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The seamless ligation cloning extract (SLiCE) method is a novel seamless DNA cloning tool that utilizes
homologous recombination activities in Escherichia coli cell lysates to assemble DNA fragments into a
vector. Several laboratory E. coli strains can be used as a source for the SLiCE extract; therefore, the SLiCE-
method is highly cost-effective.The SLiCE has sufficient cloning ability to support conventional DNA
cloning, and can simultaneously incorporate two unpurified DNA fragments into vector. Recently, many
seamless DNA cloning kits have become commercially available; these are generally very convenient, but
expensive. In this study, we evaluated the cloning efficiencies between a simple and highly cost-effective
SLiCE-method and a commercial kit under various molar ratios of insert DNA fragments to vector DNA.
This assessment identified that the SLiCE from a laboratory E. coli strain yielded 30�85% of the colony
formation rate of a commercially available seamless DNA cloning kit. The cloning efficiencies of both
methods were highly effective, exhibiting over 80% success rate under all conditions examined. These
results suggest that SLiCE from a laboratory E. coli strain can efficiently function as an effective alternative
to commercially available seamless DNA cloning kits.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Traditional DNA cloning methods using restriction enzymes
and DNA ligases are time consuming because the limited availability
of restriction endonuclease sites often interferes with generation of
the desired DNA constructs. To avoid such limitations and compli-
cated procedures, various seamless DNA cloning methods have been
developed over the last decade [1–4]. Of these, the seamless ligation
cloning extract (SLiCE) method is a novel homemade protocol that
utilizes in vitro homologous recombination activities in cell lysates
prepared from Escherichia coli [5,6]. Zhang et al. originally demon-
strated that the cell lysates prepared from an E. coli DH10B-deri-
vative modified to express a λ prophage Red/ET recombination
system, which was termed the PPY strain, had high DNA cloning
activity using short end homology regions between insert and
vector DNA fragments [5]. E. coli laboratory strains also contain
two endogenous RecA-dependent and -independent pathways of
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homologous recombination [7–11]; however, the E. coli RecA�

laboratory strain cell lysates did not exhibit high cloning efficiency
when utilizing short end homology regions (15–20 bp) [5].

Recently, we reported that the cloning efficiency of cell lysates
from E. coli RecA� laboratory strains was improved by harvesting
E. coli cells at late log phase and extracting the lysates carefully on
ice [6]. This demonstrates that the endogenous RecA-independent
recombination activities in E. coli RecA� laboratory strains can
function efficiently for the SLiCE-method using short homology
lengths (approximately 15�19 bp), without the requirement of
exogenously expressing a λ prophage Red/ET recombination sys-
tem. In addition, SLiCE prepared from an E. coli RecA� laboratory
strain could simultaneously incorporate two unpurified insert DNA
fragments into vector, indicating highly efficient cloning activity
[6]. SLiCE from E. coli laboratory strains is also cost-effective for
seamless DNA cloning; however, the use of a commercially avail-
able cell lytic reagent, CelLytic B Cell Lysis Reagent (Sigma B7435)
has been required for the preparation of SLiCE [5,6]. Thus, the need
for the commercial cell lytic reagent increases the cost of the SLiCE
method.

More recently, we found that SLiCE can instead be prepared
with buffers containing Triton X-100 [12], which is a commonly
available nonionic detergent that is generally used for protein
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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preparations [13–16]. By using the Triton X-100 buffer, the SLiCE-
method becomes an ultra-low cost homemade seamless DNA
cloning method [12]. On the other hand, commercially available
kits for seamless DNA cloning have been widely used [17–24].
Although commercial kits are associated with a high cost per re-
action, they are generally accepted to be easy to use and efficient.
However, the differences in seamless DNA cloning efficiency be-
tween a homemade method and commercial kits are not well
characterized. Therefore, in this study, we evaluated the efficiency
of these methods under various molar ratios of insert DNA frag-
ments to vector DNA.
2. Materials and methods

2.1. Preparation of SLiCE from an E. coli RecA� laboratory strain

SLiCE was prepared from E. coli JM109 using a buffer containing
3% (w/v) Triton X-100 [12]. E. coli JM109 pre-cultured in LB Miller
medium (1 mL) at 37 °C were transferred to 2� YT medium
(50 mL) in a 100-mL round-bottom, long-neck Sakaguchi shaking
flask. The cells were grown at 37 °C in a reciprocal shaker
(160 rpm) until the OD600 reached a value of 3.0 (late log phase).
The cells were harvested by centrifugation at 5000g for 10 min at
4 °C. The cells were then washed with 50 mL sterilized water (ice-
cold), and centrifuged at 5000g for 5 min at 4 °C. The washed cells
were recovered with a yield of 0.40 g, and gently resuspended in
1.2 mL 3% (w/v) Triton X-100 in 50 mM Tris–HCl (pH 8.0) and in-
cubated for 10 min at room temperature. The cell lysates were
then centrifuged at 20,000g for 2 min at 4 °C. All subsequent
procedures were performed on ice. The supernatants were care-
fully transferred into 1.5-mL microtubes to remove the insoluble
materials, and determined the protein concentration as
�0.9 mg/mL by the BCA assay method. An equal volume of ice-
cold 80% (v/v) glycerol was added to the supernatant, and mixed
gently. The produced SLiCE extracts were snap-frozen in a bath of
liquid nitrogen and stored at �80 °C in 40% (v/v, final concentra-
tion) glycerol.

2.2. Preparation of insert DNA fragments and linearized vector DNA

The Arabidopsis type II peroxiredoxin E (Prx IIE, 0.6 kilo base
pairs (kbp), AT3G52960) [25,26] and chloroplastic glucose-6-
phosphate dehydrogenase 1 (G6PDH1, 1.6 kbp, AT5G35790) [27]
genes were used as insert DNA molecules. pET23a (Merck Milli-
pore, Billerica, MA, USA) was used as a vector DNA template. The
insert DNA fragments and linearized pET23a DNA (3.7 kbp)were
amplified using the primers listed in Table S1 and TksGflex DNA
polymerase (Takara-Bio, Otsu, Japan) by polymerase chain reaction
(PCR) [6, 12]. Overlap-regions between insert and vector DNAwere
designed as 15 bp lengths. PCR-amplified insert and vector DNA
were treated with DpnI (37 °C, 60 min) to avoid cross-con-
taminating of methylated-DNA as PCR-template and purified using
a FastGene Gel/PCR Extraction Kit (NIPPON Genetics, Tokyo, Japan)
following agarose gel electrophoresis.

2.3. SLiCE reaction for seamless DNA cloning

SLiCE buffer (10� ; 500 mM Tris–HCl, pH 7.5, 100 mM MgCl2,
10 mM ATP, and 10 mM dithiothreitol) was passed through a 0.2-
μm filter, and dispensed in 40 μL aliquots into 0.2 mL 8-strip PCR
tubes and stored at �20 °C [6]. The standard SLiCE reaction so-
lution comprised the following components: 10 ng linear vector
(PCR amplified), an appropriate amount of insert DNA (1:1–
50:1 molar ratio of insert to vector), 1 μL 10� SLiCE buffer, 1 μL
SLiCE extract, and sterilized distilled water to a total volume of
10 μL. The SLiCE reaction mixture was incubated at 37 °C for
15 min. The reaction time was adjusted to compare with that used
in the In-Fusion cloning method.

2.4. In-Fusion reaction for seamless DNA cloning

The In-Fusion HD Cloning Kit (Clontech, Mountain View, CA,
USA) was purchased from Takara-Bio. The standard In-Fusion re-
action solution comprised the following components: 10 ng linear
vector (PCR amplified), an appropriate amount of insert DNA (1:1–
50:1 molar ratio of insert to vector), 2 μL 5� In-Fusion HD en-
zyme premix, and sterilized distilled water to a total volume of
10 μL. The In-Fusion reaction mixture was incubated at 50 °C for
15 min, according to the instruction manual.

2.5. Transformation of competent cells with SLiCE and In-Fusion
solutions

Following incubation, heat-shock transformation was con-
ducted by adding 1 μL of SLiCE or In-Fusion reaction solution into
20 μL ECOS X Competent E. coli DH5α (Nippon Gene, Tokyo, Japan)
according to the instruction manual. The transformation efficiency
of the competent cells (20 μL) was approximately 2�108 colony-
forming units (CFUs)/μg pUC19 DNA. Transformed E. coli cells were
plated on LB agar plates containing ampicillin and incubated at
37 °C for 12–16 h.

2.6. Efficiency estimation for SLiCE and In-Fusion cloning methods

The efficiency of seamless DNA cloning was evaluated by two
parameters, colony-formation rate and cloning efficiency. Colony
formation rate was determined as the number of colonies re-
presented as CFUs per nanogram vector. Cloning efficiencies for
the insert DNA were given as the ratio of colonies with an insert of
the confirmed correct length as estimated by colony-PCR to the
total number of colonies tested [6,12].
3. Results and discussion

3.1. Estimation of colony formation rate and cloning efficiency for
SLiCE and In-Fusion cloning methods

To date, SLiCE has been prepared according to several methods.
SLiCE was originally prepared from the E. coli PPY strain, which
expresses a λ prophage Red/ET recombination system, using
commercially available cell lytic buffer, CelLytic B Cell Lysis Re-
agent (Sigma B7435) [5]. Recently, we found that SLiCE were able
to be prepared from easily available E. coli laboratory strains using
a cost-effective Triton X-100 buffer as well as with the commer-
cially available cell lytic buffer [6,12]. In this study, we used the
simplest and most cost-effective SLiCE identified: the extract
prepared from the E. coli RecA� laboratory strain JM109 with the
3% Triton X-100 buffer, and compared its cloning efficiency with a
commercially available seamless DNA cloning kit. The Clontech In-
Fusion HD Cloning Kit, which is widely used for seamless DNA
cloning, was selected as being representative of commercial kits
[17–19,21,23,24]. In this comparative experiment, the cloning
abilities of both seamless DNA cloning methods were evaluated
under various molar ratios of insert DNA fragments to vector DNA
by two parameters: colony formation rate and cloning efficiency.
The reaction time of SLiCE-cloning was set as 15 min, which is the
same as that recommended in the In-Fusion cloning method
(Fig.1).

Firstly, we determined the colony formation rate (the number
of colonies after transformation), as the efficiency of SLiCE-cloning



Fig. 1. A schematic view of two seamless DNA cloning methods. Lower left, SLiCE-
cloning from an E. coli RecA� laboratory strain. Lower right, In-Fusion cloning. We
utilized 15 bp overlapping sequences in the experiments (short end homologous
overlapping sequences were represented as blue and yellow squares)
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Fig. 2. Effects of the molar ratio of insert DNA fragments to vector DNA on trans-
formation efficiency for the two seamless DNA cloning methods. The cloning re-
actions were performed with the indicated molar ratios of insert: vector. Values for
the insert DNA fragments Prx IIE or G6PDH1 are shown. Colony numbers are re-
presented as CFUs per nanogram of vector and reflect the means7standard de-
viation of three independent experiments [6].

Table1
Cloning efficiencies of the various molar ratios of insert DNA fragments to vector
DNA in the SLiCE and In-Fusion methods.

Cloning method Cloning efficiencya

PrxIIE (AT3G52960) G6PDH1 (AT5G35790)
0.5 kbp 1.6 kbp

SLiCE
1:1 14/16 (87.5%) 16/16 (100%)
3:1 14/16 (87.5%) 16/16 (100%)
6:1 15/16 (93.8%) 16/16 (100%)
10:1 16/16 (100%) 16/16 (100%)
50:1 15/16 (93.8%) 13/16 (81.3%)

In-Fusion
1:1 16/16 (100%) 16/16 (100%)
3:1 16/16 (100%) 16/16 (100%)
6:1 15/16 (93.8%) 16/16 (100%)
10:1 16/16 (100%) 16/16 (100%)
50:1 16/16 (100%) 14/16 (87.5%)

a Cloning efficiencies for the insert DNA are represented as the number of
clones with the confirmed correct insert length by colony-PCR/number of colonies
subjected to colony-PCR.
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is largely dependent upon this rate [6]. The In-Fusion cloning
method yielded about 2–5�103 colonies/ng vector at 1:1 to 6:1
(insert: vector) ratios (Fig.2, right). For SLiCE-cloning, over 1�103

colonies/ng vector were stably observed over the same range of
transformed DNA ratios (Fig. 2, left). These results indicated that
the colony formation ability of SLiCE-cloning was 30–85% that of
In-Fusion cloning for 1:1 to 6:1 molar ratios of insert to vector.
Both rates are sufficient for conventional DNA cloning. An increase
of the molar ratio of insert to vector (50:1) markedly reduced the
colony formation rate of both cloning methods (Fig. 2). Excess
insert DNA might inhibit the precision of the homologous re-
combination at short end homology regions between insert frag-
ments and vector DNA, as an excess of insert DNA facilitates insert
dimer formation.

We next confirmed the cloning efficiency of both SLiCE and In-
Fusion methods. Previous studies showed that SLiCE-cloning ex-
hibited high fidelity for seamless gene cloning [5,6]. Therefore, as
expected, both methods were able to correctly clone the insert
DNA fragments into the vector at high cloning efficiencies; both
maintained good efficiencies (480%) across all input DNA ratio
conditions as well (Table 1). A small number of incorrect clones
were detected in both methods. In SLiCE method, four of nine
incorrect clones were empty vector clones and five incorrect
clones had two insert fragments in a vector. For In-Fusion method,
one of three incorrect clones was empty vector clone and two
incorrect clones had two insert fragments in a vector.

3.2. Comparison of homemade and commercially available seamless
DNA cloning methods

The In-Fusion cloning method is performed using commercially
available kit and provided stable cloning activity (Fig. 2). The
SLiCE-cloning method also exhibited sufficient high cloning ability
for conventional DNA cloning. These results indicate that SLiCE-
cloning using extracts from an E. coli laboratory strain is able to
serve as an alternative seamless cloning method to the commercial
In-Fusion cloning kit. When selecting between homemade re-
agents or commercially available kits, we generally make the de-
termination considering the time and labor required for prepara-
tion of homemade reagents, and the cost of the commercial kits.
For seamless DNA cloning, preparation of SLiCE from E. coli la-
boratory strains reflects a simple and easy protocol, as only two
steps are required: growth of an E. coli laboratory strain under
normal conditions, and simple cell lysate extraction using lysis
buffer [6,12].

Accordingly, the SLiCE-method presented here would be easy
to implement, if care is taken at several points during preparation
of SLiCE extract. Firstly, optimum harvest timing (OD600¼2.0–3.0)
is a critical factor for determining the cloning efficiency. Secondly,
SLiCE-preparation must be performed at a low temperature to
avoid a decrease in the cloning ability. Thirdly, sonication should
not be used as the method for the cell lysate extraction from E. coli,
because although sonication is an efficient method for protein
extraction from E. coli [28–30], its use completely abolished SLiCE-
cloning ability [12]. Instead, by using a buffer containing Triton
X-100 or a commercially available cell lytic reagent, we can
maintain SLiCE quality and reproducibility [6,12]. These results
indicate the importance of SLiCE-preparation techniques for
maintaining the homologous recombination activity in E. coli cells.

Furthermore, SLiCE-cloning is a convenient and ultra-low cost
seamless DNA cloning method for several reasons. The quantity of
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SLiCE prepared from 50 mL E. coli culture was sufficient to perform
over two thousand SLiCE-cloning reactions, and the produced
SLiCE extract can be stored in 40% glycerol at �80 °C for long
periods if snap-frozen in liquid nitrogen. Additionally, the
SLiCE-method presented here does not require a special E. coli
strain and a commercial cell lytic buffer, enhancing its accessibility
and reducing its cost. As an approximate guide, we calculated the
cost of SLiCE prepared from the E. coli RecA� laboratory strain
JM109 with a buffer containing Triton X-100 to be ¥0.4 (approxi-
mately $0.003) per reaction; over half of this sum is represented
by the cost of the plastic tubes and the cost is less than 1/5000 that
of the In-Fusion cloning kit. So far, SLiCE-cloning has yielded lower
efficiency than In-Fusion cloning, but SLiCE-cloning has the po-
tential for further improvement of the cloning efficiency upon
elucidation of the molecular mechanisms of the RecA-independent
recombination system in future studies.
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