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A variety of continuous parameter Markov chains arising in applied probability (e.g. epidemic
and chemical reaction models) can be obtained as solutions of equations of the form

Xu(t)=x0+ S, % 1y, (N L f,(XN(s))ds)

where | € Z°, the Y, are independent Poisson processes, and N is a parameter with a natural
interpretation (e.g. total population size or volume of a reacting solution).
The corresponding deterministic model, satisfies

X(6)= xo+ L "SI (X(s))ds

Under very general conditions limy_.. Xx (1) = X(t) a.s. The process X (¢) is compared to the
diffusion processes given by

Zu()=x0+ S % IB, (NJ; ﬁ(ZN(s))ds)

and
vie)=>1 f ' V(X (s)dW, + f 8F(X(s))- V(s)ds.

Under conditions satisfied by most of the applicd probability models, it is shown that X, Zy and
V can be constructed on the same sample space in such a way that

X () = Zu(t)+ O ('—91%11’)
ari
. log N
VN(Xn ()= X(1))= V()+ O (—V%)

1. Introduction

There is a large body of literature concerning diffusion and other approximations
for Markov chains and similar processes (see [4, 11, 16, 17] for some examples and
references). Most of these results involve convergence in distribution or weak
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convergence. In [11] we used a result of Kémlos, Major and Tusnady [8] to obtain
diffusion processes and Markov chains built on the same sample space so that it is
possible to give almost sure pathwise estimates for the error in the approximation
of the Markcv chain by the diffusion process.

In the present paper we extend this result to a somewhat larger class of chains
and prove a similar strong convergence result for a certral limit theorem.

The class of Markov chains we will consider is as fo'lows:

Let Z? be the d-dimensional integer lattice. For each N >0 Xu(t) will be a
Markov chain with state space {(1/N)k :k € Z°}. We assume therc exist non
negative functions f,(x), fI'(x),N =1,2,..., | £Z“ x € R* and constants &, I" such
that

Ifi(e)] < e(1+]x]) (1.1)
and

74 - fieol < 2 @ 12, 12)

- and that the infinitesimal parameter for a transition from k/N to (k +1)/N is
Nfi(k/N). Throughout we will assume 2 ¢,[l|<®. This implies that Xy (¢) is
uniquely determ red by the infinitesimal paramete:s. In fact Xx (¢) can be obtained
as a solution ¢f the stochastic equation

Xn (1) = Xn(0)+ ‘;{7 1Y, (N L ' f?’(XN(s))ds) (1.3)

where the Y, are independent Poisson processes with E(Y;(4))=u and Xx(0) is
independent of the Y, We observe that

E(Xx (1)) = E(Xx (0)) + fo 'E (2 IF (X (s))) ds.
‘ (1.4)
= E(X (0)) + f E(F™ (Xx (5)))ds.

Most of the Markov chain models arising in applied probability (e.g. epidemic
models and chemical reaction models) can be formulated in this way (see [9, 10,
11]). Equaticn (1.4) gives at least some motivation for considering

X0 =X0)+ [ S th(x(s)ds
(1.5)
= X(0)+ f F(X(s))ds

as the corresponding deterministic model.
The diffusion approximation corresponding to (1.3) is given by

Zult)= Zo(0)+ S -;7 IB, (N L XA (s))ds) (1.6)
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where the B, are independent Brownian motions with E(B; (1)) = Var(B,(¢)} = ¢. It
is not obvious that (1.6) has a solution. However (1.6) is equivalent to the Ito
equation

(L '
ZN(t)=ZN(O)+2—\7_F]lf \«f,(ZN(s))dW,(s}an F(Zn(s)ds. (1.7)

0

This fact is used in [11] to prove

Lemma 1.1. Suppose 2|l['e,<w», Z,|IP|Vfi(x)-V()P<M|x-y] and
|F(x)— F(y)|<M|x —y| for some M and all x, y € R®. Then there exists a diffusion
satisfying (1.7) which satisfies an identity of the form (1.6).

Remerk. Thisis a “weak” existence theorem for (1.6) in the scnse that the B, (¢) are
defined in terms of the solution of (1.7). In particular

7"(‘)

B/(t) = VN (Zn (s)dW, (s) + ¢ (1.8)

where 7,(¢) is the solution of

1"(‘)

t=N|  f(Zn(s))ds.

It follows that
B, (NJ'O f,(ZN(s))ds) - { VN (Za () dWi(s)

+NL' fi(Zn (5))ds.

One of the goals of the paper is to give ‘“‘analytic” proofs of the convergence and
approximation theorems by using well known sample path properties of the Y, and
B, in Equations (1.3) and (1.6).

In Section 2, we show that Xy (t) converges almost surely to X(t) (under the
assumption that F is Lipschitz) by using the Law of Large Numbers for Y. In
addition, under the assumption that 2| |’s, < we show that

1
Xx(t)=X(t)+O (v’ﬁ> .
This latter fact is, of course, a corsequence of the known central limit theorem for
V' N(X~(t)— X(t)) (Norman [15] and Kurtz [10]), but here we obtain the error
estimate directly from equation (1.3) using properties of the .
In Section 3, we use the embedding theorem of Kémlos, Major and Tusnady |8}

to construct selutions of (1.3) and (1.6) on the same sample space in such a way that

Xx (£)= Zn(t)+ O (l_ql%ﬂ)
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Once again the estimates are obtained analytically for almost every sample path
using the error estimates in the embedding theorem and Levy’s modulus of
continuity.

Similarly, in Section 4 we show that

VN (1) - X(1) = V(1) + O ("’g N)

VN
where
Vit)=>, l‘f V£ (X(s))dW, +f dF(X(s))- V(s)ds. (1.9
0 0
(9F denotes the gradient of F.)

Note that V(t) is a Gaussian process.
Finaily, we use this result to give Berry Esseen type estimates on the difference of
the distributions of V' N(Xx ()~ X(¢)) and V(¢).

2. Deterministic limit
Theorem 2.1. Let
a=) glll<x, (2.1)

Then there exists a positive random variable Ky such that

[Xn(t)]< Kne™ — 1 2.2)
and

P{Ky > ¢} < % (1+| Xx (0)])- 2.3)

If 2&,|lfP <o for some B> 1, then
E(KR) =< G (1+|Xx(0)]) t (2.4)

where Cg is independent of N.

If Z&e* << for all A < Ao, then there is an N, and a D, independent of N
such that

E(e**)<[D,]*"*™ forallA < Ao and N > N,. (2.5)
Remark. Inequality (2.2) is essentially a stochastic version of Gronwall’s
Inequality.

Proof. Let Q(t)=Z!| Yi(et). Then

1Xu (0] = X O+ 2 7 1% (N [ 0% (520ds)
1 , 2.6
<X O] + 3 1]V, (Ne,fo (1+1XN(s);)ds) .
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From (2.6) it follows that
T+ Xn(t)] < Mn(2)
where
_ 1 '
Mn(t) =1+ !XN(O)I + Z "'ﬁ “l Y, (NE[J’ MN(S)dS)
' ’ 2.7
= 14X 0|+ O(NL M (5)ds) .

Since Q is an increasing process with independent increments it follows that
My (t)e™ " is a positive martingale with
E(My(t)e ™) =1+|Xn(0)].
Therefore
Ky =sup My(t)e™™ <w as.
and (2.2) follows. The inequalities (2.3), (2.4) and (2.5) follow by martingale

inequalities [3, page 217] and estimates on moments of My (¢) (see Appendix).
We observe that

lim sup L Q(az)—az| =0 as.

a—»® 2=<2zg

for each z,>0, and hence, if limy_- Xy (0) = X(0), then

lim sup | My (£)— (1 +

N—x' ¢t<T

X(0)])e”|=0 as.
for each T >0.
Remark. My (t) is a continuous state branching process (see Lamperti [13]).

For large values of N The Law of Large Numbers implies

Y (Nu)
N %

This suggests that

X ()= Xu(0) + [ FYXa (5)ds
and in turn that Xy (f)= X(¢). This is made precise in the following theorem.
Theorem 2.2. If

|[F(x)- F(y)|<sM|x-y|, 2 [l|a < (2.8)
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and limy_.. Xx(0) = X (0), then
lim sup | Xn{)— X(t)|=0 a.s. (2.9)

MNesx =T

for every T >0.
If Z|1|°e; <o, B =2, then there is a random variable Ly (T) such that

s - < _ Ln(T) , I'Kn\ wr
sup | X (1) X(t)lx(!XN(O) x©)+ 24 IS )e (2.10)
and

sup E(Lyv(T)?) < o, (2.11)

If 2e*'e; <, then

sup E(e*~T) < », (2.12)

Proof. We have

| Xn (1)~ X (1)] < | Xn (0) - X (0)]

by 1(7:,— Y, (N f P (X (s))ds) - L ' f?'(XN(s))ds)

+ L ' (FY(Xn(s))— F(Xn(5)))ds

+ [ " (F(Xx (s) = F(X(s)))ds]|
! (2.13)
< | X~ (0) - X(0)]

+S z(-fv Y, (N L "M (s))ds) - fo "N (s))ds)

-I--N, [ My (s)ds

+Ll M| Xn(s)— X(s)|ds

where Mn(s) is given by (2.7). Since My (s) < Kx €™, Gronwall's Inequality gives
{2.10) with

Ln(T)=sup

t=T

\/NZI ( f f,(XN(s))ds I f”(XN(s))ds)! (2.14)

Define 7%= f(, My (s)ds. By the observation at the end of the proof of
Theorem (2.1)

T
lim r'¥=(1+fX(0)])f e“ds as. (2.15)
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From (1.1) and 1+ | Xn (¢)| < Mn(t)

—\%GLN(T)SEHISEE Iil Y (eNu)—eu
<> ] ( Yi(eiNTD) + sm) (2.16)
= ";7 Q(N7Y).

Note that the second inequality holds term by term and that each term in the first
series converges to zero a.s. The Law of Large Numbers shows that the limit as
N — » and summation are interchangeable for the second series, and hence for the
first series. This implies

) 1
Iim —= Ly (T)=0 a.s.
N-—+x VN N( )

and (2.9) follows.
To estimate the moments of Ly (T) we observe that

20=VNS 1(g ¥i(N [ frocenas)- [ poaenas) @

is a martinguale (R* valued). Furthermore the optional sampling theorem for
martingales indexed by partially ordered sets [12] implies

E(cp(zN(T)))sE( (\/NZ 1( Y. (Ned) - ¥ ))) (2.13)

for any convex function .
Each component of

U@)=VNS I ( Y(Neut) - e,t)
is a process with independent increments and 77 is a stopping time.
iIf 2|1/°; <o, B =2 then Theorem 7 of 1] implies
E(| U(rD|?) < C max{E(+7), E((rD)*"*}} 2.19)

and an inspection of the proof of that result shows that C may be selected
independently of N. The uniform boundedness of the right hand side of (2.19)
follows from the estimates in the Appendi..

3. Diffusion approximation

We will now consider estimates on the difference | Xy () — Zn{2)| between
solutions of (1.3) and (1.6) with Zx (0) = X« (0). To simplify the calculations we will
assume
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flxy=<e, (3.1
)~ )l < 22 32

Given the estimates on the growth of | X . ()| in Section 2 and the fact that similar
estimates can be given for the growth of | Zx (¢)/, (3.1) and (3.2) are not really much
more restrictive than the previous assumptions.

The basis for our diffusion approximation is the following lemma which is an
immediate consequence of a Theorem of Kémlos, Major and Tusnady [8].

Lemma 3.1. Let B(t) be Brownian motion with
E(B(t))= Var(B(?))=t. (3.3)

Then a Poisson process Y(t) can be constructed on the same sample space as
B(t) so that

sup LY@-BQ@)| K<» a.s. (3.4)
1320 log tv2

and E(exp{AK}) <® for some A >0.
Remark. By Lemma 3.1 we have

sup | Y(s)—s| +sup |B(s)—s| fort<2,

sup | Y(s) - B(s)| < 3.5)
) Klogt fort=2.

We write B, (t) = W,(t)+ ¢t where W,(¢) is Brownian motion with mean zero and
variance f. After a small amount of manipulation we have

Xu()=Zn(@) =3 I—Vl— ! [W, (NL‘ f,(XN(s))ds) - W (NL ﬁ(ZN'{S))dS)]
; L " [F(Xn (5)) ~ F(Zx (5))] ds (3.6)
I [Y, (N f an (XN(s))ds) B, (N L f,”(XN(s))ds)]

> 1%1' ! [B, (N }fo fi“(XN(s))dS) - B, (N L fir(Xn (s»ds>} '

The second term on the right can be handled using Gronwall’s inequality, the
third term can be estimated using Lemma 3.1, and the fourth term is estimated
using the modulus of continuity for Brownian motion.

In order to handle the first term on the right we prove the following lemma.



T.G. Kurtz [ Strong approximation theorems for density dependent Markov chains 231

Lemma 3.2. Suppose

i) -fi<seMlx-y|, Zll[Vea<= 3.7
and .
1% (- Zu @] < 80+ 3 Wsup [ (N [ X s05)
ust 0 (3.8)
- w, (N L f,(ZN(s))ds)
Define
" = | Wi(u)— W (v)]
. M, ,,'fgﬁ,r V]u—v|(1+log(NeT/|u-vl|)) ’
Then
sup | Xn (t)— Zn(8)| <
=T (3.10)
< max {le— , 2eMT8y + M7 MT( +Il\3)g M) (2 l!IVEM,)z] :

Remark. M, is finite by a result of Levy (McKean [14, page 14]) and a result of
Fernique [5] implies E(expAM7?)<® for some A >0. This in turn implies
E(exp A (Z|!| VeM,)) < = for some A >0, since the M; are independent. The M,
are also identically distibuted and the distribution of 31| VeM. does not depend
on N.

Prooi. Define ‘y(t)k= N|Xn(t)— Zn(t)| and y = sup,<ry(¢). We have

N J;r fi(Xn(s))ds - Ll fi(Zu(s))ds| < eM Ll v(s)ds. (3.11)
Noting that
Vx(1+ log(Ne, T/x)) (3.12)

is increasing in x we have

y(£) <eNoy +eM S 1| VaM, \/M L y(s)ds (1 +log (NT/M L’ 7(s)ds))

(3.13)
and hence

y <eMN8y + M 3 |1|VaM,VMT(1 + log N/My) V. (3.14)

By (3.14) cither y <1 or

y <eMN&y + ™ 3 |1 VeaM, VMT(1 +log N/M) VY. (3.15)
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Inequality (3.15) implies
2
y < 2eMN8y + M MT(1 + log N/M) (2 ¥ [\/E,M,) :

anu (3.10) follows.
Returning to (3.6), if we assume |F(x)— F(y)|<M/|x —y| then Gronwall’s
Inequality implies (3.8) with dv equal to the sum of

Zl—i;lll sup | Yilu)= Bi(u)], (3.16)

u = Ngjp

and

i
2 75 | IM VeI T(1+10g(N/T) + el T}, (3.17)
If Z!1{Ve <o and N >1, then (3.17) is bounded by

logN / <
OfV, (CIle[VEM,+cz> (3.18)

where ¢, and ¢; are constants independent of N.

From Lemma 3.2 and (3.18) it is clear that the rate of convergence iz determined
by (3.16).

Using various assumptions on g we make various estimates on (3.16) to obtain
the foliowing theorem.

Theorem 3.3. Assume that (3.1) and (3.2) hold, and suppose
2 Velll<=, i)~ f@)seMlx -y (3.19)

and
[F(x)-F(y)|<M|x—y| forsome M >0.

Assume that Y, and B, satlisfy the conclusion of Lemma 3.1.
(@) If & = 0 for all but finitely many I, then for N =2 there is a random variable B %
with distribution independent of N and E(exp{AB}) < = for some A > 0 such that

X (8)— Zn ()| < g1 18N (3.20)

sup
t=T N

(b) If Ze*"e, < o for some p >0, then for N =2 there is a random variable 8}
with supn E(exp{AB &} <= for some A >0 such that

sup | X (1) = Zu ()| < B% @5%’—— (3.21)

(©) Ifes |1 for ¢ >2d +2, then for N =2 there is a random variable BT with
supny E((BR)") << for n < a — d such that

Sl;g Xn (t) —2Zn (3‘)[ =p S(]Og N) N @+ -1 (3?2)
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Proof. Part (a) follows from Lemma 3.1 and Lemma 3.2. 87 may be written as a
function of M, and

K, = sup LYi(¢)— Bi(t)]
10 logtv?2

(3.23)

To obtain parts (b) and (c) we write (3.16) as

3 N1 sup 1Y)~ Biw)|

HI>Cn u=<Neg;

+ 3 11| sup | ¥i(u)- Bi(u)|
HsCN u=NegT

(3.24)
: 1 '
smzr N‘lll [ sup |Yi(u)—ul+ sup |B,(‘u)...u|]

usNgT u=NgT
+ 3 LK log(NeT v2).
ti=Cn N
The second term on the right can be bounded by a constant times

> 1K

log Nr( ,ll) =Cn —_
{ll=Cn
2l (3.25)

~logN (z [1]) BN, T).

The random variable B,(N, T) is a corvex combination of independent identically
distributed random variables satisfying E(exp{AK,}) <® for some A >0. Conse-
quently

E(exp{AB:(N, T)}) < E(exp{AK.}).
We split the first term on the right of (3.24) and observe that

S %11 sup [Bi(w)—u|<

H=>Cn u=Ng

< > -—l—lll [\/N_eﬁ' sup

{1}|>Cn u=NeT

(3.26)
E, (u }i /|

il

Since sup.<ner|(Bi(u)— u)/V NeT| is equal in distribution to W = sup..,| W(u)!
where W(u) is a standard Brownian motion, (3.26) can be bounded by

T - |
\/‘ﬁ (m,»zm Ve ) BN, T) (3.27)

where E(exp{AB:(N, T)}) < F(exp{AW}).
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Finally we have

S 1l sep 1¥iw)—ul<

H|>Cn u=NeT

(3.28)
11
= AR + T.
<“;>ECN ¥ l”Y:(NE;T) m>2c,,“,8l
We consider these terms separately as
(N) 1 ) (N) '
aN [a(N) ufst |1]Y:(NeiT )] =< N BN T) (329
and
m;}‘é |1]&T. (3.30)

To compleie the proofs we must select Cy and a (N), estimate the sums in (3.25),
(3.27) and (3.30) and the moments of Bs(N, T).

To obtain part (b) note that ¢, < ae ™" for some a. Set C;. = k log N where k isa
sufficiently large constant and a(N) = (log N)*"2.

The sum in (3.25) can be bounded by a constant times

j [x]|dx = a,Cy" = O((log N)***). v (3.31)
Ixi=Cn
Similarly in (3.27) the sum is of the order of

j re ¥4 7'dr = O(Cie W)

o (3.32)
= O((log N)*N~3+¥),
and in (3.30) the sum is
O((log N)*N ), (3.33)
Finally
E(exp{AB:(N, T))= [] E (exp {—A— 1Y, (Ne,T)}) (3.34)
H>Cn a(N)
= exp {upzc Ne,T(e*"/=™ — 1)} )
The sum in the expo: 2nt is
o (Nf e (et — l)r"“dr) . (3.35)
Cn
If (uw-—-A/a(N))k =1, this is
___'_{.V_ * A~ —Ala(Njyr_d )__ “ﬂ_—_ d —(u*A/a(N))CN
0 (m ). rdr)=0 (- N Che ) (3.36)

= O(1).
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Part (b) now follows.
To obtain part (c) we have similar estimates on the sums. In (3.25)

WZCN [1] = O(C&); (3.37)
in (3.27)

T [1[Veas 3 1[0 = 0(CH ") (3-39)
in (2.30) o o

“;CN [iie0=G(CR™™). (3.39)

To obtain the moment estimate in (3.29) define

U@)= 2 [I]Yi(Net).

H>CN

Then for I<np<a-d

E(U(T)")=E for m>2c~ Ne, [(U(s)+]|1])" = U(s)"1ds

T

sCEf S Ne([HU(s)"™" +[1]")ds (3.40)
0 ||>Cn ~

< CTN [( s g,m) BUT)+ S ei!l,!n]

H]>Cn

where C is a constant independent of N. (The fact that E(U(T)")<= is a
consequence of Theorem 5 of [1}.)

To complete the proof, set Cy = N"* and a(N)=N“""" The estimates
involving the sums are immediate. Inequality (3.40) implies

E(U(T)")< C'[N“Veg{U(T)" ")+ N“™"], (34D
and hence
E(B:(N, T)")< C'[E(Bs(N, T)" )+ 1] (3.42)

which in turn implies E(B5(N, T)") is uniformly bounded in N.
The various estimates can now be combined tc give part (c).

4. Central Limit Theorem

Throughout this section we will assume (3.1), (3.2)

S HPIVE®) - VEP<Mix -y,

=M

| F)
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and

X0

'._..__ F(x)| =

We begin by comparing the solution of (1.7) to VN(Zn(t) - X(t)), assuming
Zn(0)= X(0).
Using (1.5) this gives

VN(Zn ()~ X (1) - V(1) =

s f | VIZG) - VEXG) | W

+ f : [VN(F(Zx(s))— F(X(s))) - 0F(X(s)) - V(s)]ds
(4.1)

_y j [VF(Zn(s) - VE (X)W,

pt

+ J AF(X(s%)-[VN(Zn(s) - X(s))— V(s)]ds

+ f VN(Zn (s - X(5)) - °F(6(s))(Zn (s) = X(s))ds.
0
We need the foliowing consequence of Ito’s Formula (see Friedman [6, page 87]).

Lemma 4.1. Let g (s) be non-anticipating functions. Then for each n = 1 there exists
a constani K, such that

> lj;' g(s)dW,

/

E (sup

e». { f > |1]g3 (s)ds}) <% for some u >0, 4.3)

then for each 1<i=<d,

exp {)&Lf 2 l,:g,(s)dW, f 2 Iigi(s)d s} (4.4)

is @ mean one martingale.

| 2">“ KT L E ((2 L [2g3(3))") ds. (4.2)
If

As a corollary we have:

Lemma 4.2. Suppose Z|I|*z, <. Then

E (?EI? IVN(Zn () - X(t))!z") < K, T e™™ > |1 4.5)
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and
sup E (exp {/\ sup V'N| Zx (1) - X(t)]}) < o0 (4.6)

for every A >0.

Proposition 4.3. There is a constant C, such that

E <sup (VN|VNZx ()~ X(1) - V(:)|)2~) <
< C,e*M"E (T"“ L ’ (VN|Zx(s) - X(s)|)"ds 4.7)

+LT(\/N'IZN(S)—X(s);)“" ds)
and
sup E (exp {/\ sup V'N| \/—I\—I(ZN (1) - X)) - V(t)l}) < (4.8)

for every A >0.

Remark. This proposition follows from (4.1) using the estimates in Lemma 4.1. If
Vf,(x)=g(x) is continuously differentiable then VN(VN(Zx (t)— X(1)) - V(1))
converges in probability to the solution of

V)= D1 f )' 8g (X (s) - V(s)dW, + J dF(X(s))- V(s)ds

+J” V(s)- 9°F(X(s))V(s)ds. (4.9)
0
Observing that

VN(Xx (t) - X)) - V(1)
= VNXn (t) = Zn (1)) + VN(Zx (£) - X (1)) - V(1) (4.10)
Proposition 4.3 and Theorem 3.3. imply the following Theorem.
Theorem 4.4. Assume that Xx(0) = X (0).

Suppose €, = O for all but finitely many 1, then for N = 2 there are random variables
yx with supn E(exp{Ay}) << for some A >0 such that

log N

sup | VN(Xn (1) = X (1) = V() < v& = - (4.11)

1sT s

Remark. Similar Theorems corresponding to parts (b) and (c) of Theorem 3.3, can,
of course, also be stated.



238 T.G. Kurtz [ Strong approximation theorems for de.-sity dependent Markov chains

Corollary 4.5. Under the conditions of Theorem 4.4

/S wr . (]og N)2
IP{VNXn({)- X()ET}-P{V()ET} <K(,t) Y 4.12)
for every open set I in the subspace E spanned by the | for which €, > 0, such that oI
has finite surface arza.

Remark. Barbour [2] gives a rate of convergence of O(log N/V'N) for a somewhat
complicated functional of V N(Xx(t)— X (t)).

Proof. Let A = Uxea,-S'(x, y~log NIV N’) where S(x, a) is the sphere of radius a
centered at x. Then
P{V(i)ST' - A}<P{VN(Xx(t)- X(t))ET}<P{V(1)ETTUA}. (4.13)
Let A'= U, .- S(x, k (log NY/VN). Then
PIVINETUA}-P{V()eTl'-A}=P{V(t)E A}
<P{V(t)E A'}+P{yi>k log N}
<P{V(t)€ A’} + C exp{— Ak log N}.

Since V() has a bounded dlensity with respect to Lebesque measure on E it follows
that

. + o [ Qg N)
P{V(1)E A"} o(k \/Fz)'

The Corollary follows by taking k = 1/A.

Appendix

Let ¢ be twice continuoisly differentiable, and My (¢) be given by (2.7). Then (at
least formally)

Elo(Mn(t)e ™)) =

= e+ 10D+ [ E({2 [o((Mur+ S 111) ) o (Mu(s)e ) | N,
—ae “o'(My (s)f:““)} My (s)) ds
= o(1+|Xn(0)]) (A.1)
; J E (Mu(s) S NS,L

1N |lje o

/
k';'l," e - “) ¢"(Mn(s)e ™ + u)du) ds.
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If we have ¢"(x + y)< K(¢"(x)+ ¢"(y)), then
E(e (Mn(t)e™™)) <
= o(1+ | Xy (0)
e(1+|Xn(0)]) (A.2)

kY

+K Jro E ((p "My (s)e™ M (s)e™* @2N)" 3 |Ier) ds

+ KL' E (MN(s)NS, 1 (—;7 [lle“".)) ds.
Let Rn(t)= My (t)e™™, and recall
E(Rn (1)) = 1+ | Xx (0)] = Rx (0).
If 21|, <, B =2, then
E(Rv(1))")< (1+| X~ (0)])°

+K'N™ f "E((Ru(s))* e ds (A.3)
0

+ K'N"¢0 f (1+]Xu (0))e® " ds,
0

where K' is independent of N, t and | Xy (0)].
The fact that

sup E((Rn(1)))/(1+]|Xn(0)])° <o

N, 1) XN (0]
follows by iteration.
If 2 ¢ e <, then for A <A

E(exp{ARN (01} = exp{A (1+ | Xn O)])} (Ad)
+ J' E(exp{ARx (s)}Rn(s))e= >, Ne[exp{A|l]e ™ /N} -1~ A|l}e ™ /N]ds

<expld(1+[Xx @)} + CN™ f " E(exp{ARN ()} Ru ()™ ds

where C is independent of N and can be taken independent of A < A, — & for fixed
8§>0.

Since the last inequality holds point wise in s, for u(t, A) = E(exp{AR (t)}) we
have

)
56; u(t, A )sGN™ éfh— u(t,A)e ™ fort>0, A<A,~-38

Consequently

d u (t,a +'—1- CsN~ e“"‘) =0 fort>0 anda +-l- CsN 'e ™ <Ay~ &
dt « a
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Therefore

u (z, a+t CsN"e“"“) <u (0, a+i C;N-*)
a [4

—exp[(aLan) a+1xOD)

forall ¢t and a <Ay—8 —(1/a)CsN™".
Set a=A—(1/a)CsN'e™.
If A<Ao—38--(1/a)CN'(1~e™)

u(t, A\)<sexp{(A +1GN'(1-e )1 +]|Xn(0))}
Therefore, if A <Ay~ 86 —3CsN™!
sup Efexp{ARN (1)) < exp{(A +3CN")(1+ | Xx (0)])}.

Since we may sclect § small and N, large (2.5) follows.
I'n general we cannot take N, = 1 even for the Yule process (see Karlin [7, page
180]) for which E(exp{ARn (¢)}) can be explicitly computed.
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