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Abstract 

Let R be a commutative ring with identity, N be an R-module, and M = (a,/),.×~. be a 
matrix over R. A linear code C of length n over N is defined to be a submodule of N '~. It 
is shown that a linear code C(k, r) with parity check matrix (-MI/,.) is maximum dis- 
tance separable (MDS) iff the determinant of every h × h submatrix, 
h = 1 ,2 , . . . ,  rain{k, r}, of M is not an annihilator of any nonzero element of N. This 
characterization is used to derive some results for group codes over abelian 
groups. © 1998 Elsevier Science Inc. All rights reserved. 
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I. Introduct ion 

Recently,  Za in  and  Ra jan  [1] gave a good algebraic characterizat ion of max- 

imum distance separable (MDS) group codes over cyclic groups. They pointed 
out that  the algebraic approach  can be extended to the general case of group 
codes over abel ian groups using the complex theory of de terminants  of matri-  
ces over n o n c o m m u t a t i v e  rings [1]. In  this short paper, the matr ix  characteriza- 
t ions of M D S  codes over finite fields and MDS group codes over cyclic groups 
are extended to l inear codes with systematic pari ty check matrices over 

* Corresponding author. E-mail: cbsoh@auto.eee.ntu.ac.sg. 

0024-3795/98/$19.00 © 1998 Elsevier Science Inc. All rights reserved. 
PII: S 0 0 2 4 - 3 7 9  5 (97)  1 0 0 7 3 - 8  



58 35-D. Dong et al. I Linear Algebra and its Applications 277 (1998) 5 7 4 1  

modules.  This characterizat ion is then used to derive some results for group 
codes over abelian groups  by using the simple theory o f  determinants  o f  matri-  
ces over commuta t ive  rings. 

2. A characterization of MDS linear codes 

In the rest o f  the paper,  let R be a commuta t ive  ring with identity, N be an R- 
module  and M = (aij)r×k be a matrix over R. A linear code C of  length n over N 
is defined to be a submodule  o f N L  Linear codes over fields and group codes stud- 
ied in [1] are all linear codes over modules.  We denote by C(k, r) the linear code o f  
length n = k + r with systematic pari ty check matrix ( - M [ L ) .  It is clear that  the 
first k columns o f  a codeword  of  C(k, r) are arbi t rary informat ion symbols and 
the last r columns are the pari ty symbols computed  f rom the informat ion columns. 

Definition 2.1. An  element x in a commuta t ive  ring R is called annihilator  o f  an 
element y :~ 0 in R-module  n if xy = 0. I f  N = R, then an annihilator  is called 
zero divisor o f  R. 

Example 2.1. Let R = Zm, the ring o f  integers modu lo  m, and let N be a cyclic 
group with m elements. Then N is an R-module,  and C(k, r) is a group code [1]. 
An  element n in Zm is an annihi lator  o f  some nonzero  element in N iff n is not  
relatively prime to m. This is equivalent to n not  being a unit o f  Zm. 

Theorem 2.1. C(k , r )  is M D S  iff the determinant o f  every h × h submatrix,  
h = 1,2 . . . .  ,min{k, r} ,  o f  M is not an annihilator o f  any nonzero element in N. 

Proof.  Suppose every h × h submatrix,  h - - 1 , 2 , . . . , m i n { k , r } ,  o f  M has 
determinant  which is not  an annihi lator  o f  any nonzero  element in N. Let 
a = (al, a 2 , . . . ,  ak+r) be a nonzero  codeword.  Assume that  only h elements in 
{aa, a 2 , . . . ,  ak} are nonzero,  those with indices j l  , j 2 , . . .  ,jh. Then it is clear 

ak+t = a(haj t  -~- a(i2aj, - + " " " 4 - a ( h a k ,  ~ 

where t = 1 , 2 , . . . , r .  Suppose h o f  these are zeros and their indices are 
{k + i l , k  + i 2 , . . . , k  + i~}. Then we have 

0 = ak+t = atjtajt + atj~ai2 + • "" + atjhajh, 

where t = il, • • •, ih. Let 

m h  = 

[ ailjl ailj2 • . . ail j# 

ai2Jl. ~li2J2 . "...". ai2Jh . 

L aihj I aihj 2 " • " aih.jh 

(1) 
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Then  we have 

M~Mh[aj, ,aj2, . . . ,ajh] T = [IMh[aj,, IMhlai2,. . . ,  [Mhla/h] w : O, 

where M~ is the adjoint  mat r ix  of  Mh and Imhl is the de te rminant  o f  Mh. It fol- 
lows that  IMhlaj~ = O, i = 1 , . . . ,  h. As IM~l is not  an annihi la tor  o f  any  nonzero  
element  in N, we have a j, = 0, i = 1 , . . . ,  h, which is a contradict ion.  Hence  in 
{ak+l, ak+2,... ,ak+r} at mos t  h -  1 elements are zeros and the weight o f  a is 
at least h + [r - (h - 1)] = r +  1, i.e., C(k,r)  is MDS.  

Conversely,  let C(k, r) be M D S  and let (1) be any  submatr ix  of  M, where 
h ~< min{k, r} .  I f  [Mhl is an annihi la tor  o f  some nonzero  element in N, then 
f rom [2], I.G.1 Exercise, there are a/,, a j~ , . . . ,  a~,, in N, which are not  all zero, 
such that  

a IT=0. m h [ a j , , a # _ , . . . ,  Jr, 

Put b , . = 0  when s # j i  and b j i = a j i , i =  1.2 . . . . .  h ; s =  1 2 , . . . , k .  Let 
[bk+l,bk+2,...,bk+r] v = M [ b , , b z , . . . , b k ]  T. Then bk+il =bk+,,  = i . . = b k + ~ , ,  = 0  
and (b~, b2 , . . . ,  b~, bk+l, b~+2,...,  bk+r) is a codeword  of  C(k, r) with weight 
~< h + (r - h) = r, a contradict ion.  Thus  ]Mh[ is not  an annihi la tor  o f  any non-  

zero element N. [ ]  

Remark 2.1. Theorem 2.1. is a general izat ion o f  [3], ch. 11, Theorem 8, 
which is for  codes over  finite fields and [1], T h e o r e m  2, which is for  g roup  
codes over  cyclic groups.  When  R is a finite field and N = R these theorems 
coincide. 

3. Some applications 

In this section, let G be a finite abelian group.  The  r-fold sum g + g + • • - + g 
will be denoted by rg. Since the best g roup  codes are over  e lementary  abelian 
groups  [4], we will focus on g roup  codes over  e lementary  abel ian groups.  Here  
by an e lementary  abelian g roup  we mean  that  the exponent  o f  the g roup  is a 
pr ime p, i.e., if the order  o f  every nonzero  element is p. It  is clear that  an ele- 
men ta ry  abel ian g roup  with exponent  p can be regarded as a Zp-module, i.e., a 
vector  space over  Zp. 

Theorem 3.1. Let  R = Zp, N = G, an elementary abelian group with exponent p. 
Then a group code C(k, r) with parity check matrix ( - M l l r )  is M D S  iff the 
determinant o f  every h x h submatrix, h = 1 , 2 , . . .  ,min{k , r} ,  of  M is not zero 
element o f  the f ield Zp. 

Proof .  It  immedia te ly  follows f rom T h e o r e m  2.1. [ ]  
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Example 3.1. Let G be an elementary abelian group with exponent p, where p is 
an odd prime. Let 

M =  1 ' 

Then it is clear that the determinant of every square submatrix of M is not zero 
element of Zp. By Theorem 3.1 the code C(2,2) with parity check matrix 
(-M[I2) is a (4, 2, 3) MDS group code over G. 

Example 3.2. Let G be an elementary abelian group with exponent 11. Let 

M = Ii ] 2 3 4 
22 3 2 4 2 

be a matrix over Z~. It is easily verified that the determinant of every square 
submatrix of M is not zero element of ZI~. By Theorem 3.1 the code C(4, 3) 
with parity check matrix (-MII3) is a (7, 4, 4) MDS group code over G. 

Corollary 3.1. Let G be an elementary abelian group with exponent p. Then 
1. Over G, (1 + r, 1 ) MDS group codes exist for all values of r and p. 
2. Over G, (k + 1, k) MDS group codes exist for all values of k and p. 

Proof. Let M = [ (1 , . . . ,  1)T],.× ~, where 1 is identity of Zp. Then by Theorem 3.1, 
C(1,r) with the parity check matrix (-MIL.) is a (1 + r, l) MDS group code. 

L e t M  = (1 . . . .  ,1)l×k, where 1 is identity of Zp. Then by Theorem 3.1, C(k, 1) 
with the parity check matrix ( -M] I )  is a (k + 1, k) MDS group code. [] 

Corollary 3.2. Let R = Zp and N = G, an elementary abelian group with exponent 
p, and let M = (aij),.×k be any matrix over Zp. Then MDS group codes C(k, r) 
with parity check matrix (-MII,.) do not ex i s t / fmax{k ,  r} ~> p. 

Proof. If there is an MDS group code C(k, r) with parity check matrix ( -M]L) ,  
then by Theorem 3.1, the determinant of every h × h submatrix, 
h = 1 ,2 , . . . ,  rain{k, r}, of  M is not zero element of the field Zp. Let 

M !  z 

I 1 1 
aTlla21 anta22 

• . 

[.a?lla,.l al~a,-2 

1 
alk I a2k 

z 

a l  1 ark 
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Then the determinant  o f  every square submatrix o f  M1 is equal to a p roduc t  o f  
some unit of  Zp and the determinant  o f  some square submatr ix o f  M. It follows 
that  the determinant  o f  every square submatr ix o f  MI is not  zero element o f  Zz,. 
I f  k >~ p, then in {al l la2j , . . . ,  a~!ark}, at least two elements are congruent  mod-  
ulo p. Assume a~ila2i = a~la2j(modp).  Then the determinant  o f  the matrix 

1 l ]  
a~la2i ai~ I aa i 

is equal to a~j~a2j- al~a2i = 0 (modp) .  This is a contradict ion.  So we must  
have k < p .  By similar arguments  we can show r < p .  Thus MDS group 
codes C(k,r)  with pari ty check matrix (-MII, .)  do not exist if 
max{k , r}  />p. [ ]  

Remark  3.1. Al though  M D S  group codes C(k,r)  with parity check matrix 
( - M I L )  do not  exist if max{k, r} ~> p, it is possible that  there are M D S  group 
codes ( k + r , r )  without  systematic parity check matrix (-MIL.)  even if 
max{k, r} ~> p. Zain and Rajan  [1] gave a example o f  (4, 2, 3) M D S  group 
code over the elementary abelian group ~ ® ~ .  
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