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Robust Multipoint Identical-by-Descent Mapping for Affected Relative Pairs
Daniel J. Schaid,1 Jason P. Sinnwell,1 and Stephen N. Thibodeau2

Departments of 1Health Sciences Research and 2Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN

The genetic mapping of complex traits has been challenging and has required new statistical methods that are
robust to misspecified models. Liang et al. proposed a robust multipoint method that can be used to simultaneously
estimate, on the basis of sib-pair linkage data, both the position of a trait locus on a chromosome and its effect
on disease status. The advantage of their method is that it does not require specification of an underlying genetic
model, so estimation of the position of a trait locus on a specified chromosome and of its standard error is robust
to a wide variety of genetic mechanisms. If multiple loci influence the trait, the method models the marginal effect
of a locus on a specified chromosome. The main critical assumption is that there is only one trait locus on the
chromosome of interest. We extend this method to different types of affected relative pairs (ARPs) by two approaches.
One approach is to estimate the position of a trait locus yet allow unconstrained trait-locus effects across different
types of ARPs. This robust approach allows for differences in sharing alleles identical-by-descent across different
types of ARPs. Some examples for which an unconstrained model would apply are differences due to secular changes
in diagnostic methods that can change the frequency of phenocopies among different types of relative pairs, en-
vironmental factors that modify the genetic effect, epistasis, and variation in marker-information content. However,
this unconstrained model requires a parameter for each type of relative pair. To reduce the number of parameters,
we propose a second approach that models the marginal effect of a susceptibility locus. This constrained model is
robust for a trait caused by either a single locus or by multiple loci without epistasis. To evaluate the adequacy of
the constrained model, we developed a robust score statistic. These methods are applied to a prostate cancer–
linkage study, which emphasizes their potential advantages and limitations.

Introduction

Mapping susceptibility loci for complex traits by linkage
analysis has been exceptionally challenging, although new
genomic technologies and new statistical methods offer
hope that the challenges will diminish. Despite the mat-
uration of research on complex genetic models and their
corresponding likelihood methods, model misspecifica-
tion still occurs and can dramatically bias parameter es-
timates. To overcome this bias when estimating the posi-
tion of a trait locus on a chromosome, Liang et al.
(2001a) proposed a novel robust multipoint method to
simultaneously estimate both the position of a trait locus
and its effect on disease status and standard errors for
these estimates. The advantage of their method is that
it does not require specification of an underlying genetic
model, so estimation of the position of a trait locus on
a specified chromosome and of its standard error is ro-
bust to a wide variety of genetic mechanisms. This robust
procedure avoids specification of the number of trait
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loci, the number of trait-locus alleles, allele frequencies,
and penetrance. If multiple loci influence the trait, the
method models the marginal effect of a locus on a speci-
fied chromosome. The main critical assumption is that
there is only one trait locus on the chromosome of in-
terest. Although this approach offers appeal, its limita-
tion to affected sib pairs (ASPs) only can be too restric-
tive. For this reason, we extend the methods of Liang
et al. (2001a) so that they can be used with a variety of
affected relative pairs (ARPs).

There are many factors that make it difficult to
map complex traits. One critical factor is the influence
of phenocopies—these pedigree members dramatically
weaken the linkage signal. For some diseases, pheno-
copies can be distinguished, to some degree, from ge-
netically caused cases by measurable features, as exempli-
fied by age at diagnosis for breast cancer. Unfortunately,
many common diseases do not have such distinguishing
features. However, if the frequency of phenocopies in a
pedigree differs according to degree of relationship from
the primary sampling unit (e.g., a proband—or perhaps
a nuclear family with multiple affected members—could
be a sampling unit), then it might be possible to use this
information when evaluating linkage results. Hence, an-
other aspect of our motivation was to develop new sta-
tistical methods to measure the linkage evidence for dif-
ferent types of ARPs and to test whether there is sig-
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nificant heterogeneity of linkage information across the
different types of ARPs. Other causes of differences in
sharing of alleles identical by descent (IBD) include gene-
environment interaction, epistasis, and varying marker
information content.

Before we discuss the background of statistical meth-
ods that form the basis of our approach, it is helpful to
consider the linkage information provided by different
pedigree structures. For common diseases, phenocopies
are frequent, and it is difficult to define appropriate pedi-
gree-sampling criteria that reduce the impact of pheno-
copies on linkage studies. For example, there has been
extensive discussion in the literature about the advan-
tages and disadvantages of sampling large pedigrees ver-
sus sampling ASPs (see McCarthy et al. [1998] and
Schaid et al. [1999]). Risch (1990b) evaluated the power
of different types of ARPs for linkage studies, on the
basis of the risk ratio for relatives of an affected person
compared with the population prevalence of disease. For
a single-locus model, the power of a linkage study de-
pends on the risk ratio l, which is interpreted as the
ratio of risk for a relative who shares one allele IBD
with an affected person to the risk for a random subject
who shares no alleles IBD. Risch showed that when
l is large, relatives more distantly related offer greater
power, which suggests that larger extended pedigrees
should be sampled. In contrast, when l is small, ASPs
offer greater power. In practice, linkage studies of com-
plex traits that have an older age at diagnosis are often
based on collections of pedigrees with as many affected
members as possible, typically resulting in pedigrees of
small-to-moderate size, with a mixture of different types
of ARPs. A question faced by these types of studies is
whether the evidence for linkage is the same for different
types of ARPs.

A good example that illustrates these issues is the
study of linkage for hereditary prostate cancer. Many
such studies have collected information on pedigrees of
small-to-moderate size (see Easton et al. [2003] and
other articles in the same journal issue). These studies
are complicated by the fact that prostate cancer is quite
common; the current lifetime probability that a man will
have the disease is ∼17%. A further complication is that
the methods used to diagnose prostate cancer have
changed over time, with the advent of prostate-specific-
antigen testing in the late 1980s. A critical question is
whether the linkage evidence is the same for ASPs versus
affected cousin pairs, when it is possible that some cous-
ins could be phenocopies (and, of course, some siblings
could be phenocopies as well). Similarly, one might ask
whether affected pairs from different generations, such
as uncle-nephew pairs, are enriched for phenocopies, be-
cause of secular changes in methods of diagnosis.

To estimate the position of a trait locus on a chro-
mosome (and its standard error) from different types of

ARPs, we propose robust methods. We base our meth-
ods on the robust multipoint-linkage method for ASPs
that was proposed by Liang et al. (2001a), and we ex-
tended it to multiple types of ARPs and provided ways
to evaluate whether there is heterogeneity of the effect
of a trait locus across different types of ARPs. In the
“Methods” section, we first reviewed the necessary de-
tails of the approach by Liang et al. (2001a) and then
derived extensions that allow estimation of the posi-
tion of a trait locus, while allowing for different effects
across different types of ARPs. We then developed a way
to model the marginal effect of a trait locus by use of
different types of ARPs, under the assumption of ho-
mogeneity of effects across the different types of ARPs,
and then derived a score statistic to formally test homo-
geneity. We applied these new methods to a linkage study
of hereditary prostate cancer, which facilitated discussion
of the interpretation of our proposed methods.

Methods

We first describe the approach that Liang et al. (2001a)
derived for ASPs, which will introduce the basic ideas
and notation needed for our extensions to other types
of ARPs. For N ASPs, let denote a vector of the markerYi

information for the ith ASP; ,Y p (Y [t ], … ,Y [t ])i i 1 i M

where is the data for the marker at position .Y (t ) ti M M

Conditional on all marker data and by use of marker-
allele frequencies when parental marker data is not avail-
able, one can estimate the probability of sharing j alleles
IBD for the ith ASP and at each marker position . LettM

denote this conditional probability, which is com-f (t )ji M

puted by popular linkage software, such as S.A.G.E.,
Genehunter (Kruglyak et al. 1996), Allegro (Gudbjarts-
son et al. 2000), or Merlin (Abecasis et al. 2002). By
use of these probabilities, the estimated number of al-
leles shared IBD at chromosome position t can be cal-
culated as

S (t) p 2f (t) � f (t) .i 2i 1i

Note that the estimated fraction of alleles shared IBD,
commonly used for creating linkage statistics, is simply

. Assuming the Haldane mapping functionp (t) p S (t)/2i i

to convert recombination fractions to genetic distances
in centimorgans, Liang et al. (2001a) showed that the
expected value of depends on both the genetic dis-S (t)i

tance from the position t to the trait-locus position, t,
and the effect of the trait locus on disease status. The
effect of the trait locus can be measured by C p

, the expected departure from random sharingE[S(t)] � 1
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at the trait locus. The expected value of , conditionalS (t)i

on both sibs affected, is

m(t) p 1 � exp (�0.04Ft � tF)(E[S(t)] � 1) (1)

p 1 � exp (�0.04Ft � tF)C .

Although the coefficient C depends on the underlying
genetic mechanisms, this approach obtains its robustness
by allowing C to be freely estimated. To provide insights,
however, Liang et al. (2001a) discuss the dependence of
C on a variety of single- and two-locus models. For
example, for a single-locus model with no genetic domi-
nance, the parent-offspring recurrence risk ratio, ,(O)l

and the sibling recurrence risk ratio, , are equal; let(S)l

l denote this common risk ratio. Under these assump-
tions, the C coefficient depends on l, according to C p

.(l � 1)/(2l)
After using all the marker data to calculate the mul-

tipoint IBD probabilities, and in turn using these to
calculate , Liang et al. (2001a) estimate t and C andS (t)i

their standard errors by using an estimating equation
that models the relationship of the expected values of

and , as illustrated in equation (1). An intuitiveS(t) S(t)
way to see this is to recognize that if t were known, then
the linear regression of onS(t) � 1 exp (�0.04Ft � tF)
would provide an unbiased estimate of C. However, be-
cause the amount of information can vary from marker
to marker and because the influence of t is nonlinear,
a more efficient estimation is provided by an estimating
equation. Let g denote the vector of the two unknown
parameters, . Furthermore, let denote theg p (t,C) mg

vector of expectations given in equation (1), evaluated
at all M marker loci with the parameters in g. Similarly,
let denote the vector of estimated IBD sharing countsSi

at all M marker loci. Let be an matrix�m /�g M # 2g

of partial derivatives of with respect to each of themg

parameters in g, and let be an covarianceV M # Mg

matrix for the vector , which depends on g, as we shallSi

discuss below. Then, solving the following estimating
equation provides unbiased estimates for g:

N ′�mg �1U p V (S � m ) { 0 . (2)� g i g( )�gip1

We later refer to U, or the terms being summed over, as
“score vectors.” When this estimating equation is used,
a modification of is required, because, as , them (t) t r tg

derivative of with respect to t is not defined. Liangm (t)g

et al. (2001a) approximate with a differentiableFt � tF
function; details are provided in appendix A.

The variance matrix has the following elements forVg

positions and :t ti j

Cov [S(t ),S(t )] p exp (�0.04Ft � tF)i j i

# exp (�0.04Ft � tF)j

1
#Var (S[t]) �[ ]2

exp (�0.04Ft � tF)i j� .
2

For the marginal effect of a locus without dominance,
can be substituted for in the above2�C [Var (S[t]) � 1/2]

expression (Liang et al. 2001a). This covariance expres-
sion emphasizes the fact that the covariance of the num-
ber of alleles shared IBD along a chromosome depends
on the genetic distance of each of the markers to the
trait locus, the distance between the genetic markers and
the magnitude of the genetic effect at the trait locus.

In practice, the solution to the estimating equation (2)
is iterative, and a Newton-Raphson method can speed
convergence. Because of the iterative method, repeated
inversion of can take too much time, and an ap-Vg

proximation that uses a simpler “working” covariance
matrix will usually suffice. The working covariance ma-
trix that Liang et al. use in their distributed Fortran
“gee.f” source code assumes that all off-diagonal co-
variance terms are zero, so that requires inversion�1Vg

of only the diagonal variance terms. Let be thisWg

working covariance matrix. Then, the working infor-
mation matrix used for the Newton-Raphson step can
be computed as

N ′�m �mg g�1I p W .�w ( ) ( )�g �gip1

The covariance matrix for the estimated parameters is
based on the robust “sandwich” estimator (Zeger and
Liang 1986). Let denote the sum of vectors of scoresUi

for all pairs within the ith pedigree . A ro-(i p 1, … ,P)
bust information matrix can be estimated according to

P

′I p UU ,�r i i
ip1

and an estimate of the covariance matrix for g is

�1 �1Var (g) p I I I . (3)w r w

This robust estimator accounts for misspecification of
the working information matrix and accounts for any
correlation among multiple ARPs from the same pedi-



Schaid et al.: Robust Multipoint IBD for ARPs 131

Table 1

Expected Value for Different ARP TypesE[S(t)]

ARP
am (t)k

Full siblings 1 � exp (�.04d)C1

Half siblings 1
� exp (�.04d)C22

First cousins 1 exp (�.04d) exp (�.06d) exp (�.08d)
� � � C3[ ]4 2 3 6

Grandparent-grandchild 1
� exp (�.02d)C42

Avuncular pairs 1 exp (�.04d) exp (�.06d)
� � C5[ ]2 2 2

a See appendix A for definition of d.

gree. On the basis of large-sample theory, the solutions
to the estimating equations provide parameter estimates
that are consistent and asymptotically normally distrib-
uted, which provides a means to construct confidence
intervals for parameter estimates.

Extensions to ARPs

To extend Liang’s method to ARPs beyond siblings, we
considered two approaches. The first approach was to
estimate a single t but an unconstrained C for each type
of ARP. The second approach also estimated a single t

but constrained the C coefficients for different types of
ARPs to depend on a parameter l. This second approach
reduces the number of unknown parameters, although
potentially at the risk of a misspecified model. As we shall
show, these two approaches complement each other.

Different C Coefficients for Each Type of ARP

For a variety of types of ARPs, Risch (1990b) derived
the relationship between the probability of IBD sharing
at a marker locus and the probability of IBD sharing at
a trait locus and showed that this relationship depends
on the recombination fraction between the two loci and
the magnitude of genetic effect at the trait locus. By use
of Risch’s results and under the assumption of the Hal-
dane mapping function, the expected value of canS (t)i

be derived easily. These expectations, denoted form (t)k

an ARP of type k, are presented in table 1 for a variety
of types of ARPs. The expressions in table 1 emphasize
the fact that the rate of decrease of as the markerm (t)k

moves away from the trait locus at t depends on the type
of relationship. In general, the expected number of alleles
shared IBD for an ARP of type k can be expressed as

m (t) p a � b (d)C , (4)k k k k

where is the expected count for random sharing,ak

controls the rate of decrease of expected sharing asb (d)k

the distance d from the trait locus increases, and isCk

, the expected departure from random shar-E[S (t) � a ]k k

ing at the trait locus for an ARP of type k. Allowing the
parameters to be unconstrained provides robust es-Ck

timation of t and the marginal effects of a trait locus
on a specified chromosome.

To estimate t and the coefficients, we follow Liang’sCk

approach and use the estimating equation in equation
(2) but now keep track of the type of ARP in order to
use the appropriate , as well as its partial derivatives,mk

with respect to t and the coefficients. The partial de-Ck

rivatives with respect to t are given in table 2. The partial
derivative of with respect to is if andm (t) C b (t) l p kk l k

otherwise. The covariance matrix of g can be es-p 0
timated by the robust estimator in equation (3).

It is important to recognize that the interpretation of
the parameters depends on the underlying geneticCk

mechanisms that lead to disease. If only sib pairs are avail-
able, then the single C coefficient cannot identify the
underlying genetic model. However, different types of
ARPs can have the potential to provide some insight to
the underlying genetic model. First consider a single trait-
locus model. Risch (1990a) showed that the risk ratios
for different types of relative pairs follow a well-defined
pattern. Using the offspring-risk ratio to represent(O)l

first-degree relatives, Risch showed that de-(O)l � 1
creases by a factor of 2 for each increasing degree of
unilineal relationship. Hence, (O) (2)l � 1 p 2[l � 1] p

, where is the risk ratio for second-degree(3) (2)4[l � 1] l

relatives (e.g., grandparent-grandchild and pairs of aunt/
uncle with niece/nephew, which are referred to as “avun-
cular pairs”), and is the risk ratio for third-degree(3)l

relatives (e.g., first cousins). Although a single trait locus
is not likely for the setting of complex traits for which
we wish to develop robust methods, this pattern of

decreasing by a factor of 2 with each degree of(R)l � 1
relationship also holds for some multilocus models. Spe-
cifically, Risch (1990a) showed that the marginal effect
of a specific locus, out of multiple loci that influence
disease penetrance, follows the above pattern for risk-
ratio decrease if the loci act additive on penetrance or
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Table 2

Partial Derivatives of , with Respect to t for Different ARP Typesm (t)k

ARP
a�m (t)/�tk

Full siblings C f exp (�.04d)(�.04)1

Half siblings C f exp (�.04d)(�.04)2

First cousins exp (�.04d)(�.04) exp (�.06d)(�.06) exp (�.08d)(�.08)
C f � �3 [ ]2 3 6

Grandparent-grandchild C f exp (�.02d)(�.02)4

Avuncular pairs exp (�.04d)(�.04) exp (�.06d)(�.06)
C f �5 [ ]2 2

a See appendix A for definitions of d and f.

if there is genetic heterogeneity. In contrast, for a multi-
plicative-penetrance (epistatic) model, decreases(R)l � 1
more rapidly than a factor of 2. By “epistasis,” we mean
that the loci have multiplicative effects on the penetrance
(see Risch [1990b] for further discussion of these mod-
els). The rate of decrease depends on the number of loci
and the degree of epistasis. Now, if we model the mar-
ginal effect of a trait locus on a specified chromosome,
with the assumption of no epistasis, we can translate
each coefficient to a corresponding , as long as thereC lk k

is no dominance ( ). Dominance can be assessed(S) (O)l p l

by comparison of the risk ratio for siblings with that for
offspring or parents, by use of epidemiological studies.
Whether there is dominance depends on the trait of in-
terest, but, for complex traits, additive effects of alleles
may very well provide an adequate description of the
recurrence risk to siblings. So, assuming no epistasis and
no dominance, we can translate each coefficient to aCk

corresponding l. This l is scaled according to the de-
gree of relationship. For example, for first-cousin pairs,

; instead of using , we use thel � 1 p (l � 1)/4 lC C

scaled l. By scaling according to degree of relationship,
l can be interpreted as , the risk ratio for a pair of(O)l

relatives sharing one allele IBD at the trait locus, com-
pared with a pair of relatives not sharing alleles IBD.
For our exposition, we let denote this risk ratio whenlk

translated from .Ck

We present in table 3 the function that translatesl(C)
each to a . To be clear about our notation, we useC lk k

l to denote a parameter and to denote a function.l(C)
The functions in table 3 emphasize the fact that thel(C)

coefficients can differ across different types of ARPs,Ck

even if the corresponding ls are expected to be equal
(e.g., either a single-trait locus or the marginal effect of
a locus in a multilocus setting without epistasis). Hence,
it is more informative to translate the values toC lk k

values to examine whether the values differ acrosslk

different types of ARPs than to compare the values.Ck

To place confidence intervals on the estimates of the
parameters, we first calculate confidence intervals onlk

the parameters, then use the functions shown inC l(C)k

table 3 to translate these to confidence intervals for the

parameters. Under our assumptions of no dominancelk

and no epistasis, the estimated ls should be approxi-
mately equal, within the tolerance of sampling error. If
there is epistasis, then l is expected to decrease as the
degree of relationship of an ARP increases. If there is
no epistasis yet there is dominance but no inbreeding,
then l is expected to be similar among all types of rela-
tive pairs except sib pairs. Hence, examination of the

estimates may provide additional insights. Because itlk

is natural to ask whether the estimates are statisticallylk

different from each other, below we derive a method to
formally test the null hypothesis of homogeneity of all

values. However, before we present this method, welk

first present a method to estimate t and a single under-
lying value of l, because these estimates are needed for
the test of homogeneity.

Modeling Ck as Function of l

For a single-trait–locus model—or a multilocus model
without epistasis—and with the assumption of no domi-
nance, the coefficients depend on only a single pa-Ck

rameter, l. To emphasize this dependence, we use the
function , which is illustrated in table 3 for a varietyC (l)k

of types of ARPs. Note that is the inverse of theC (l)k

function . To estimate t and l, the score equationl (C)k

(2) is modified by using to calculate the termsC (l) Ck k

in g and by calculating the derivative of with respectm (t)k

to l. By use of the chain rule, ,�m (t)/�l p b (d)�C /�lk k k

where is the coefficient in front of in table 1b (d) Ck k

and is shown in table 3. Hence, only minor modi-�C /�lk

fications to the score estimating equation (2) are required
to estimate t and a common l.

Test of Homogeneity of lk

To test the null hypothesis that all values of arelk

equal to a common value, say l, we use robust score
tests, as reviewed in Boos (1992) and originally derived
by White (1982). First observe that the null hypothe-
sis can be expressed in termsH :l p l p … p lo 1 2 K

of the coefficients by use of the functions,C l(C)k

. Then, to test ,H :l (C ) p l (C ) p … p l (C ) Ho 1 1 2 2 K K o
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Table 3

Functions to Map C to l and Vice Versa and Derivatives

ARP C(l) �C/�l l(C) �l/�C

Full siblings l � 1
2l

1
22l

1
1 � 2C

2
2(1 � 2C)

Half siblings l � 1
2(l � 1)

1
2(l � 1)

1 � 2C
1 � 2C

2 2(1 � 2C)
�

21 � 2C (1 � 2C)
First cousins 3(l � 1)

4(l � 3)
3

2(l � 3)
12C � 3
3 � 4C

12 4(12C � 3)
�

23 � 4C (3 � 4C)
Grandparent-grandchild l � 1

2(l � 1)
1

2(l � 1)
1 � 2C
1 � 2C

2 2(1 � 2C)
�

21 � 2C (1 � 2C)
Avuncular pairs l � 1

2(l � 1)
1

2(l � 1)
1 � 2C
1 � 2C

2 2(1 � 2C)
�

21 � 2C (1 � 2C)

NOTE.—Subscript k for ARP type is dropped to improve clarity of presentation.

we constructed contrasts of the functions accordingl(C)
to for .d p l (C ) � l [C ] i p 1,2, … ,(K � 1)i 1 1 (i�1) (i�1)

That is, for K types of ARPs, there are contrastK � 1
functions, . To test the null hypothesis that the vectordi

of these d contrast functions is equal to zero, we need
the matrix H with elements

H p �d /�g .ij i j

There are rows in H for the contrasts, and thereK � 1
are columns in H, one for t and K for the CK � 1
coefficients in the parameter vector g. This matrix is
illustrated below for .K p 3

0 �l /�C ��l /�C 01 1 2 2H p .( )0 �l /�C 0 ��l /�C1 1 3 3

Then, the score statistic to test isHo

′ �1 ′ �1 �1 ′ �1 �1˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜T p U I H (HI I I H ) HI U , (5)w w r w w

where the tilde means that a term is evaluated under the
null hypothesis, is the score equation (2), is the˜ ˜U Iw

working information matrix, and is the robust infor-Ĩr

mation matrix. To evaluate these terms under , weHo

first use the methods in the “Modeling as FunctionCk

of l” section to model all coefficients as a functionCk

of a single l, simultaneously estimating t, (call these esti-
mates and ); we then use the functions, with the˜t̃ l C (l)k

common , to determine the appropriate terms in˜l̃ Ck

; and, finally, we use the terms in to evaluate the˜ ˜g g

terms in equation (5). The statistic T has an approximate
x2 distribution, with df.K � 1

It is worthwhile to note that other hypotheses re-
garding the l parameters can be constructed easily with
slight extensions of the above score statistic. For exam-
ple, if there is no epistasis yet there is dominance, the l

value for sib pairs (denoted as “ ”) is expected to differl1

from that for other types of relative pairs, yet l is ex-
pected to be constant over all types of pairs that are not

siblings (this common parameter is denoted as “ ”).l2

One can then exclude sib pairs to estimate the common
in the constrained model of the “Modeling as Func-l C2 k

tion of l” section and adapt the above robust score sta-
tistic to test . For example, H is a vector withH :l p lo 1 2

elements ,H p (0,�l /�C , � �l /�C , … , � �l /�C )1 1 2 2 2 K

and the resultant score statistic has 1 df.
A caveat with the estimating equation methods, both

those for the score statistics and those for placing con-
fidence intervals on parameter estimates, is that the as-
ymptotic distribution depends mainly on the number of
independent pedigrees and less so on the number of ARPs.
For a small number of pedigrees, or if the trait locus is
estimated to be at the extreme end of a chromosome—
where there is little information to bound the estimated
location, and hence the estimated variance may not be
precise—it may be worthwhile to use bootstrap methods
(e.g., bootstrapping pedigrees) to calculate confidence
intervals.

Application to Prostate Cancer Linkage

A genome linkage scan of 167 families with multiple cases
of prostate cancer was conducted by investigators at the
Mayo Clinic by use of SNP markers in the Early Access
Affymetrix Mapping 10K array (Schaid et al. 2004). The
strongest linkage signal was detected on chromosome
20. We reanalyzed this data from chromosome 20, re-
stricted to ARPs, with our new methods. There were
303 full-sib pairs, 134 first-cousin pairs, and 30 avun-
cular pairs; other types of ARPs were excluded because
there were so few. There were 124 SNP markers on
chromosome 20, with median intermarker distance of
0.4 cM. For this data, we subset to each type of ARP,
estimated both t and C for each subset, and then trans-
lated the C coefficients to ls, to assist interpretation and
comparisons. Furthermore, because the solution of the
estimating equation depends on a set of starting values,
we used different sets of starting values to determine
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Table 4

Parameter Estimates for Prostate Cancer Linkage

TYPE OF ANALYSIS

AND ARP

ESTIMATE (95% CI) FOR

t l

Subsetsa:
Full siblings 73.0 (63.3–82.7) 1.4 (1.1–2.0)
First cousins:

Solution 1 24.1 (9.8–38.5) 1.4 (.8–2.3)
Solution 2 92.3 (77.2–107.3) 1.4 (.9–2.0)

Avuncular pairs 58.1 (25.0–91.2) 1.3 (.6–3.4)
Model Cb:

Full siblings 1.4 (1.1–2.0)
First cousins 1.3 (.8–1.9)
Avuncular pairs 1.2 (.8–2.1)
Common t 72.9 (64.1–81.7)

Model lc 72.7 (64.2–81.1) 1.4 (1.1–1.7)

a Separate t and C were fit for each different ARP subset.
b A common t with different C coefficients for the dif-

ferent ARP types.
c The C coefficients were modeled as dependent on a

single common l, simultaneously with a single t.

whether we consistently found a single solution. These
results are presented in table 4. For each estimated pa-
rameter, we also present 95% CIs, although these are
only approximations, given the small number of ARPs
in some of the subsets (particularly for avuncular pairs).
For each of the subsets of full-sib and avuncular pairs,
a single solution was found. In contrast, for first-cousin
pairs, two different solutions were found. The estimated
ls for all types of ARPs were remarkably similar, ∼1.4.
However, the estimated t differed across the different
types of ARPs. For first cousins, there were two solu-
tions, and . It is not clear whether (1)t p 24.1 t p 92.3
there are two susceptibility loci on chromosome 20 or
(2) our finding is due to large variation in the shape of
the mean allele-sharing curve because of the small num-
ber of cousin pairs used in our study. The confidence
intervals, however, on these estimates of t are broad and
overlap for all three types of ARPs (except for t p

for first cousins).24.1
We also fit the model from the “Different C Coeffi-

cients for Each Type of ARP” section, which allowed
for different C coefficients for the different types of
ARPs but a common t. These results are presented in
the “Model C” section of table 4. The estimated t was
72.9 cM, with a confidence interval that was tighter,
particularly compared with those for the small subsets.
The estimated C coefficients were translated to ls; these
did not differ much from those estimated by the separate
subset analyses.

We then proceeded to model the C coefficients as a
function of a single l, and these results are presented
in the “Model l” section of table 4. The results from
this model are remarkably consistent with those from
the “Model C” analyses. The estimated common l was
1.4, with a tighter confidence interval than for any of
the above-mentioned models. The estimated t is 72.7
cM, with a slightly narrower confidence interval than
that for models in which the C coefficients were not
constrained. If the model with a common l fit well, we
would expect the confidence interval for t to be more
narrow than for the model with unconstrained C pa-
rameters. By use of the methods described in the “Test
of Homogeneity of lk” section, the l parameters were
not significantly different across the three types of ARPs;
the resultant test statistic was , with 2 df andT p 0.22
a P value of .90.

To view the fit of our models, we plot the mean es-
timated count of alleles shared IBD versus the fitted
allele sharing (fig. 1). For each panel of this figure, we
plot the observed mean sharing within each type of ARP
and the fitted sharing, according to the type of analysis
described in table 4. Note that the intercept ( in eq.ak

[4]) for these plots represents the expected count for
random sharing and differs across the different types of
ARPs (see table 1). As expected, the subset analyses give

observed and fitted lines that are close to each other.
For first cousins, there are two fitted lines, because there
were two solutions to the estimating equation. For the
model C analyses, the observed and fitted lines match
well for full sibs but not as well for first-cousin and
avuncular pairs. For the model l analyses, the fitted
values for first-cousin pairs appear inflated around 70
cM. Although the plots in figure 1 do not illustrate the
large statistical variation within subsets, they suggest that
there may be systematic differences between the differ-
ent types of ARPs in the data set.

Discussion

Given the difficulties of mapping genetically complex
traits, particularly diseases of older onset, new statistical
methods are needed to account for the many sources of
heterogeneity. Liang et al. (2001a) developed robust mul-
tipoint methods to simultaneously estimate the trait-lo-
cus position and its effect size for ASP linkage data,
along with standard errors and confidence intervals for
those estimates. The gain in robustness comes from mod-
eling the expected value of the number of alleles shared
IBD, by use of estimating equations, without the need
to specify a particular genetic model. The price of this
robustness is potentially reduced efficiency compared
with a full likelihood using the true underlying but un-
known genetic model. However, misspecification of the
genetic model can grossly bias the estimated position of
the trait locus and, hence, the appeal of Liang’s robust
methods. He and others have extended their approach
for other types of analyses with sib-pair linkage data
(Liang et al. 2000, 2001b; Glidden et al. 2003). They
have emphasized that the parameter of most interest is



Fi
gu

re
1

A
ve

ra
ge

of
th

e
es

ti
m

at
ed

nu
m

be
r

of
al

le
le

s
sh

ar
ed

IB
D

(b
ro

ke
n

lin
e)

an
d

fit
te

d
va

lu
es

(s
ol

id
lin

e)
fo

r
th

e
di

ff
er

en
t

ty
pe

s
of

A
R

Ps
(c

ol
um

ns
)

an
d

di
ff

er
en

t
ty

pe
s

of
an

al
ys

es
(r

ow
s)

.
A

na
ly

se
s

co
rr

es
po

nd
to

th
os

e
in

ta
bl

e
4.

T
op

ro
w

,
se

pa
ra

te
t

an
d

C
w

er
e

fit
fo

r
ea

ch
di

ff
er

en
t

ty
pe

of
A

R
P

su
bs

et
.

M
id

dl
e

ro
w

,
w

e
us

ed
a

co
m

m
on

t
w

it
h

di
ff

er
en

t
C

co
ef

fic
ie

nt
s

fo
r

th
e

di
ff

er
en

t
ty

pe
s

of
A

R
Ps

.
B

ot
to

m
ro

w
,

th
e

C
co

ef
fic

ie
nt

s
w

er
e

m
od

el
ed

as
de

pe
nd

en
t

on
a

si
ng

le
co

m
m

on
l
,

si
m

ul
ta

ne
ou

sl
y

w
it

h
a

si
ng

le
t.



136 Am. J. Hum. Genet. 76:128–138, 2005

the position of the trait locus t and that their methods
are useful to provide confidence intervals on regions
worthy of further fine mapping.

We have extended the robust multipoint approach of
Liang et al. (2001a) to account for different types of
ARPs. Although the primary focus is on precise estima-
tion of the position of a trait locus, use of a variety of
types of ARPs allows richer modeling of the effect of
a trait locus. Our first method estimates a separate pa-
rameter for the trait-locus effect for each type of ARP,
whereas our second method constrains the coeffi-Ck

cients to depend on a single parameter, l. This con-
strained model is appropriate for either a single causa-
tive locus or for multiple causative loci without epistasis.
On the basis of published reports on the efficiency of
modeling the C coefficients as functions of covariates
(Liang et al. 2001b; Glidden et al. 2003), we speculate
that if the constrained model is appropriate, there may
be slight gains in efficiency for the t parameter, but, if
inappropriate, bias in t and decreased efficiency can
occur. Hence, one should be cautious when using the
constrained model. To evaluate the fit of the constrained
model, we derived a robust score statistic to test whether
the l parameters differ significantly over the different
types of ARPs. In our application to a prostate cancer–
linkage study, we found both models to give similar
results. Although the details of the original genome link-
age scan are presented elsewhere (Schaid et al. 2004),
some points are worth noting. One of the largest linkage
signals was on chromosome 20, with a model-free LOD
score of 2.4. The position of this LOD score was at 76
cM, and a 1-unit decrease from the maximum LOD
score had the range 65–87 cM. Application of our new
methods gave an estimate of the position of a trait locus
as 73 cM, with a 95% CI of 64–81 cM, which is 23%
shorter than the 1-unit decrease from the maximum
LOD score.

An advantage of our methods is that they can be used
to evaluate the consistency of linkage evidence from
different types of ARPs, which may help to understand
the sources of linkage information and possibly sources
of heterogeneity that weaken the linkage signal. For our
prostate cancer example, the expected allele-sharing
model fit well to the full-sib pairs but not as well to
affected first-cousin and avuncular pairs. This could be
due to phenocopies or to a complex genetic etiology,
including epistasis. Unfortunately, the sizes of our sub-
sets are not sufficient to resolve this issue. It is likely
that large collaborative studies would be required to
have sufficient power to detect at least moderate levels
of heterogeneity.

A critical assumption made by Liang et al. (2001a)
that we have followed is that only one trait locus exists
on the chromosome of interest, although other causative
loci could exist on other chromosomes. This assumption

is required for correct specification of the mean function
for the IBD sharing. If there are multiple loci linked to
a chromosomal region, then the mean function would
be misspecified. For example, between two causative loci,
the mean IBD sharing would be greater than that pre-
dicted by a single causative locus. Hence, if multiple
causative loci reside in a linked region, the parameter
estimates will be biased. To overcome this, Biernacka et
al. (2004) extended the estimating equations for ASPs
to allow for two linked causative loci. Further work that
combines their methods with ours would allow esti-
mation of parameters for two causative loci for a variety
of types of ARPs.

The main advantage of these methods is robust esti-
mation of the position of a trait locus. If there is no
predominant peak in the mean allele sharing, then the
parameters will not be estimable. Hence, these methods
are most useful for follow-up of a linkage signal to pur-
sue further fine mapping. Our unconstrained model may
provide guidance on which type of ARPs might be most
informative for further fine mapping. Our unconstrained
model may provide additional insights, through exami-
nation and modeling of the (and hence ) coefficients.C lk k

However, it is wise to be cautious when interpreting the
estimated l parameters. Complex genetic mechanisms,
environmental factors that modify causative loci, and
varying linkage information content can all influence
the l parameters. Furthermore, if a genome scan sug-
gests that a particular region of a chromosome is in-
teresting because it has a high LOD score, then estimates
of the genetic effect size for loci in the interesting region
are biased upward (Göring et al. 2001). This occurs
because the LOD score depends on the estimate of the
locus-specific effect size, and so maximizing the LOD
score over the genome implicitly maximizes the locus-
specific effect size. This maximization process, essen-
tially a multiple-testing process, biases the estimated ef-
fect size upward, but the estimated t remains unbiased.
This does not invalidate the use of our proposed meth-
ods to assess the consistency of the l estimates across
different types of ARPs, but it does emphasize the need
for caution when interpreting the estimated l param-
eters for regions of the genome that were detected by a
genome-linkage screen. On the other hand, this type of
bias does not occur with application of our proposed
methods to independent data sets used to replicate an
initial linkage report.
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Appendix A

With use of the Haldane mapping function, which depends on , is not differentiable with respect toFt � tF m(t)
t. To modify so that it is differentiable, Liang et al. (2001a) replace withm(t) Ft � tF

Ft � tF if Ft � tF 1 e ,
2d p (t � t) e
� if Ft � tF � e .{ 2e 2

Liang et al. (2001a) show that the choice of has little impact when . For ASPs, the resultant partial derivativese e � 1
are

�m (t)g p exp (�0.04d)
�C

and

�m (t)g p Cf exp (�0.04d)(�0.04) ,
�t

where

�1 if (t � t) 1 e ,
f p 1 if (t � t) ! �e ,{�(t � t)/e if Ft � tF � e .

Appendix B

Software Availability

Software that implements the methods outlined in this article is a combination of the S programming language
and C (for more computationally intensive components). This is integrated into a package, called arp.gee, which
runs in both S-PLUS and R computing environments. The package is available at the authors’ Web site; for R
users, the package is available at the Comprehensive R Archive Network site.

Electronic-Database Information

The URLs for data presented herein are as follows:

Authors’ Web site, http://www.mayo.edu/hsr/people/schaid
.html (for arp.gee)

Comprehensive R Archive Network, http://cran.us.r-project
.org/
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