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The method of multiple scales is implemented in Maple V Release 2 to generate a
uniform asymptotic solution O(εr) for a weakly nonlinear oscillator. In recent work,
it has been shown that the method of multiple scales also transforms the differential
equations into normal form, so the given algorithm can be used to simplify the equations
describing the dynamics of a system near a fixed point. These results are equivalent to
those obtained with the traditional method of normal forms which uses a near-identity
coordinate transformation to get the system into the “simplest” form. A few Duffing
type oscillators are analysed to illustrate the power of the procedure. The algorithm can
be modified to take care of systems of ODEs, PDEs and other nonlinear cases.
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1. Introduction

Nonlinear differential equations describing oscillatory problems have played a fundamen-
tal role in science and engineering. The basic problem can be illustrated with a second-
order ordinary differential equation (ODE). In this case, the objective is to determine
the behavior of a weakly nonlinear system described by an equation of the type

ẍ+ ω2x = εf(x, ẋ, t) , (1.1)

where 0 < ε ¿ 1 is a parameter. The analytical efforts to determine a solution for this
equation can be traced back to Euler (1772), Lindstedt (1882), and Poincaré (1886) who,
motivated by problems in celestial mechanics, sought solutions, typically in the form

x(t) = x0(t) + εx1(t) + ε2x2(t) + · · · , (1.2)

with the condition that x(t) and ẋ(t) would be bounded functions of t, for t ∈ <. During
the early to middle part of this century efforts by von Zeipel (1916), Krylov and Bo-
goliubov (1934), among others, helped to develop the methods of averaging which were
effective for generating solutions and for setting bounds in truncation errors, and which
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are still in use today. During the late 1950s and early 1960s, efforts by Sturrock (1957),
Frieman (1963), Kevorkian (1963), and Nayfeh (1965) led to the development of the
method of multiple scales (MMS), which was shown to be equivalent to the methods of
averaging (Morrison, 1966), and provided an alternative approach for determining solu-
tions for nonlinear ODE’s. The MMS is a popular technique and a renewed attention to
nonlinear phenomena, combined with new symbolic computational power, has increased
its use in science and engineering. We present a general algorithm to implement the
MMS and show a number of applications processed with a Maple V Release 2 version of
it. Nayfeh (1993) has shown that the results obtained by the method of normal forms
are equivalent to those obtained with other perturbation methods. Therefore, the MMS
can also be used to transform differential equations into their normal forms near a fixed
point. These manipulations typically precede center manifold and bifurcation analyses.

2. The Method of Multiple Scales

The method of multiple scales, as presented by Nayfeh (1981), considers the expansion
to be a function of multiple independent variables, or scales, instead of a single variable
t. The independent variables are defined as

Tn = εnt for n = 0, 1, 2, . . . (2.1)

It is assumed that the solution of interest can be represented by an expression having
the form

x(t; ε) = x0(T0, T1, T2, . . .) + εx1(T0, T1, T2, . . .) + ε2x1(T0, T1, T2, . . .) + · · · (2.2)

where the number of independent time scales depends on the order to which the expansion
is carried out. Substituting (2.2) into the governing differential equation and collecting
coefficients of equal powers of ε generates a system of n + 1 differential equations. To
obtain a uniform solution, the system of ODEs needs to be solved sequentially for k =
0, 1, . . . , n − 1, eliminating secular terms, those terms that will become large when t
increases, in the process at each order εk for k = 1, 2, . . . , n. This will ensure that

x(t; ε) =
n−1∑
k=0

xk(T0, T1, . . . , Tn) +O(εn) (2.3)

is a uniform O(εn) solution. For example, consider a Duffing oscillator of the type

ẍ+ ω2x− εαx3 = 0. (2.4)

A first-order analysis (n = 1) of (2.4) would generate the system of equations

D0
2x0 + ω2x0 = 0 (2.5)

D0
2x1 + ω2x1 = −2D0D1x0 − αx0

3, (2.6)

where Di = ∂
∂Ti

. The solution of (2.5) can be written as

x0(T0, T1) = A(T1)eiωT0 +A(T1)e−iωT0 . (2.7)
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Substituting (2.7) into (2.6), we obtain

D0
2x1 + ω2x1 = −

(
2iωD1A+ 3A2A

)
eiωT0 +

(
2iωD1A− 3A

2
A
)
e−iωT0

−A3e3iωT0 −A3
e−3ωiT0 . (2.8)

To avoid the generation of secular terms in x1(t), the coefficients of eiωT0 and its complex
conjugate must vanish; that is,

2iωD1A+ 3A2A = 0. (2.9)

Writing A in the polar form A(T1) = 1
2ae

iβ and separating (2.9) into its real and imagi-
nary parts gives us

∂a

∂T1
= 0, a

∂β

∂T1
− 3

8
a3 = 0. (2.10)

The solution to (2.4) is then given by

x(t) = a cos(ωt+ β) + · · · (2.11)

where a and β are described by the so called evolution equations (2.10).

3. The Method of Normal Forms

The method of normal forms specifies a procedure to determine a near-identity coor-
dinate transformation in which a given dynamical system takes the ”simplest” form. As
presented by Wiggins (1990), a vector field of the type

Ẇ = G(W ), W ∈ <n, (3.1)

generates a vector field which can be approximated, in the neighborhood of a fixed point
W = W0, by its normal form, provided that G is Cr where r will be the order of the
derivative, typically r ≥ 4. The system (3.1) can be simplified by translating the fixed
point to the origin using v = W −W0, which gives

v̇ = G(v +W0) ≡ H(v), v ∈ <n. (3.2)

The linear part of (3.2) can be taken out to get

v̇ = DH(0)v +H(v), (3.3)

where D is the linear part and, H(v) = H(v) −DH(0)v = O(|v|2). Finally, DH(0) can
be put into Jordan canonical form with the transformation v = Tx, to get

ẋ = Jx+ F (x), x ∈ <n, (3.4)

where J ≡ T−1DH(0)T , and F (x) ≡ T−1H(Tx). The above manipulation has simplified
the linear part of (3.3) as much as possible. Taylor series can now be used to expand (3.4)
into
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ẋ = Jx+ F2(x) + F3(x) + · · ·+ Fr−1(x) +O(|x|r) (3.5)

where the Fi(x) represents the term of order i in the Taylor series. Wiggins (1990) has
shown that (3.5) can be further simplified and the essence of the simplification is stated
in the following theorem.

Theorem 3.1. By a sequence of analytic coordinate changes (3.5) can be transformed
into

ẏ = Jy + F r2 (y) + F r3 (y) + · · ·+ F rr−1(y) +O(|y|r), (3.6)

where F rk (y) ∈ Gk, 2 ≤ k ≤ r−1, and Gk is a space complementary to the space generated
by the Lie bracket operation on the vector space Hk and Jy, where Hk is the space of
vector-valued monomials of degree k. Equation (3.6) is said to be in normal form.

Nayfeh (1993) has shown that the results obtained by the method of normal forms are
equivalent to those obtained with other perturbation methods, such as the method of
multiple scales. Therefore, it can be shown that the equations presented are the normal
form of the simple oscillator with a cubic nonlinearity.

4. Algorithm for the Method of Multiple Scales

The following algorithm describes the main steps in developing a symbolic code to
apply the MMS. The assumption is that the problem involves a weakly nonlinear ODE.
The problem could be autonomous or nonautonomous, but if there are forcing terms,
they are small. The algorithm can be modified to treat a variety of other cases, including
systems of ODEs, PDEs, or forcing terms that are not small. The main steps in the
algorithm are as follow:

Start Program

Step 1: An ODE of the type (1.1) is defined.
Step 2: The desired MMS is defined by specifying:

(i) n, which sets O(εn), the order of the solution sought.
(ii) polar or cartesian form for the solution sought.

Step 3: The operators derivative are replaced to include the time scales using
d
dt = d

dT0
+ ε d

dT1
+ · · ·, the main variable is perturbed using x = x0 + εx1 + · · ·,

and t becomes T0.
Step 4: The expression is expanded keeping only terms up to order n, and sinusoidals

are
expressed in complex exponential form.

Step 5: Terms in the ODE are separated by powers of ε, generating n+ 1 equations.
Step 6: The equation at order ε0 is solved to get x0(T0, T1, . . .) in terms of a complex

amplitude, let’s say A(T1, . . . , Tn) and its conjugate.

Begin Loop 1 ≤ r ≤ n− 1
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Step 7: x0, x1, . . . , xr−1 are replaced into the equation at order εr. Secular and nonsecular
terms are separated. The secular terms are set to zero in the equation and stored
in
equation Sr.

Step 8: Including only nonsecular terms, a solution is generated at order εr.

End Loop

Step 9: The solution can be written as x = x0 + εx1 + · · ·+ εn−1xn−1 +O(εn). The
complex parameters A and A can be expressed in polar or cartesian form as desired.
These parameters will be determined from the evolution equations (2.10), which
describe A and A, or a and β.

Begin Loop 1 ≤ p ≤ n
Step 10: Solve equation Sp to determine DpA(T1, . . . , Tn) and its conjugate using DkA,

k = 1, . . . , p− 1, found in previous iterations, and their partial derivatives DjDkA.

End Loop

Step 11: The method of reconstitution (Nayfeh, 1981) is used to define the evolution
equations. The method assumes dA

dt = εD1A+ε2D2A+· · ·, using theDiA(T1, . . . , Tn)
previously defined.

Step 12: The complex amplitude A(T1, . . . , Tn) can be written in polar form, A = ae(iβ),
or cartesian form A = 1

2 (p− iq).
Step 13: The reconstituted equation can be separated into real and imaginary parts,

generating the modulation equations.

End Program

We implemented the above algorithm in Maple. All the code is available to perform
all the functions that the previous section describes (sanchez@alamo.eng.utsa.edu); the
following section shows some examples that illustrate the power of the procedure and
how the algorithm is used.

5. Examples

5.1. parametrically excited Duffing oscillator

The Duffing oscillator with softening nonlinearity of the type (2.4) has been extensively
studied in the context of a large variety of physical systems, from the oscillation of a
pendulum to charge variations in superionic conductors. A parametrically excited Duffing
oscillator is a particular case that has many physical applications (e.g., Sanchez et al.,
1990a), some of which we will illustrate. The basic oscillator is of the form

ẍ+ x = −ε
(
2µẋ− αx3 + gx cos(Ωt)

)
, (5.1)

where the natural frequency has been scaled to unity. It can be shown that this oscillator
exhibits resonances for Ω ≈ 1, 2, and 4. The MMS can be used to approximate the
response near any resonance. For example, to obtain the response near Ω ≈ 1 we use
Ω2 = 1 + εσ, where σ is a detuning parameter. Substituting this relation in (5.1), we
obtain
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ẍ+ Ω2x = ε
(
σx− 2µẋ+ αx3 − gx cos(Ωt)

)
. (5.2)

A Maple V Release 2 of the MMS algorithm was used to determine a second-order
perturbation solution for Ω ≈ 1. The solution found was

x(t) =
((

g cos(β(t) + 2 OMG t)
6 OMG2 − g cos(β(t))

2 OMG2

)
a(t)

− a(t)3alph cos(3β(t) + 3 OMG t)
32 OMG2

)
w + a(t) cos(β(t) + OMG t) (5.3)

where a and β are found from the evolution equations

da(t)
dt

=
(
−3 MU alph a(t) 3

8 OMG2 − g2 sin(2β(t))a(t)
8 OMG3

)
w2 − wMU a(t) (5.4)

a(t)
dβ(t)
dt

=
(
−15 a(t )5alph2

256 OMG3 − 3 SIG alph a(t)3

16 OMG3 +
(
− MU 2

2 OMG

− g2

12 OMG3 −
SIG2

8 OMG3 −
g2 cos(2β(t))

8 OMG3

)
a(t)

)
w2 (5.5)

+
(
−3 a(t)3alph

8OMG
− SIG a(t)

2 OMG

)
w

and where w = ε, OMG=Ω, SIG=σ , Alph = α, and MU= µ. As it was mentioned before,
the above differential equations are the normal forms of (5.1).

5.2. Rolling of a ship in longitudinal seas

Sanchez and Nayfeh (1990b) have shown that the behavior of a ship rolling in longi-
tudinal waves can be described by an equation of the type

ẍ+ x+ ε
(
2µẋ+ µ3ẋ

3 + α3x
3 + α5x

5 + hx cos(Ωt)
)

= 0. (5.6)

It can be shown that resonances could be excited when Ω ≈ 1, 2, 4, and 6. To find a
solution of order O(ε2) for Ω ≈ 1, we can use a detuning

Ω2 = 1 + εσ. (5.7)

Implementing (5.6) and (5.7) in the Maple procedure, paralleling the previous case, leads
to the solution

x(t) =
((

a 5 cos(5β(t) + 5 OMG t)
384 OMG2 +

5 a 5 cos(3β(t) + 3 OMG t)
256 OMG2

+
5 a 5 cos(5β(t) + 3 OMG t)

256 OMG2

)
a(t)5 +

(
a 3 cos(3β(t) + 3 OMG t)

32 OMG2 (5.8)

+
OMG MU3 sin(3β(t) + 3 OMG t)

32

)
a(t)3 +

(
h cos(β(t) + 2 OMG t)

6 OMG2

− h cos(β(t))
2 OMG2

)
a(t)

)
w + a(t) cos(β(t) + OMG t)
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where w = ε, OMG= Ω, SIG= σ, Alph= α, and MU= µ have been defined as before.
The evolution equations found in this case are :

da(t)
dt

=
(

25 a(t)9a 5 2 sin(2 β(t))
4096 OMG3 +

(
5 MU a 5
8 OMG2 −

3 a 3 MU3
32

)
a(t)5

+
(

3 MU a 3
8 OMG2 − 3 MU3

8
+

3 MU3 SIG
8

)
a(t)3 +

15 MU3 a(t)7a 5
256

(5.9)

− h 2 sin(2β(t))a(t)
4 OMG3

)
w2 +

(
− MU a(t)− 3 OMG2MU3 a(t)3

8

)
w

a(t)
dβ(t)
dt

=
((

9 OMG3MU3 2

256
+

5 SIG a 5
32 OMG3 −

5 a 5
32 OMG3 −

15 a 3 2

256 OMG3

)
a(t)5

− 5 a 3 a(t)7a 5
64 OMG3 +

(
25 a 5 2 cos(2β(t))

4096 OMG3 − 295 a 5 2

12288 OMG3

)
a(t)9

+
(

3 a 3 SIG
16 OMG3 −

3 a 3
16 OMG3

)
a(t)3 +

(
SIG

4 OMG3 −
MU 2

2 OMG
(5.10)

− 1
8 OMG3 +

h2

24 OMG3 −
SIG2

8 OMG3 −
h2 cos(2β(t))

4 OMG3

)
a(t)

)
w2

+
(

3 a 3 a(t)3

8 OMG
+

5 a 5 a(t)5

16 OMG
+
(

1
2 OMG

− SIG
2 OMG

)
a(t)

)
w

In the same form, a detuning like
(

Ω
k

)2
= 1 + εσ can be used to determine a solution

near Ω ≈ k.

6. Conclusions

The algorithm presented to implement the method of multiple scales (MMS) is very
effective for computing approximate solutions of nonlinear oscillatory problems and for
transforming a differential equation into its normal form. The scheme shown can be
modified to handle systems of ODE’s and PDE’s. The examples shown illustrated that
a significant number of nonlinear problems can be approached with the procedure de-
scribed.
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