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Abstract

Let R be a commutative ring with identity, N be an R-module, and M = (a;;),,, be a
matrix over R. A linear code C of length n over N is defined to be a submodule of N”. It
is shown that a linear code C(k, r) with parity check matrix (—M|/,) is maximum dis-
tance separable (MDS) iff the determinant of every A xh submatrix,
h=1.2.... . min{k.r}, of M is not an annihilator of any nonzero element of N. This
characterization is used to derive some results for group codes over abelian
groups. © 1998 Elsevier Science Inc. All rights reserved.
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1. Introduction

Recently, Zain and Rajan [1] gave a good algebraic characterization of max-
imum distance separable (MDS) group codes over cyclic groups. They pointed
out that the algebraic approach can be extended to the general case of group
codes over abelian groups using the complex theory of determinants of matri-
ces over noncommutative rings [1]. In this short paper, the matrix characteriza-
tions of MDS codes over finite fields and MDS group codes over cyclic groups
are extended to linear codes with systematic parity check matrices over
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modules. This characterization is then used to derive some results for group
codes over abelian groups by using the simple theory of determinants of matri-
ces over commutative rings.

2. A characterization of MDS linear codes

In the rest of the paper, let R be a commutative ring with identity, N be an R-
module and M = (a;;),,,, be a matrix over R. A linear code C of length n over N
is defined to be a submodule of N”. Linear codes over fields and group codes stud-
iedin[1] are all linear codes over modules. We denote by C(k, r) the linear code of
length n = k + r with systematic parity check matrix (—M|1,). It is clear that the
first k columns of a codeword of C(k, r) are arbitrary information symbols and
the last » columns are the parity symbols computed from the information columns.

Definition 2.1. An element x in a commutative ring R is called annihilator of an
element y £ 0 in R-module n if xy = 0. If N = R, then an annihilator is called
zero divisor of R.

Example 2.1. Let R = Z,, the ring of integers modulo m, and let N be a cyclic
group with m elements. Then N is an R-module, and C(k, #) is a group code [1].
An element # in Z, is an annihilator of some nonzero element in N iff # is not
relatively prime to m. This is equivalent to » not being a unit of Z,.

Theorem 2.1. C(k,r) is MDS iff the determinant of every h x h submatrix,
h=1,2,...,min{k,r}, of M is not an annihilator of any nonzero element in N.

Proof. Suppose every h x h submatrix, #=1,2,...,min{k,r}, of M has

determinant which is not an annihilator of any nonzero element in N. Let

a=(ay,ay,...,ar) be a nonzero codeword. Assume that only / elements in

{aj,as,...,a;} are nonzero, those with indices ji, j»,.... /s Then it is clear
Qrer = Ay A5 + A @y + 0 + ay,a;,,

where t=1,2,...,r. Suppose s of these are zeros and their indices are

{k+i,k+ixy....,k+iy}. Then we have

0= ary, = aya), +aga;, + - +a,aq;,

where t = iy,...,i,. Let
ijy  Qijp o gy,
irjy  Gijy 0 Giyjy
My=1 . . e (1

Aiji Qipjr "7 Qi
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Then we have
T T
M;Mh[ajl 1 jyy e ’ajh] = HMhlajw IMhlajzv ) ‘Mh|a_i».] =0,

where M is the adjoint matrix of M, and |M,| is the determinant of M,. It fol-

lows that |M,|a;, = 0,i =1,...,h. As |M,| is not an annihilator of any nonzero
element in N, we have a;, =0,i=1,..., A, which is a contradiction. Hence in
{@k+1,0512, ...,k } at most A — 1 elements are zeros and the weight of a is

atleast h+ [r— (h— 1) =r+1, ie., Clk,r) is MDS.
Conversely, let C(k,7) be MDS and let (1) be any submatrix of M, where
h < min{k,r}. If |M,| is an annihilator of some nonzero element in N, then

from [2], I.G.1 Exercise, there are a;,,a,,,...,a; in N, which are not all zero,
such that
T
Mh[aJl,a‘,-z, Ca ,ajh] =0.

Put b,=0 when s#j; and b, =a;,i=1,2,... . i;s=1,2,... k. Let
[bk+1,bk+2, Ceey bk+,~]T = M[b],bz, . ,bk]T. Then bk+i1 = bk+ig == bk+i;, =0
and (by,by,...,b4, 6501, 0452y ... biyr) 18 a codeword of C(k,r) with weight
< h+ (r — h) = r, a contradiction. Thus |M,] is not an annihilator of any non-
zero element N. ([

Remark 2.1. Theorem 2.1. is a generalization of [3], ch. 11, Theorem 8§,
which is for codes over finite fields and [1], Theorem 2, which is for group
codes over cyclic groups. When R is a finite field and N = R these theorems
coincide.

3. Some applications

In this section, let G be a finite abelian group. The r-foldsumg+g+---+ ¢
will be denoted by rg. Since the best group codes are over elementary abelian
groups [4], we will focus on group codes over elementary abelian groups. Here
by an elementary abelian group we mean that the exponent of the group is a
prime p, i.e., if the order of every nonzero element is p. It is clear that an ele-
mentary abelian group with exponent p can be regarded as a Z,-module, i.e., a
vector space over Z,.

Theorem 3.1. Let R = Z,, N = G, an elementary abelian group with exponent p.
Then a group code C(k,r) with parity check matrix (—M|l,) is MDS iff the
determinant of every h X h submatrix, h = 1,2, ... min{k,r}, of M is not zero
element of the field Z,,.

Proof. It immediately follows from Theorem 2.1. [
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Example 3.1. Let G be an elementary abelian group with exponent p, where p is
an odd prime. Let

[ 11

M= .

1 2

Then it is clear that the determinant of every square submatrix of M is not zero

element of Z,. By Theorem 3.1 the code C(2,2) with parity check matrix
(—M|L) is a (4, 2, 3) MDS group code over G.

Example 3.2. Let G be an elementary abelian group with exponent 11. Let

1 1 t 1
M=11 2 3 4
122 3 4

be a matrix over Z;;. It is easily verified that the determinant of every square
submatrix of M is not zero element of Z;;. By Theorem 3.1 the code C(4,3)
with parity check matrix (—M|L) is a (7, 4, 4) MDS group code over G.

Corollary 3.1. Let G be an elementary abelian group with exponent p. Then
1. Over G, (1 +r,1) MDS group codes exist for all values of r and p.
2. Over G, (k+ 1,k) MDS group codes exist for all values of k and p.

Proof. Let M =[(1,..., l)T],_X,, where 1 is identity of Z,. Then by Theorem 3.1,
C(1,r) with the parity check matrix (—M|J,) is a (1 +r, 1) MDS group code.
LetM = (1,...,1),,,, where | is identity of Z,. Then by Theorem 3.1, C(k, 1)

with the parity check matrix (—M|1) is a (k + 1,k) MDS group code. [J

Corollary 3.2. Let R = Z, and N = G, an elementary abelian group with exponent
p. and let M = (a;),., be any matrix over Z,. Then MDS group codes C(k,r)
with parity check matrix (—M|1,) do not exist if max{k,r} = p.

Proof. If there is an MDS group code C(k, ) with parity check matrix (-M|I,),
then by Theorem 3.1, the determinant of every hx A submatrix,
h=1,2,...,min{k,r}, of M is not zero element of the field Z,. Let

ailay apan o ajlaxy

-1 -1 -1
apan 4pan s dy G
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Then the determinant of every square submatrix of M, is equal to a product of
some unit of Z, and the determinant of some square submatrix of M. It follows
that the determinant of every square submatrix of M, is not zero element of Z,

If k > p, then in {a}/aa, ... ,a,‘kla,k}, at least two elements are congruent mod-
ulo p. Assume a;'ay = ai‘i‘azj(modp). Then the determinant of the matrix
1 1

a‘:lazi al;laj/'
is equal to af/.'azj —aj'ay =0 (modp). This is a contradiction. So we must
have k < p. By similar arguments we can show » < p. Thus MDS group
codes C(k,r) with parity check matrix (-M|l,) do not exist if
max{k,r} = p. O

Remark 3.1. Although MDS group codes C(k,r) with parity check matrix
(=M|l,) do not exist if max{k,r} > p, it is possible that there are MDS group
codes (k +r,r) without systematic parity check matrix (—M|l,) even if
max{k,r} > p. Zain and Rajan [1] gave a example of (4, 2, 3) MDS group
code over the elementary abelian group Z, ® Z.
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