lkl are the coefficients of the second fundamental form associated
with the parametric representation x=x0('2, ..., 'm).

Now, the Laplacian of w in N is given by

2w=G&1�2 �
�'1 \G1�2 �w

�'1++G&1�2 :
m

i, j=2

�
�' i \G1�2gij �w

�' j+ ,

where we have used (2.51). Then we only need to use (2.50) and (2.52), and
take into account the fact that the last term in the right hand side
is precisely 2� w; notice that the stated result does not depend on the
coordinate system ('2, ..., 'm). Thus the proof is complete.

The following result was proven in [7] and provides the key ingredient
for obtaining that part of the estimates (2.13) dealing with the gradient
along the hypersurfaces parallel to �0.

96 MANCEBO AND VEGA



Lemma 2.9. [7, Lemma 2.7]. Under the assumptions (H.1) (at the end of
Section 1) let t~ 0 be a unit vector that is tangent to a hypersurface H, parallel
to �0, at p # 0� 1 . Then there are a neighborhood N of p in Rm, a C3-vector
field t~ : N � Rm, two vectors a1 and a2 , and two scalars b1 and b2 , such that
the following properties hold:

(i) a1 and a2 , b1 and b2 depend continuously on p and t~ 0 .

(ii) t~ =t~ 0 at p, t~ } t~ =1 in N, and, for each q # N & 01 , t~ (q) is
tangent to the hypersurface parallel to �0 passing through q.

(iii) If I/R is an open interval and w : (N & 0� 1)_I � R is
C3-function satisfying

�w��t=2w+. in (N & 0� 1)_I,

then the C2, 1-function w1={w } t~ satisfies

�w1 ��t=2w1+a1 } {w1+a2 } {w+b1w1+{. } t~ at p,

for all t # I, (2.53)

�w1��n={(�w1 ��n) } t~ +b2w1 at p, for all t # I, (2.54)

where n is the outward unit normal to H.

Now we have the ingredients to prove Lemmata 2.1�2.3. The first two
proofs are based on Lemmata 2.6 and 2.7, and on standard estimates up
to the boundary and imbedding theorems, which are used in conjunction
with appropriate rescalings of the space and time variables.

Proof of Lemma 2.1. Let us define T1=1+L�,2+T0 , where T0 is as
defined in Lemma 2.6. The estimates (2.8) readily follow when Lemmata
2.6 and 2.7 above are applied. The first estimate (2.9) is obtained precisely
as in [7, Lemma 2.6] (recall that the scaling for the time variable here is
different from that in [7] and that when the time variable is rescaled as
t=={ then &u&C0, :(0� _[t, t+1])�=&1 &u&C0, :(0� _[{, {+1]) whenever 0<=�1
and 0�:�1), and the second estimate (2.9) readily follows upon applica-
tion of Lp estimates up to the boundary [16, p.133] and imbedding
theorems [14, p. 80] to the second Eq. (1.1) and the boundary condition
(1.2).

Proof of Lemma 2.2. Let u2 be as in Lemma 2.6, and let us define the
function v2>0 as the unique solution of

2v2+k1 ;,2u2=0 in 0, �v2 ��n=&,v2 at �0,

which, according to Lemma 2.7, satisfies

(0 <) v2�O(;_�(,+_)) uniformly in x in 0� . (2.55)
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Now, according to assumption (H.4) and Eq. (2.8) we have | f (u, v)|<k1u2

if x # 0� and t>T1 and thus v2 is a super-solution of (2.2). When applying
maximum principles to (2.2), (2.4) we obtain 0�v1(x, t)<v2(x) if x # 0�
and t�T1 , and the first estimate (2.11) readily follows from (2.55).

In order to obtain the remaining estimates (2.11), let (x0 , t0) be such
that x0 # 0� 1 and t0�T1+1, and let us consider the stretched variables
!=(x&x0)�$(x0) and {=(t&t0)�$(x0)2, to rewrite (2.2) as

�v1 ��{=2! v1&$(x0)2 ,2�3v1+;,2 $(x0)2 f (u, v)

if x0+$(x0)! # 0,

�v1 ��n=&$(x0) ,v1 if x0+$(x0) ! # �0.

Since, in addition, according to (H.4), Eq. (2.8) and the first estimate
(2.11),

|&$(x0)2 ,2�3v1+;,2 $(x0)2 f (u, v)|

=O(;_�(,+_)) if |!|�2 and &1�{�1,

uniformly in x0 # 0� 1 and t0�T1+1, we only need to apply local Lp

estimates (up to the boundary if d(x0)<,&1�2, and interior estimates
otherwise) and imbedding theorems to obtain |{!v1 |+(v1) {

(4�5)=
O(;_�(,+_)) at !=0, {=0, uniformly in x0 # 0� 1 , t0�T1+1. When com-
ing back to the original variables we readily get |{v1 |<$(x0)&1

O(;_�(,+_)) and (v1) (4�5)
t <$(x0)&2 O(;_�(,+_)), uniformly in x0 # 0� 1

and t0�T1+1, and the second estimate (2.11) follows. In order to obtain
the third estimate (2.11), we consider the following interpolation inequality
(which is stated in terms of Ho� lder norms in [14, p. 80], but is readily seen
to apply also to the local oscillation ( } ) (:)

t defined in (2.7)), (v1) (1�2)
t �

c1=3�10(v1) (4�5)
t +c2=&1�2 |v1 |, which holds whenever 0<=<1, with c1>0

and c2>0 independent of v1 ; if we now take ==$(x0)5�2 then we readily
obtain (v1) (1�2)

t =$(x0)&5�4 O(;_�(,+_)) (uniformly in x0 # 0� 1 and
t0�T1+1), and the third inequality (2.11) follows.

In order to obtain (2.12), let x0 be a point of 0 such that d(x0)>\1 �3
and let B1 be the hypersphere of radious \1 �6 centered at x0 ; notice that
�B1 /0. Let us consider the function v3 : B� 1 � R defined as

v3=[A1+A2(,)] cosh(,1�3r)�cosh(,1�3\1 �6),

where

A1=max[ |v1(x, t)| : x # 0� , t�T2],

A2(,)=2k1;,4�3+1 cosh(,1�3\1 �6) exp(&- k2 �m ,\1 �6)
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with k1 , k2 , and +1 as defined in assumptions (H.4)�(H.5) and Lemma 2.1.
That function is readily seen to satisfy

2v3&,2�3v3+;,2f (u, v)<0 in B1 ,

v3>v1 at �B1 if t�T2.

Thus v3 is a super-solution of (2.2) in B� 1 and thus v(x, t)�v3 if x # B1 and
t�T1 . In particular, this inequality holds at x0 and consequently, at x=x0

we have,

|&,2�3v1+;,2f (u, v)|�|,2�3v3 |=,2�3(A1+A2)�cosh(,1�3\1 �6)

=O(;_�(,+_))

in the limit (1.11), uniformly in d(x0)>\1 �3 and t�T1 . Then we only need
to apply (to (2.2)) local, interior Lp estimates and imbedding theorems to
obtain (2.12), and the proof is complete.

Now we give the proof of Lemma 2.3, which is the most involved one in
this section.

Proof of Lemma 2.3. Let us first consider the following quantities,

P(T $, T")=sup[ |{V|+(V) (1�2)
t : x # 0� , T $�t�T"], (2.56)

Q(T $, T")=sup[ |{� v1 |+(v1) (1�2)
t : x # 0� 1 , T $�t�T"], (2.57)

R(T $, T")=sup[[|{� u|+(u) (1�2)
t ] exp[- k�m ,d(x)�2]: x # 0� 1 ,

T $�t�T"], (2.58)

S(T $, T")=sup[ |{v|+(v) (1�2)
t : x # 0� , T $�t�T"], (2.59)

where T1+1�T $<T"<�, with T1 as defined in Lemma 2.1. Notice that
according to the estimates (2.9), (2.11) and the definition (2.1), the four
quantities appearing in (2.56)�(2.59) are bounded (and thus the definitions
make sense) and

S(T $, T")�P(T $, T")+Q(T $, T")++2, (2.60)

whenever T1+1�T $<T"��. The proof proceeds in four steps.

Step 1. The following estimate holds if T�T1+1 and 0<=<=0 ,

P(T+1, �)�C1[,=1�2Q(T, �)+=&3�2], (2.61)

where C1 and =0<1 are constants (depending only on 0), and +1 and +2 are
as in Lemmata 2.1 and 2.2.
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In order to obtain this estimate we apply Lp estimates up to the
boundary [16, p. 133] to the problem (2.3), to obtain

&V&Wp
2, 1(0_]t+1, t+2[)�C� 1[,2�3 &v1&Lp(0_]t, t+2[)+&V&L1(0_]t, t+2[)]

+C� 2 |,&&| [&v1 &C(0� _[t, t+2])+Q(t, t+2)],

(2.62)

where the constants C� 1 and C� 2 depend only on 0 and p>1 (recall that &
remains bounded, see (1.11) and, in the second term in the right hand side,
we are using straightforward bounds on Sobolev-type norms of functions
defined on �0. Also, when using the imbedding estimate in [14, p.80] we
get

&V&C1, 1�2(0� _[t+1, t+2])�C� 3 =1&(m+2)�p &V&Wp
2, 1(0_]t+1, t+2[)

+C� 4=&1&(m+2)�p &V&Lp(0_]t+1, t+2[) , (2.63)

whenever p>(m+2) and 0<=<=0 , where the constants C� 3 , C� 4 , and =0

depend only on 0 and p. Since, in addition (Lemmata 2.1 and 2.2 and
Eq. (2.1)), |v1 |�+2=O(,&1), |V|�1+;,+1�&=O(1) in 0� , whenever
t�T1+1, and =<1, the estimates (2.62)�(2.63) with p=2(m+2) yield

P(t+1, t+2)�C1[,=1�2Q(t, t+2)+=&3�2]

if t�T1+1, and we only need to use the definitions (2.56)�(2.57) to obtain
the stated result and complete this step.

Step 2. There are three constants, C2 , C3, and ,0, such that

R(t, �)�2R(T, �) exp[&k,2(t&T )�4mL]+2+1[C2S(T, �)+C3 �,],

(2.64)

if t�T�T1+1 and ,>,0 , where +1 is as defined in Lemma 2.1.

Let the constants C2 and C3 be defined as

C2=4k5 �k3 , C3=max[4 |a2(x)|�k3 : x # 0� 1], (2.65)

and let the constant ,0 be such that the following inequalities hold if x # 0� 1

and ,>,0 ,

[(m&1) |M(x)|+|a1(x)|] - k�m�,0+|b1(x)|�,2
0<k3 �4,

_+- k�m ,0 �2>|b2(x)|, (2.66)

C3 exp(- k�m ,\1 �2)>,2(1+,�L),
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where the vectors a1 and a2 , the scalars b1 and b2 , and the mean curvature
M are as in Lemmata 2.8 and 2.9, k=min[k2 , k3] as above, and \1 , k2 ,
k3 , and k5 are as in assumptions (H.1), (H.4), and (H.5) (at the end of
Section 1). Notice that, since a1 , a2 , b1 , b2 , and M depend continuously on
x in the compact set 0� 1 and, according to (1.11), |log(1+,�L)|�, is
bounded, Eqs. (2.65) and (2.66) do define C2 , C3 , and ,0 as finite
constants.

Now, let us consider the function w~ defined as

w~ (x, t)=[R(T, �) exp[&k,2(t&T )�4mL]+C2 +1S(T, �)+C3+1 �,]

_exp[- k�m ,'�2], (2.67)

in x # 0� 1 and t�T1 , where ' is a coordinate along the outward unit
normal to �0. When taking into account Eqs. (2.65) and (2.66), assump-
tion (H.5), the expression for 2w~ in Lemma 2.8, and the estimates (2.9), the
function w~ is seen to be such that

L�w~ ��t>2w~ +a1 } {w~ +a2 } {u+b1w~ &k3 ,2w~ +k5,2S(T, �) u, (2.68)

L�w~ ��t>2w~ &k3,2w~ +k5,2S(T, �) u

if x # 01 and t�T�T1+1; (2.69)

�w~ ��n>(b2&_) w~ , �w~ ��n>&_w~

if x # �0 and t�T�T1+1; (2.70)

w~ >|{� u|, w~ >(u) (1�2)
t if d(x)=\1 �2 and t�T1+1.

(2.71)

Now, let us see that if 0<a�1, then

|{� u|<w~ and |u( } , t+a)&u( } , t)|�a1�2<w~ in 0� 1 ,

if t�T�T1+1. (2.72)

In order to obtain the first estimate first notice that, according to the
definition of R, it holds at t=T. Assume for contradiction that there are a
first value of t, t0 , and a point x0 # 0� 1 such that

|{� u(x0 , t0)|=w~ (x0 , t0), |{� u|<w~ if x # 0� 1 and T�t�t0 .

(2.73)

Let t~ 0 be a unit vector, tangent at x0 to the hypersurface parallel to �0
passing through x0 , such that {u(x0 , t0) } t~ 0=|{� u(x0 , t0)|, let t~ be the
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unit vector field defined in Lemma 2.9, and let w1={u } t~ . Notice that,
according to (2.73) and the definition of w1 we have

w1(x0 , t0)=w~ (x0 , t0) and w1<w~ if x # 0� 1 and T�t�t0 . (2.74)

Now, according to (2.71) we have d(x0)<\1 �2 and thus either x0 # 01 or
x0 # �0. But if x0 # 01 then w1 satisfies (see (1.1) and (2.53))

L�w1��t=2w1+a1 } {w1+a2 } {u+b1w1&,2fu(u, v) w1&,2fv(u, v) {v } t~

at (x0 , t0). But, according to assumption (H.5) and the definition (2.59), we
have & fu(u, v) w1& fv(u, v) {v } t~ �&k3w1+k5S(T, �) u at (x0 , t0) and
thus (see (2.68)) L(�w~ ��t&�w1 ��t)>2w~ &2w1 at (x0 , t0), and this is in
contradiction with (2.74). Similarly, if x0 # �0, then according to (2.47)
and (2.54) we have �w1 ��n=(b2&_) w1 and (see (2.70) and (2.74))
�w~ ��n>�w1��n; and this is again in contradiction with (2.74). Thus the
first estimate (2.72) has been obtained.

In order to obtain the second estimate (2.72) first notice that if t�T1

then the function w2=[u( } , t+a)&u( } , t)]�a1�2 satisfies

L�w2 ��t=2w2&,2h1(x, t) w2&,2h2(x, t) u in 01 ,
(2.75)

�w2 ��n=&_w2 at �0,

where we have used the mean value theorem and, according to assumption
(H.5) and the definition (2.59), we have

h1(x, t)�k3 and
(2.76)

|h2(x, t)|�k5 |v(x, t+a)&v(x, t)|�a1�2�k5 S(T, �).

In addition, the definitions (2.7), (2.58), and (2.67) and Eq. (2.71) imply
that

|w2 |<w~ if x # 0� 1 and
(2.77)

t=T or if d(x)=\1 �2 and t�T.

And we only need to take into account (2.69)�(2.70) and (2.75)�(2.77), and
apply maximum principles to obtain w~ \w2>0 if x # 0� 1 and t�T. Thus
the second estimate (2.72) holds.

Finally, when taking into account the estimates (2.72) and the definitions
(2.7), (2.58), (2.59), and (2.67), the estimate (2.64) readily follows and the
step is complete.
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Step 3. There are three constants, C4 , C5, and ,1 , such that

Q(t, �)�2Q(T, �) exp[&,2�3(t&T )�2]+2C4 ;[+1S(T, �)+R(T, �)]

+2C5;_,1�3�(,+_), (2.78)

if t�T�T2+1 and ,>,1 , where +1 is as defined in Lemma 2.1.

Let the constants C4 , C5 , and , be defined such that

C4=8m(k4+k5)�k, C5�+2(,+_)(,2�3+|a2(x)| )�;_,,

,1>(2�\1)3+4m[b2
2(x)+2 |b1(x)|]�k (2.79)

+4 - m�k [|a1(x)|+(m&1) |M(x)|] for all x # 0� 1 ,

where the vectors a1 and a2 , the scalars b1 , b2 , and M, and +3 are as in
Lemmata 2.2, 2.8, and 2.9. Notice that, as in Step 2, |a1 |, |a2 |, |b1 |, |b2 |,
and |M| are bounded in 0� 1 ; also, the quantity ,+2 �& is bounded. Thus, the
definitions (2.79) do define C4 , C5 , and ,1 as finite constants.

If we now define the function w~ as

w~ (x, t)=C4;[+1 S(T, �)+R(T, �)][1&exp(- k�m ,'�2)]

+C5;_,1�3�(,+_)

+Q(T, �) exp[&,2�3(t&T )�2], (2.80)

where ' is a coordinate along the outward unit normal to �0, then w~ is
seen to be such that

�w~ ��t>2w~ &,2�3w~ +;,2[k4R(T, �)+k5 +1S(T, �)] exp[- k�m ,'�2],

�w~ ��t>2w~ +a1 } {w~ +a2 } {v1+b1 w~ &,2�3w~

+;,2[k4 R(T, �)+k5 +1S(T, �)] exp[- k�m ,'�2]

if x # 0� 1 and t�T�T1+1;

�w~ ��n>&,w~ , �w~ ��n>(b2&,) w~

if x # �0 and t�T1+1;

w~ >|{� v1 |+(v1) (1�2)
t if d(x)=\1 �2

and t�T1+1.
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Here we have used Eqs. (2.11) and (2.79), and the expression for 2w~ in
Lemma 2.8. Notice that, according to assumption (H.4), Eq. (2.8), and the
definitions (2.58) and (2.59), we have

| fu(u, v)| [ |{� u|+(u) (1�2)
t ]+| fv(u, v)| [ |{� v|+(v) (1�2)

t ]

�[k4 R(T, �)+k5 +1S(T, �)] exp[- k�m ,'�2]

if x # 0� 1 and t�T1+1.

With these inequalities at hand, we only need to proceed as in Step 2 (the
argument is not repeated here for the sake of brevity) to obtain

|{� v1 |<w~ , |v1( } , t+a)&v1( } , t)|�a1�2<w~ if 0<a�1 and

t�T (�T1+1),

and, when taking into account (2.7), (2.57), and (2.80), the estimate (2.78)
follows. Thus the step is complete.

Step 4. The estimates (2.13) hold, with the quantities +3 and T2 as
stated.

The estimates (2.13) are now obtained from the inequalities (2.60),
(2.61), (2.64), and (2.78) as follows. Let the constant b be defined as

b=max[1, (4mL�k,2) log 6, 4,&2�3 log 6], (2.81)

and let the sequences [Pk], [Qk], and [Rk] be defined for k�0 as

Pk=P(T1+2+kb, �),

Qk=Q(T1+2+kb, �), (2.82)

Rk=(,+_) R(T1+2+kb, �)�_,

where the functions P, Q, and R are as defined by (2.56)�(2.58). Since the
functions T � P(T, �), T � Q(T, �), and T � R(T, �) are non-increasing
by definition, Eqs. (2.60), (2.61), (2.64), and (2.78) imply that

Pk+1�C6(,=1�2Qk+=&3�2),

Qk+1�Qk �3+C6 ;_[Pk+Qk+Rk+1+,1�3]�(,+_), (2.82$)

Rk+1�Rk �3+C6(Pk+Qk+1),
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whenever k�0, 0<=<=0 and ,>max[,0 , ,1], where =0 , ,0 , and ,1 are as
in Steps 1�3 and C6 is any constant such that

C6�max[C1 , 2+1(,+_)[C2(1++2,)+C3 �,]�_,

2C4+1(,+_)(1++2,)�_, 4C5 , +1 , +2 ,].

Notice that this inequality does define a bounded constant because the
right hand side is bounded in the limit (1.11). Also, the estimates (2.9) and
(2.11)�(2.12) imply that

R0�C6,(1+,�L), Q0�C6 ,1�4. (2.83)

Now, let us choose the constants = # ]0, =0[ and ,2�max[,0 , ,1] such
that

24C6;_(1+6C6)�(,+_)<1,

24C 2
6=1�2(1+6C6) ;_,�(,+_)<1 if ,>,2 .

Notice that, since ;_,�(,+_) is bounded in the limit (1.11), =>0 and
,2<� can be in fact selected such that these two inequalities hold. Then
the sequences [Pk*], [Qk*] and [Rk*], defined as

Pk*=2C6,=1�2A0 �2k+A1 ,

Qk*=A0 �2k+A2 , (2.84)

Rk*=6C6(1+2C6,=1�2) A0�2k+A3 ,

where

A0=C6(,+,2�L+,1�4), A1=C6(=1�2,A2+=&3�2),

A3=3C6[A2(1+C6 ,=1�2)+(1+C6=&3�2)]�2, (2.85)

A2=3C6;_[3C6+C6(2+3C6) =&3�2+2(,1�3+1)]�2(,+_),

are readily seen to satisfy precisely the inequalities opposite to those in
(2.82$) (that is, with the � sign replaced by >) for all k�0, and to be
such that

Q0<Q0* and R0<R0*.

Then an induction argument readily shows that

Pk<Pk*, Qk<Qk*, Rk<Rk* for all k�1.
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As a consequence, if

k>k� =log[A0 max[2C6,=1�2�A1 , 1�A2 , 6C6(1+2C6 ,=1�2)�A3]]�log 2,

then Pk<2A1 , Qk<2A2 , and Rk<2A3 . Thus, we only need to take into
account the definitions (2.56)�(2.58) and (2.82) to obtain the inequal-
ities (2.13), with +3=max[A1 �,, A2 , A3 �,] and T2=T1+3+k� b, where,
according to (2.81) and (2.85), +3=O(;_,1�3�(,+_)) and T2&T1=
O(1+L�,2) log(,+,2�L) in the limit (1.11); also, +3 depends only on the
quantities (2.10), as stated. Thus the proof is complete.

3. THE ASYMPTOTIC MODEL

The asymptotic model is posed by Eqs. (2.14)�(2.17) after we ignore the
remainders �1 and �2 . Let us also consider the distinguished limit

L�,2 � l, _�, � b, ;, � 8, (3.1)

for some constants l>0, b>0 and 8>0, to rewrite the model as

�V��t=2V in 0,
(3.2)

�V��n=&(1&V)+8 |
0

&�
f (U, V) d! at �0,

where, at each s # �0, U=U(!, s, t) is given by

l�U��t=�2U��!2& f (U, V(s, t)) in &�<!<0, (3.3)

U=0 at !=&�, �U��!=b(1&U) at !=0, (3.4)

with appropriate initial conditions. In fact, according to the estimate (2.42),
we shall only consider solutions of (3.2)�(3.4) such that

0<U(!, s, t)<[b�(- k2 �m+b)] exp[- k2 �2m !]

in &�<!<0, s # �0, t�0. (3.5)

The asymptotic model is more amenable to purely analytical treatment
than the original model. For example, the steady states of the original
model must be calculated numerically. The steady states of (3.2)�(3.4)
instead, are given by

2V=0 in 0, �V��n=&(1&V)+8Q(V) at �0, (3.6)
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where

Q(V)=_2 |
U0

0
f (z, V) dz&

1�2

(3.7)

and U0>0 is the unique solution of

|
U0

0
f (z, V) dz=b2(1&U0)2�2. (3.8)

Notice that if, in addition, 0 is a ball of Rm then (3.6) may be solved in
closed form, and the linear stability of the solution of (3.6) (as steady states
of (3.2)�(3.4)) may be also analyzed in closed form. This was done (for
m=1) in [3], where it was seen that, for appropriate values of the
parameters l, b, &, and ,, the asymptotic model exhibits quite complex
behavior as t � �.

Let us now consider some particular sublimits, when still simpler
submodels apply.

3.1. Sublimits of (3.2)�(3.4)

Let us now consider the limits b � 0, b � �, and l � 0, with 8
appropriate in each case and

&&1=O(1). (3.9)

In fact, the limit & � 0 (with ;,_�(,+_) &=8b�(1+b) &=O(1)) was con-
sidered in [7], where an asymptotic model was obtained that consists of a
1-D PDE (for the concentration u in the boundary layer) and an ODE (for
the temperature v, which becomes spatially constant in first approximation
after some time). That model can be also obtained from (3.2)�(3.4) but, for
the sake of brevity, we shall not consider this limit here.

As

b � 0 (3.10)

U is small (see (3.5)) and the nonlinearity f may be written as

f (U, V)= fU (0, V) U+O( |U| 2). (3.11)

Thus �0
&� f (U, V) d! is small and if 8 is bounded above then |V&1|

becomes small after some time (see (3.2)); this readily implies that the
dynamics of the model is quite simple. If, instead, 8 is large, such that

b8 � 81 {0, �, (3.12)
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then the model (3.2)�(3.4) may be written as

�V��t=2V in 0,
(3.13)

�V��n=&(1&V)+81 f1(V) |
0

&�
U1 d!+.1(s, t),

l�U1 ��t=�2U1 ��!2& f1(V(s, t)) U1+.2(!, s, t)

in &�<!<0, (3.14)

U1=0 at !=&�,
(3.15)

�U1 ��!=1+.3(s, t) at !=0,

where

U1=U�b, f1(V)= fU (0, V),

.1(b, t)=8 |
0

&�
[ f (bU1 , V)& f1(V) U1b] d!

(3.16)

.2(s, t)= f1(V(s, t)) U1& f (bU1 , V(s, t))�b,

.3(s, t)=&bU1(0, s, t).

Also, since U=bU1 satisfies (3.5), the remainders, .1 , .2 , and .3 , are such
that

|.1(s, t)|+|.2(!, s, t)| exp(&- k2 �2m !)+|.3(s, t)|=O(b)

uniformly in &�<!<0, s # �0, and t�0. If the remainders are ignored
then the resulting submodel (3.13)�(3.15) is not (essentially) simpler than
the original asymptotic model (3.2)�(3.4), except for the fact that the
submodel depends only on three parameters (l,81 , and &).

In the limit

b � � (3.17)

we have

|�U(0, s, t))��!|=uniformly bounded in s # �0, t�0, (3.18)

as readily obtained by an argument similar to that in the proof of
[7, Lemma 2.6]. Then the boundary condition (3.4) may be written as

U=0 at !=&�, U=1+.1(s, t) at !=0, (3.4$)

where .1(s, t)=b&1 �U(0, s, t)��! is such that |.1(s, t)|=O(b&1) uniformly
in s # �0 and t�0 (see (3.18)). Again, if the remainder .1 is ignored, then
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the resulting submodel (3.2)�(3.3), (3.4$) is not essentially simpler than the
original asymptotic submodel.

In the limit

l � 0 (3.19)

we have

|�U(!, s, t)��t| exp(&k3!)+|�V(x, t)��t|=uniformly bounded, (3.20)

in &�<!<0, s # �0, x # 0� , and t�t0 , where k3 is as in assumption (H.5)
(at the end of Section 1) and t0 is a given constant; these estimates are
readily obtained by an argument similar to (but simpler than) that in the
proof of Lemma 2.3 above. Then Eq. (3.3) may be written as

�2U��!2& f (U, V(s, t))=.1(!, s, t) in &�<!<0, (3.3$)

where .1(!, s, t)=l �U��t satisfies |.1(!, s, t)| exp(&*!)=O(l ), uniformly
in &�<!<0, s # �0, t�t0 (see (3.20)). If the initial transient 0<t<t0

and the remainder .1 are ignored, the resulting problem (3.3$)�(3.4) is
solved and its solution is substituted into the boundary condition in (3.2),
then the following submodel results,

�V��t=2V in 0, �V��n=&(1&V)+8Q(V) at �0, (3.21)

where the nonlinearity Q is as given by (3.7). Standard dynamical systems
theory [17] implies that the solution of the gradient-like problem (3.21)
converges to the set of steady states as t � � and thus its dynamics is
trivial. An interesting question arises: Does (3.21) posses non-constant
stable steady states? Aronson [21] and Aronson and Peletier [20] solved
that question for the heat equation with nonlinear boundary conditions in
1-D, and gave a precise characterization of the domains of attraction of the
stable steady states; see also [22�24] for some partial results in the
multidimensional case.

Similarly, as l � � we could use the new time variable {=t�l and try to
prove that l &1 �V��{ can be ignored in first approximation. Unfortunately,
in order to prove that property we would need that fv<0, while fv is
usually positive (see (1.4)�(1.5)). Thus, no simpler submodel seems to
apply in this limit.
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