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A variety of continuous parameter Markov chains arising in applied probability (e.g. epidemic 
and chemical reaction models) can be obtained as solutions of equations of the form 

XN(t) = x,+ z j+ ‘Y, (Nj-’ fi(&(s))ds) 
0 

where 1 E Z’*, the Y, are independent Poisson processes, and N is a parameter with a natulzal 
interpretation (e.g. total population size or volume of a reacting solution). 

The corresponding deterministic model, satisfies 

X(t) = x(-J + I o’ c 4WWds 

Under very general conditions Em,, Xh’l(t)= X(t) a.s. The process XN(t)) is cornpared to the 
diffusion processes given by 

Z,(r)=x,+q+ 14 (N/’ fi(Us))ds) 
0 

and 

V(t)=c l!’ dm$d*,+/’ al-(X(s)) l V(s)ds. 
01 0 

Under conditions satisfied by most of the applied probability znnadels, it is shown that &, ZN and 
V can be constructed on the same sample space in such a way that 

XN(t)=ZN(t)+O N , ( logN\ 

1. Introduction 

There is a large body of literature concerning diffusion and other ap 

for Markov chains and similar processes (see 4, 11, 16, 1-q f0 

references). Most of these results involve convergence in 
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convergence. Pn [l l] we used a result of MmIos, Major and Tusnady [S] to obtain 

diffusion processes and Markov chains built on the same sample space so that it is 
possible to give aimost sure pathwise estimates for the error in the approximation 

of the Markov chain by the diffusion process. 
In the present paper we extend this result to a somewhat larger class of chains 

and prove a similar strong convergence result for a central limit iheorem. 
Thte class of Markov chains we will consider is as foilows: 
Let 2” be the d-dimensional integer lattice. For each N > 0 XN(t) will be a 

Markov chain with state space {(l/N)k : k f 25”). We assume there: exist non 
negative functions fi (x j, f?(x), N = 1,2,. . . , I “c Zd, x E Rd and constants cl, r such 
that 

and 

(1.1) 

(1.2) 

and that the infinitesimal parameter for a transition from k/M to (k + 2)/N is 
Nfr(k/N). Throughout we will assume 2 &I I k 1 c 00. This implies that XN(f) is 
uniquely determIred by the infinitesimal paramete# s. In fact XN (t) can be obtained 
as a solution of I;Ele stochastic equation 

(1 3) . 

where the Y, are independent Poisson processes with E( Y, (u)) = u and XN(0) is 
independent of the Y,. We observe that 

E(Xb (t)) = E(XN (0)) + I,’ E (c V%X&))) ds* 

’ = E(XN (0)) + 
I 

E(FN (XN (s))) ds. 
0 

(14) . 

Most of the Marlkov chain models arising in applied probability (e.g. epidemic 
models and chemical reaction models) can be formulated in this way (see [9, IO, 

1 I]). Equation (l/.4:1 gives at least some motivation for considering 

X(r) = X(O)+ \’ 2 &(X(s))ds 
I’) 

= .X(O) -I- 
I 

” F(X(s))ds 
II 

as the corresponding deterministic model. 
The diffusion approximation correspondilYg to (1.3) is given by 

(1 3 . 

(1 6) . 



T.G. Kurtr /Strong approximation theorems for density dependent Markov chains 225 

where the B, are independent Brownian motions with E(&(t)) = Var(B, (t)> = t. It 

is not obvious that (1.6)1 has a solution. However (1.6) is equivalent to the Its 

equation 

zv(f)= zv(O)f c 1 
--& 

I 
’ %‘fi(Z&))dti&)+ [’ F(& (s))ds. (1.7) 

0 JO 

This fact is used in [ll] to prove 

Lemma 1.1. Suppose I21 il /2&l < w, ~~If1’1~fi(X)-~fr(y)12~~(X-y(*, md 
IJW-mww -Y If or some M and all x, y E R”. T’hest there exists a diffusion 
satisfying (1.7) which satisfies an identity of the form (1.6). 

Remark. This is a “weak” existence theorem for (1.6) in the sense that the B1 (t) are 
defined in terms of the solution of (1.7). In particular 

I 
r,(l) 

B!(r) = ~Nfi(ZN(s))d%(s)+ t 
0 

WV 

where rl (t) is the solution of 

I 
q(t) 

t=N fi (& (s))ds. 
0 

It follows that 

1 

JNfi(z,d*,(s) 

+ N ’ fifZN(s))ds. 

Clne of the goals of the paper is to give “‘analytic” proofs of th;e convergence and 
approximation theorems by using *well known sample path properties of the YI and 
BI in Equations (1.3) and (1.6). 

In Section 2, we show that X&) converges almost surely to X(S) (under the 
assumption that F is Lipschitz) by using the Law of Large Numbers for ‘ft. In 

addition, under the assumption that XI I(‘E~ < CQ we show that 

X,(%)=X(t)+0 +N . ( ) 
This latter fact is, of course, a consequence of the known centrdll limit theore 
\&(XN (t) - X(t)) (Norman [15] and Kurtz [lo]), but here we obtain the 
estimate directly from equation (1.3) using properties of the :,‘,. 

In Section 3, we use the embedding theorem of Momlos, Majfor and 
to construct solutions of (1.3) and (1.63 on the same sample space in such a wa_ 



226 T.G. Kwtz /Strong approximation theorems for derzsity dependent Markov chains 

Once again the estimates are obtained analytically for almost every sample path 

using the error estimates in the embedding theorem and Levy’s modulus of 
continuity. 

Similarly, in Section 4 we show that 

dE(& (t) -* X(t)) = ‘V(t) + 0 ( ‘> z 
where 

V(t) = 2 d’ ’ x$(X(s))d@, + 
I I 

’ dF(X(s)) l V(s) ds. 
0 r) 

(1 9) . I 

(aF denoks the gradient of F.) 

Note that V(t) is a Gaussian process. 
Finally, we use this result to give Berry &seen type estimates on the difference of 

the distributions of dE(XN (t) - X(t)) and V(t). 

2. Deterministic limit 

Theorem 2.1. Let 

Then there exists a positive random variable KN such that 

and 
IXN(f)( =s Krd?“’ - 1 (2 2) . 

P{K, IT c) s $ (1 -I- IXJv(O)I). (2 3) . 

If Z: El i 11’ <: lcia for some /3 > 1, then 

E(K’$+ CO(l t IXN(0)I)B (2 4) . 

where CP is kzdependent of N. 
If I= Ed e*“’ <:: 08 fiw all h < ho, then there is an iv, and a D, independent of IN 

such that 

E(eAKsu) < [DA ](*+~XdU) for akl A < ho and N > NA. (2 5) . 

Remark. Ineqkalit-* j (2.2) is essentially a stochastic version of Gronwall’s 
Inequality. 

(2 6) . 
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From (2.6) it follows that 

= 1+ fXfj(o>l+$ Q (N1’ M,(s)ds) l 

Since Q is an increasing process with independent increments it follows that 

MN(t)e- ” is a positive martingale with 

E(MN(t)e-“‘) = I+ lXN(0)I. 

Therefore 

KN = sup MN(t)e-at < * a.s. 

and (2.2) follows. The inequalities (2.3), (2.4) and (2.5) follow by martingale 
inequalities [3, page 2171 and estimates on moments of M,(t) (see Appendix). 

We observe that 

for each 

for each 

lim sup ; Q(az) - cyz = 0 a.s. 
I 

1 

a--- zSz0 

z. > 0, and hence, if limnr,,XN (0) = X(O), then 

lim sup IA&(C) - (1 + IX(0)l)eap 1 = 0 as. 
N-+x’ #s-i- 

T>O. 

Remark. b&(t) is a continuous state branching process (see Lamperti [ 13)). 

For large values of N The Law of Large Numbers implies 

This suggests that 

XN(f)== 

and in turn that 

IWF- 

XN (0) + I t Fr”(xh’ (s))ds 
0 

Xv (t) a X(t). This is made precise in the following 

~(y)laMlx -yl, 2 l+-- ( “b 
wr 
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and lim N-rw XN (0) = X(O), then 

lim sup IX&f)- X(t)/ =: 0 as. ( 9 2. 
N-m ISI” 

for euery T>O. 
If c Ill% < ~3, /3 3 2, then there is a random variable LN (T) such that 

(2.10) 

and 

SUP E(LN (T)‘) K 80. (2.11) 
N 

If ~e""'el c 00, then 

sup E(eMN’T’) < m. (2.12) 
N 

Proof. -We have 

IXN(t)-- x(t)1 s IxN(o)--x(o)/ 

+ j I’ (F"(xN (s)) -- F(&v (S)))dS ) 

+ 1 f ’ tFcxN (s)) - F(X(s)))ds 1 
1 .f(J I (2.13) 

f y&v (s))ds) - l f y&v (s))ds) 1 

hPJo 
-’ r’ MN(s)ds 

+ I ’ Ml&(S)-x(S)ldS 
0 

where MN (S) is given by (2.7). Since & (s) 6 &,- e”Is, Gronwall’s Inequality gives 
(2.10) with 

LN(T)=SUp 1 VEC Z(f Y2(Nlr fF(&(s))ds)-1’ fy(XN(s))ds)J . G*14) 
l=iT 0 0 

Define T:= ItMN (s)ds. By the observation at the end of the proof of 
Theorem (2.1) 
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From (1.1) and 1 + 1 XK (t)l s MN(~) 

(2.16) 

Note that. the second inequality holds term by term and that each term in the first 
series converges to zero a.s. The Law of Large Numbers shows that the limit as 
N + 00 and summation are interchangeable for the second series, and hence for the 

first series. This implies 

1 
lim -= 

VN 
LN(T) = 0 a.s. 

N---J 

and (2.9) follows. 
To estimate the moments of &(T) we observe that 

is a martinguale (Rd valued). Furthermore the optional sampling theorem for 
martingales indexed by parthally ordered sets [ 121 implies 

for any convex function q. 

Each component of 

1 
U(t) = fi c 2 (F Y(I%t) - Fll) 

is a process with independent increments and 7: is a stopping *time. 
If x I I I%, c 00, p Z= 2 then Theorem 7 of [l] implies 

E( 1 U(~“f31’) s C max{E@), E(h?)@“)) 

and an inspection of the proof of that result 
independently of IV. The uniform boundedness 
follows from the estimates in the Appendi.,;. 

3. Diffusion approximation 

(2.19) 

shows that C may be selected 
of the right hand side of (2.19 

We will now consider estimates on the difference 

solutions of (1.3) and (1.6) with ZN (01) = (0) 
assume 
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Given the estimates on the growth of 1 X ’ rt)( in Section 2 and the fact that similar 
estimates can be given for the growth of IZw @)I, (3.1) and (3.2) are not really much 
more restrictive than the previous assumptions. 

The basis for our diffusion approximation is the following lemma which is an 
immediate consequence of a Theorem of Kdmlos, Major and Tusnady [81. 

Lemma * 3.1. Let B(e) be Brownian motion with 

Then a 
B(t) so 

E(B (t)) = Var(B(t)) = t. (3 3) . 

Poisson process Y(t) can be constructed on the same sample space as 
thal’ 

supi!x!kUi”K<m as 
logt v2 

. . 
ra8 

(34) . 

and E(exp{hK}) C 30 for some A > 0. 

Remark. By Lemma 3.1 we have 

sup IY(s)-s/f sup /B(s)-sl for t <2, 
S6l ssr 

sup 1 Y(s)- B(s)/ 6 (3 5) . 
LSC 

Klogt fort 32. 

‘+e write iBI (t) = Wr (t) + t Mrhere WI(t) is Brownian motion with mean zero and 
variance t. After a small amount of manipulation we have 

xv(f)- Zv(f) = c $ 2 [ W, (N\’ fi(X,(s))ds) - W’, (IV/’ fi(Z&))~ds)] 
0 

I 
0 

’ i- 
I 0 

[F(:L (s)) - F(Zi,, (s))] ds ((3.6) 

rhe second& terrn on the right can be handled using Gronwall’s inequality, the 
third term can be estimated using Lemma 3.1, and the fourth term is estimated 
using the mofdu us of continuity for Brajwnian motion. 

IPI order to handle the first term on the right we prove the following lemma. 
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Lemma 3.2. .%ppose 

and . 

IXN(t)-- ZNIOI L!l S eMtaN + eMr C N Sup 
ust 

1 W,(Nl”f,(X,(s))ds) 
0 (3.8) 

- W(+(Z,(sJWs) 
0 

Define 

=f s sup 1 M(u)-- w-(v)1 
AY I 

u. vs NqT VI u -vl(l+log(N&(u -VI))’ 
Then , 

sup I&(t)- Zni(t)) s 
,ST 

(3.10) 
1 MT(1 + log N/M) 

S max E, 2eMT& + e2MT N c 13lt’&t . 

Remark. A& is finite by a result of Levy (McKean [14, page 141) and a result of 

Fernique [S] implies E(exp AM:) < 00 for some A >O. This in turn implies 

E(exp A (x 11 I dzM,)2) < cx: for some A > 0, since the Mj are independent. The 
are also identically distibuted and the distribution of x 1 I! d&fJ does not depend 

on N. 

Proof. Define r(t)= NJXN(f)-ZN(t)l and y = ~tip,GTy(t). We have 

N/ 1’ fi(X&))ds - 1’ fi(Z,(S))ds/ s c,Mlb y(s)ds. 
0 

Noting that 

(.x%2 

&(l+ log(Nc,T/x)) (3.12 

is increasing in x we have 

y(t) s eMTNGN + eMT c I II &,M[ JM ior r(s)ds (I+ log !NT/M \Ory(y)dr 

and hence 

By (3.14) either y s 1 or 

y G emNaN + eMT c I/I A&M, \lMT(l + log N 



Returning to (3.6), if we assume 1 F(x)- F(y)/ d A4 Ix - y 1 then Gronwall’s 

Inequality implies (3.8) nith SN equal to the sum of 

1 Ix’;711 I sJPT I wQ-~~w7 (3.16) 

and 
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Inequality ((3.15) implies 

y S 2e”‘W& + e 2hffiW(1 + Iog N/M) fc 111 ad,)z. 

brrbi (3,lO) foilows. 

I [kf[ V&$T(l+ log(NT) + EJTj.. (3.17) 

If x 111 dpi < 00 and N > 1, then (3.17) is bounded by 

y (c1 x IrlvzM, +c,) (3.18) 

where cl and c2 are constants independent of N. 
From Lemma 3.2 and (3.18) it is clear that the rate of convergence is determined 

by (3.16). 
Using various assumptions on eI we make various estimates on (3.16) to obtain 

the following theorem. 

Theorem 3.3,, Assume that (3.1) and (3.2) hold, and suppose 

c GIlI<? Ifi(fi(Y)IQMlX-yy (3.19) 

and 
IF(x)-- F(y)1 Q Mj:r: - y I for some M >Q. 

Assumt: that It’, and B1 satisfy the conclusion of Lemma 3.1. 

(a) If Et = 0 fivr all butfiktely many 1, then for W 2 2 there is a random variable PL 
with distribution independent of N and E(exp{AP 3) < ~0 for some h > 0 such that 

T:F I.&(t)-z,(t)~Sp;~. (3.20) 

(b) If x er’r’t:r < 0~ for some p > 0. then! for N _ 3 2 there is a random variable 1’3; 
with supN E(exp(hj3 ‘9) < 30 for some ‘A :> 0 such that 

TllF Ir:,(t)-&(t)JS~~~~ (3.21) 

(C) If el c 11 lea for CL > 2d + 2, then for N 2 2 there is a random v&able pz with 
WPN E((PL)‘) *cc ~0 for 9 < LY - d such that 

sup 
r=7 

.XN (t) - & (t)/ G g .qlog N) N(d+lD’rr -I. (3.22) 



T.G. Kurtz /Strong approximation theorems for density dependent Markov chains 223 

Proof. Part (a) follows from Lemma 3.1 and Lemma 3.2. /3: may be written as a 
function of M, and 

To obtain parts (b) and (c) we write (3.16) as 

(3.23) 

sup IX++-&@)I 
K e N&IT 

+,,,zcN$ Ill sup Iw+-B&d G u G NqT 

I[ 
sup IYl(u)-ul+ sup 

u 6 NE/T us NqT 

11 I Kl log(NEJ v 2). 

The second term on the right can be bounded by a constant times 

(3.24) 

(3.2%) 

=yy c Ill) Pl(N,T). 
llirc-N 

The random variable PJ’V, T) is a convex combination of independent identically 
distributed random variables satisfying E(exp#K,}) < m for some A > 0. 

quently 

E(exp{h&(N, T)}) s E(exp{AK)). 

We split the first term on the right of (3.24) ,and observe that 

B,(u)-+= 

Since SU~,~N~~T](B,(U)- ~)/~hh%T/ is equal in distribution to w = supLoSt 1 
* 
1 

where W(u) is a standarld I3rownian motion, (3.26) cari be bounded by 

where E(exp{h&(N, r)]) s 
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Finally we have 

l(3.28) 

We consider these terms separately as 

(3.29) 

To complete the proofs we must select Cb: and &Y (N j, estimate the sums in (3.25), 
(3.27) and (3.30) and the moments of &(N, T), 

To obtain part (b) note that el 6 oe-P1’l for some a. Set CFt = k log N where k is a 
!xtfficiently large constant and cy (N) = (log N)d*P2. 

The sum in (3.25) can be bounded by a constant times 

I I Id x x = UdC;f;t’ = O((iog N)d+lk 
{X!lrCN 

Similarly in (3.27) the sum is of the order of 

(3.31) 

I 

a 
y e-j, )I L-l 

dr = O(C$e+cN) 
CN 

= O((log NjdN-!“j, 

xrd in (3.30) the sum is 

(3.32) 

O((log NjdN -‘“). 
Finally 

= esp NEI T(er irnacNJ - 1) 
I 

. 

The !burn in the expo: -2nt is 

a 0 Jlj’ ( I e-P*(eAr/u(N) _ l)rd-l& . 

CN > 
If (/J -- h/a (N))k 3 1, this is 

(3.33) 

(3.34) 

(3.35) 

0 d r dr ..-&!__~ C”,e-(p -AlaIIN>>CN 

a!(N) (3.36) 

= O(1). 



T.iG. Kurtz / StroMg approximation theorems for dens1 ty dependent Mar/coo chains 

Part (b) now follows. 
To obtain part (c) we have similar estimates on the sums. In (3.25) 

c 1 II = O(C$+‘); 

IlldCN 

in (3.27) 

2 12 ] q; s 2 11 (-(a’*-1) = qcd,“-“‘2); 

Ill=-CN !jbcN 

in (?JO) 

c II ; El = B(CfJ+‘-“). 
ili>cN 

To obtain the moment estimate in (3.29) define 

U(t) = c 111 WW). 
;l!>cN 

Then for 1 < v < cy - d 

VW)? = E /0r ,,ZN lkl[(U(s)+ 111)” - U(s)“]ds 

* c NEI(IIIU(s)“-‘+(Z]?)ds 

225 

(3.34) 

(3.38) 

where C is a constant independent of IV. (The fact that E(U(T)“) < x is a 
conseq:Jence of Theorem 5 of [ 11.) 

To complete the proof, set CN = N*‘= and Q(N) = N(‘*‘)‘rr, The estimates 
involving the sums are immediate. Inequality (3.40) implies 

E( U(T)“) s C’[N Id+l)/aE(U( T)“-‘j + N(d+nUa], (3.41) 

and hence 

E(&(N, 7’)“) s C’[E(&(N T)“-‘) + 11 

which in turn implies E(P#‘V, T)") is uniformly bounded in IV. 
The various estimates can now be combined tc give part (c). 

(3.42) 

4. Central Limit Theorem 

Throughout this section we will assume (3.1), (3.2) 

c I~I’l~$(x)- ~‘fi(y)12~Mlx -y/f 
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and 

We begin by comparing the solution of (1.7) to A6(ZN (t) - X(t)), assuming 

2% (0) = X(O). 
Using (I S) thirs givt:s 

~i?(Z, (t) - X(t)) - V(t) = 

+ I t [%‘E(F(Z,(s))- F(X(s)))- dF(X(s))* V(s)]ds 
0 

(4 1) . 

-t ” aF(X(s 1) l [t’G(Zp, (s) - X(s)) - V(s)] ds 
J 0 

I 
’ -I- ~~(& (s? - X(s)) l d*F(O(s))(&(s) - X(s))ds. 

0 

We need ahe Mowing consequdllce of Ito’s Formula (see Friedman [6, page 871). 

Lemma 4.2. Let gr (s) be non-anticipating functions. Then for each n * 1 there exists 
GZ consfani; K,, such that 

E jslnp / c II’ gi(s)dw,i2n)s K,T”-’ IrE ((c Ill’s:(s))“) ds. 
IST 0 0 

(4.2) 

then for each 1 s i s d, 

’ r, I.g,(s)d@, -x2 

is 62 wean one martingale. 

As ;i corollary we have: 

(4 4) . 
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for every A > 0. 

Proposition 4.3. There is a coettstant C,, such that 

E (sup (V%( ti(ZN (t) - X(t)) - V(t)l)‘“j s 
IST 

S C, e T(v”E(ZN(S)- X(s)l)“ds 

and 

+ j-T(fiIz,(s)- X(s)/)4n ds) 
0 

(43 

for every A > 0. 

Remark. This proposition follows from (4.1) using the estimates in Lemma 4.1. If 
vfi (x) = gr (x) is continuously differentiabAe then dE(dN(ZK (t) - X(t)) - V(t)) 
converges in probability to the solution of 

p(t) = 2 11’ agl(X(sj)* V(s)dk& + 1’ dF(X(s)) - 6’(s)ds 
0 0 

I 
I 

+ V(s) 9 a’F(X(s j)V(s)ds. 
0 

Observing that 

ViqXN (t) - X(t)) - V(t) 

= di(XN (t) - ZN (t)) + dii(ZN (t) - X(t)) -- V(t). 

Proposition 4.3 and Theorem 3.3. imply the following Theorem. 

Theorem 4.4. Assume that XN (0) = X(0). 
Suppose Ed = 0 for all butfinitely mlzny I, then for N 3 2 there are ran 

7: with supN E(exp{h y 2) < CIQ for scime A > 0 such that 

. Similar Theorems correspon ing to parts (b) an eor 
of course, also be stated. 
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Ccr~olla~y 4.5. Under the conditions of Theorem 4.4 

IP{-di~(XN (t) - X(t)) E l-1, - P{ V(t) E r)l s K(F, t) y!$!g (4.12) 

for every open selt r in the subspact: E spanned by the 1 for which er > 8, such that dlT 
has finite surface area. 

Remark. Barbour [2] gives a rate of convergence of O(log N/d??) for a somewhat 

complicated functional of d??(XN (t) - X(t)). 

Proof. Let A =y U xEad@, yzlog El/\/q where S@, a) is the sphere of radius a 
centered at x. Then 

P(V(~)E~-A}~~P{~~(X,;(~)-X(~))E:~}~P(V(~)E~~A). (4.13) 

Let A ’ = C-lxEal’S(x, k (log N)*/V’%,). Then 

P{V(t)WUAfi-P{V(t)E.F-A)=P(V(t)EA) 

<P{V(t)EA’}+P{y;SNc logN’} 

s P{ V(t) E A ‘} + C exp( - hk log IV). 

Since V(t) has a bounded c’lensity with respect to Lebesque measure on E it follows 

that 

P{ V(t) E A ‘} = 0 (k @$;F) . 

The Corollary follows bj taking k = l/h. 

Appendix 

Let cp be twice continuously differentiable, and A& (t) be given by (2.7). Then (at 
least formally) 

E[(p(rcI, (t)e-“‘)) = 

= q(l + IxPJ(“)])+ I ({z [y((Mw(s)+i 

= q(l + IxN(0)/) 

- TV e-*‘y’(M,,, (: ~)e-*‘)} MN(S)) ds 

1 I I) evas) - y (MN (s)e-*‘)I] NED 

(A4 

MN (s) c NE, [‘N’l’ema’ (k I1 /emas -- u) y"(MN(s)e-"" + u)du) ds. 
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If we have q”(x + y) s K( cp”(x) + cp”(y)), then 

E(q(MN (t)eeat)) s 

s &l+ IX&O))) 

~n(M~(~;e-as;M~(~;e-2”(2N;-’ c ll12Ei) ds 

+KI’ E (M,(s;Nc ~19 (+lZ~e-a:jj ds. 
0 

Let 19, (t) = MN (t) e-“‘, and recall 

E(& (t)) := 1 + 1 XN (0) 1 = Rr,, (0). 

If C I I I%1 ~00, _B 2 2, then 

E((&(t);‘; =z (1 -k f xN(o)j)p 

+ K’N-’ 
I 

’ E((&, (:s))p-l)e-as ds 
0 

(A..?) 

+ gi’N-(p-1) I ’ (1 + 1 XN (0)l)e-‘P-‘)s dls, 
0 

where K’ is independent of N, t and I XN @)I. 
The fact that 

sup E((Rv (t));/U + 1 xN(~;I)p < 00 
N,I.!xN(oji 

flolIo ws by iteration. 

If c Q e”o”’ < pm, then for A < ho 

E(eXp( A& (t )}; = eXp{h (I + 1 xN (a) I)} VW 

+ ’ E(explARN!s))RN(S))e~C N&,[exp{AIIIe-““lN} .- l-A~I~e-~s/N]d~ 

G exp{A (1 + I XN @)I} + CN-’ 1’ E(exp{ARN (s)}RN (s))e-Qs ds, 
0 

vhere C is indeperlcierat of N ani can be taken independent of A s Au -_ 6 far he 

1s; > 0 I 

Since the last inequalit:y holds point wise in s, for u(t, A) = E(exp(AR, (t) 

have 

$ u(t9 A) s CsN-’ $- u(t, A)e-“’ for t Ml, A <A,-& 
I _ 

Consequently 

1 
t,a+&CaN-e-“’ ~0 fort*>0 andla+- 
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Therefore 

u t,a+ 
( 

1 
; C6N-’ e-a’ > ( 

S u 0, a + L CJV-’ 
a > 

= exp 
( 

(a, ’ ( ?-; CJT-’ ) (1 -I- lw?-d)} 

for all t and a < ho- 6 - (l/cw)CJV-‘. 

Set a = A - (l/O)CsN~“e-“‘. 

If h < Ao - 6 -- (l/a)CJV-'(1 - emat) 

u(t, h)~s exp((h + fC6N-‘(I - e-“‘))(l -i- f &(Q)# 

Therefore, if h < A,, - 8 - 4 CsN-’ 

sup E(exp{ARN (t);) 6 exp{(h +~CN~‘)(l+ IXN(0)I)}. 

Since we may select 6 small and N, large (2.5) follows. 
!rr general we cannot take Nh = 1 even for the Yule process (see Karlin [7, page 

MO]) for which E(exp{ARN(t)}) cart be explicit%y computed. 
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