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a b s t r a c t

Since curved dg algebras, and modules over them, have differentials whose square is not
zero, these objects have no cohomology, and there is no classical derived category. For
different purposes, different notions of ‘‘derived’’ categories have been introduced in the
literature. In this article, we show that for some concrete curved dg algebras, these derived
categories vanish. This happens for example for the initial curved dg algebrawhosemodule
category is the category of precomplexes, and for certain deformations of dg algebras.
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1. Introduction

Curveddg algebras andmoduleswere introduced in [12], in relationwith quadratic duality. Examples of a different nature
occur as deformations of ordinary dg algebras. Indeed, inspection of the Hochschild complex of a dg algebra immediately
reveals the possible occurrence of curvature in deformations. The deformation theory of algebras [1,2] and of abelian
categories [7,6] suggests that deformation should somehow take place on the derived level. For derived categories of abelian
categories, the situation was investigated in [8]. For dg algebras, the relation between Hochschild cohomology and derived
Morita deformationswas investigated in [5], where it was shown that not everyHochschild cocycle can be realized bymeans
of a Morita deformation of the dg algebra. This raises further questions as to the possibility of deriving deformed curved dg
algebras.More precisely: suppose Ā is a curved dg algebra deforming an ordinary dg algebraA, is there a reasonable definition
of derived category D?(Ā) which can be considered to be a ‘‘derived deformation’’ of D(A)? Since curved dg algebras fail to
have square zero differentials, and hence fail to have cohomology objects, a straightforward generalization of the definition
of the derived category of a dg algebra does not exist. Different candidate derived categories have been considered in the
literature [9,11], but none of these is such that for all dg algebras, the newly defined category coincides with the classical
derived category.
Our answer to the general existence of ‘‘derived deformations’’ is a negative one: we give exampleswhere it is impossible

to define a reasonable derived category D?(Ā) deforming D(A). By reasonable, we mean satisfying some combination of a
number of natural axiomatic requirements (listed in 3.1) for the corresponding class of ‘‘acyclic’’ objects. Loosely speaking,
we will refer to these categories as ‘‘derived’’ categories. By deforming, we mean that a complex over A is acyclic if and
only if its image over Ā is ‘‘acyclic’’. Our most pronounced example in this respect is the ‘‘graded field’’ A = k[u, u−1]
where u is of degree 2. The element u gives rise to a Hochschild cocycle and an infinitesimal deformation Ā, but there
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is no ‘‘derived’’ category D?(Ā) deforming D(A). Moreover, over a field, the only ‘‘derived’’ category of Ā is actually zero
(Proposition 3.7). Another class of curved dg algebras whose ‘‘derived’’ categories we show to vanish, are the ‘‘initial cdg
algebras’’ k[c] and k[c]/cn for c in degree 2 and n ≥ 2 (Proposition 3.2). In Section 4, we take a slightly different approach to
‘‘derived’’ categories, by looking at classes of ‘‘homotopical projectives’’. The existence of non-zero ‘‘derived’’ categories
is closely related to the existence of graded projective, respectively graded projective and graded small objects in the
homotopy category. In particular, we show that the deformation Ā of A = k[u] (with u in degree 2) corresponding to the
cocycle u, possesses a non-zero ‘‘derived’’ category D?(Ā), but this category actually does not deform the classical D(A)
(Proposition 4.12).
Finally, in Section 5,we take a closer look at particular candidate derived categories studied in the literature. In Section 5.1,

we look at the bar derived category Dbar(A) of [9], which is defined for a unital cdg algebra A over an arbitrary commutative
ground ring k, andwhich should be regarded as a curved analogue of the relative derived category of a dg algebra (inwhich by
definition the k-contractible complexes becomezero).We show that if k is a field andAhas a non-zero curvature,Dbar(A) = 0.
This is a consequence of the fact that Dbar(k[c]) is ‘‘derived’’ hence zero, and that the bar derived categories satisfy a strong
base change property (see Section 3.2). In Section 5.2, we take a look at the ‘‘derived categories of the second kind’’ defined
in [11]. These categories (of which there are three subtypes) can be regarded as universal ‘‘derived’’ categories. The existence
of non- zero derived categories of the second kind over a field, in spite of their vanishing on k[c], can be explained by the
fact that they do not satisfy the strong base change property.
In contrast to the approaches in [9] and [11], which make use of the interplay between algebras and coalgebras through

the bar/cobar formalism, the methods in this paper are elementary (except in Section 5.1 where we apply our results to the
setting of [9]).

2. The homotopy category of a curved dg algebra

2.1. Curved dg algebras, modules and morphisms

Curved dg algebras and modules were introduced in [12]. We recall the definitions. Let k be a commutative ring. A cdg
k-algebra A (cdg algebra for short) consists of a graded k-algebra A = (Ai)i∈Z, a graded derivation d : A −→ A of degree 1,
and an element c ∈ A2 with d(c) = 0 satisfying

d2(a) = [c, a] = ca− ac

for all a ∈ A. The element c is called the curvature of A, and d is called the predifferential. Obviously, a cdg algebra with c = 0
is nothing but a dg algebra.
A (left) module M over a cdg algebra A consists of a graded (left) A-module M = (M i)i∈Z endowed with a derivation

dM : M −→ M of degree 1 (i.e. a degree 1 morphism with dM(am) = d(a)m+ (−1)|a|adM(m)) such that

d2M(m) = cm

for allm ∈ M .
Modules over a cdg algebra A form an abelian category Mod(A), with the obvious degree zero morphisms commuting

with the predifferentials. In particular, the ground ring kwill be considered as a dg and cdg algebra concentrated in degree
zero, and consequentlyMod(k) denotes the category of complexes of ordinary k-modules, which we will call ‘‘degree zero’’
k-modules. The category of degree zero k-modules is denoted byMod0(k).
For a cdg algebra A, graded A-split exact sequences define an exact structure on Mod(A) making it into a Frobenius

category. Amodule is projective-injective for this structure if and only if its identity is contractible by a graded A-homotopy.
The resulting stable category is the homotopy categoryMod(A). Equivalently, the homotopy categoryMod(A) is obtained as
the zero cohomology of the natural dg category of cdg modules.
Between cdg algebras, different kinds of morphisms can be considered. In this paper, we will only use strict morphisms,

which are a special case both of the morphisms considered in [12], and the morphisms of curved A∞-algebras considered
in [9, Section 4]. A strict morphism f : A −→ A′ between cdg algebras is a degree zero morphism of graded algebras,
commutingwith the predifferentials, and preserving the curvature, i.e. with f (c) = c ′. Cdg k-algebraswith strictmorphisms
constitute a category Cdg(k). A strict morphism f : A −→ A′ induces a restriction of scalars functor

Mod(A′) −→ Mod(A).

Since an A′-homotopy can be regarded as an A-homotopy using f , we also obtain an induced restriction of scalars functor

Mod(A′) −→ Mod(A).

2.2. The initial cdg algebras

The first type of cdg algebras we consider will be called the initial cdg algebras because each one of them is initial in a
certain full subcategory of Cdg(k). First we consider the cdg algebra k[c] where c is an element of degree 2,the curvature
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(and where the predifferential is necessarily zero). This cdg algebra is clearly initial in Cdg(k). We also consider the cdg
algebras k[c]/cn for n > 0. The cdg algebra k[c]/cn is initial among the cdg algebras A whose curvature cA satisfies cnA = 0.
Modules over k[c] are precomplexes of degree zero k-modules, i.e. graded k-modules M together with a predifferential
dM : M −→ M satisfying no further condition. Indeed, such a precomplex M can be uniquely made into a k[c]-module
by putting cm = d2M(m) for all m ∈ M . Similarly, modules over k[c]/c

n are precomplexes with d2n = 0. Modules over
k[c]/c = k are of course ordinary complexes.
These cdg algebras are organized in the following way:
k[c] −→ · · · −→ k[c]/cn −→ k[c]/cn−1 −→ · · · −→ k[c]/c = k.

Consequently, we obtain a chain of module categories
Mod(k[c])←− · · · ←− Mod(k[c]/cn)←− Mod(k[c]/cn−1)←− · · · ←− Mod(k).

and a chain of homotopy categories
Mod(k[c])←− · · · ←− Mod(k[c]/cn)←− Mod(k[c]/cn−1)←− · · · ←− Mod(k).

Moreover, for A = k[c] or A = k[c]/cn, a map of A-modules is contractible by a graded A-homotopy if and only if it is
contractible by a graded k-homotopy (indeed, hd + dh = f and fd = df imply hd2 = d2h). So if we look at the chain of
module categories above, the notion of contractibility is independent of the module category. Now let X be an arbitrary
degree zero k-module. Consider the precomplexes

X1 = (0 −→ X −→ 0)

X2 = (0 −→ X −→ X −→ 0)

Xn = (0 −→ X −→ X −→ · · · −→ X −→ 0)

X+ = (0 −→ X −→ X −→ · · · −→ X −→ X −→ · · · )

X− = (· · · −→ X −→ X −→ · · · −→ X −→ X → 0)

X∞ = (· · · −→ X −→ X −→ · · · −→ X −→ X → · · · )
where the maps X −→ X are identities and where, for Xn and X+, the first non-zero entry from the left is in degree zero,
and for X−, the first non-zero entry from the right is in degree zero.
Proposition 2.1. If X is a non-zero degree zero k-module, then Xn is contractible if and only if n is even or n ∈ {+,−,∞}.
Proof. This is a matter of alternating 0 and 1 as maps hi in a (candidate) contracting homotopy. �

3. ‘‘Derived’’ categories via ‘‘acyclic objects’’

3.1. ‘‘Derived’’ categories via ‘‘acyclic’’ objects

Since cdg algebras, and modules over them, have predifferentials whose square is different from zero, they fail to have
cohomology objects. Consequently, it is impossible to define a derived category in the usual way. In this section, we will list
some possible requirements for alternative ‘‘derived’’ categories for a cdg algebra A.
The first, basic requirement will be that we obtain the ‘‘derived’’ category D?(A) as a triangle quotient of Mod(A) by a

thick subcategory A? of ‘‘acyclic’’ objects. In fact, it seems like this basic requirement is already largely responsible for the
weird phenomena we will describe later on (see also Section 4.2).

Recall that the totalization of a short exact sequence 0 → X
f
→ Y

g
→ Z → 0 in the abelian category Mod(A) is the

mapping cone of the morphism
cone(f )→ Z

with components
[
g 0

]
. Now we can list possible requirements for A?, which are fulfilled in the case of the ordinary

derived category of a dg algebra:
(A1) A? contains all totalizations of short exact sequences in the abelian categoryMod(A).
(A2) A? is closed under coproducts.
(A3) A? is closed under products.

The next lemma illuminates condition (A1).
Lemma 3.1. The following conditions are equivalent:
(1) If two objects of a short exact sequence ofMod(A) belong toA?, then so does the third.
(2) A? contains all totalizations of short exact sequences ofMod(A).
(3) The canonical functorMod(A)→ Mod(A)/A? can be enriched into a δ-functor.

(4) For each short exact sequence 0 → X
f
→ Y

g
→ Z → 0 of Mod(A) there exists a morphism δ : Z → X[1] of Mod(A)/A?

such that X
f
→ Y

g
→ Z

δ
→ X[1] is a triangle ofMod(A)/A?.
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Proof. (1)⇒ (2) Let 0 → X
f
→ Y

g
→ Z → 0 be a short exact sequence. The following is a morphism of short exact

sequences (where morphisms are specified by means of their components ‘‘at the graded level’’):

0 // X
[1X 0 f ]t

//

1X
��

cone(−1X )⊕ Y

[
−f 0 1Y
0 1X[1] 0

]
//

[0 0 1Y ]
��

cone(f ) //

[g 0]
��

0

0 // X
f

// Y
g

// Z // 0

From this we deduce a short exact sequence formed by the mapping cones of the vertical morphisms:

0→ cone(1X )→ cone([0 0 1Y ])→ cone([g 0])→ 0.

Note that the first two objects are contractible, and so they belong toA?. Therefore, the totalization of the initial short exact
sequence also belongs toA?.
(2)⇒ (3) is proved in [13, III.1.3.2].
(3)⇒ (4) is clear.
(4)⇒ (1) is clear. �

Our first result is that requirements (A1), (A2) and (A3)make the ‘‘derived’’ categories of all the initial cdg algebras vanish
(except for A = k).

Proposition 3.2. For the initial cdg algebras A = k[c] or A = k[c]/cn with n > 1, the only ‘‘derived’’ category satisfying (A1),
(A2) and (A3) is D?(A) = 0. If k is a field, the same conclusion holds for every ‘‘derived’’ category satisfying (A1) and (A2).

Proof. If k is a field, the precomplexes ki with i ∈ N ∪ {+,−,∞} (see Section 2.2) that exist in Mod(A), and their shifts,
are the indecomposable objects inMod(A). By (A2), it suffices that they are acyclic. The only nonfinite indecomposables are
contractible, hence it suffices to show that the finite indecomposables are acyclic. So by Lemma 3.3, in both cases, it suffices
to show for X ∈ Mod0(k) that X1 is acyclic. Consider the exact sequence

0 −→ X2[−1] −→ X3 ⊕ X1[−1] −→ X2 −→ 0

given by

0 // 0

��

// X

[1 0]t
��

1 // X

1
��

// 0

0 // X

1
��

[1 1]t
// X ⊕ X

[1 0]
��

[1 −1]
// X

��

// 0

0 // X
1

// X // 0 // 0

From the acyclicity of X2, it follows by (A1) and thickness ofA? that both X1 and X3 are acyclic. This finishes the proof. �

Lemma 3.3. Let A be as above. Suppose D?(A) satisfies (A1), (A2) and every object X1 for X ∈ Mod0(k) is acyclic. Then every
bounded above precomplex inMod(A) is acyclic. If D?(A)moreover satisfies (A3), then D?(A) = 0.

Proof. For finite precomplexes, the proof is by induction on the length of the precomplex using (A1). Again using (A1),
every bounded above (resp. below) precomplex can be written in D?(A) as a cone of coproducts (resp. products) of finite
precomplexes. Using (A1) once more, we also get the unbounded precomplexes. �

Remark 3.4. Note that the proof of Proposition 3.2 makes use of the existence of X3 in all of the categories Mod(A)
considered. For A = k[c]/c = k, the classical derived category D(k) is a non-zero ‘‘derived’’ category satisfying (A1), (A2),
(A3) (corresponding to the fact that X3 does not exist and X1 is not acyclic).

3.2. ‘‘Derived’’ categories and base change

Another type of requirement involves the behaviour of ‘‘acyclic’’ objects, and hence ‘‘derived’’ categories, under base
change. Consider a strict morphism f : A′ −→ A of cdg algebras, and the induced restriction of scalars functor

f ∗ : Mod(A) −→ Mod(A′).

We can now formulate a weak and a strong base change property:

(Bw) The functor f ∗ preserves ‘‘acyclic’’ objects, i.e. f ∗(A?) ⊆ A′?.
(Bs) The functor f ∗ preserves and reflects ‘‘acyclic’’ objects, i.e.A? = f ∗−1(A′?).
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Clearly, as soon as (Bw) holds, we obtain an induced restriction of scalars functor

f ∗ : D?(A) −→ D?(A′),

and if moreover (Bs) holds, this functor reflects isomorphisms.
Our next observation is that the strong base change condition combined with the conditions of Section 3.1 makes all

‘‘derived’’ categories vanish.

Proposition 3.5. Let A be a cdg algebrawith ‘‘derived’’ category D?(A), and suppose the uniquemorphism f : k[c] −→ A satisfies
(Bs) with respect to D?(A) and D?(k[c]) = 0. Then D?(A) = 0.

Proof. This is obvious. �

Example 3.6. Consider the canonical A −→ k for A as in Proposition 3.2. Then this morphism does not satisfy (Bs) with
respect to the usual derived category D(k) and the ‘‘derived’’ category D?(A) = 0 since k1 is not acyclic in Mod(k) but
becomes ‘‘acyclic’’ inMod(A).

3.3. ‘‘Derived’’ categories of deformations

An important source of cdg algebras is given by deformations of dg algebras. Let (A,mA, dA) be a dg k-algebra. The
Hochschild complex C(A) is the product total complex of the double complex with

C∗,n(A) = Hom∗k(A
⊗n, A)

and the familiar Hochschild differential. Consequently, a Hochschild 2-cocycle φ = (φn)n≥0 is determined by elements
φ0 ∈ A2, φ1 : A −→ A of degree 1, φ2 : A⊗k A −→ A of degree 0 and so on. If we concentrate on a cocycle φ = (φ0, φ1, φ2),
this determines a first order deformation Aφ[ε] of Awhich is a cdg k[ε]-algebra withmultiplicationmA+φ2ε, predifferential
dA + φ1ε, and curvature φ0ε (a general cocycle determines a curved A∞-deformation; see [8] and [5]).
The deformation theory of algebras [1,2] and of abelian categories [7,6] suggests that deformation should somehow take

place on the derived level.
We thus wonder whether there exists a non-zero ‘‘derived’’ category of Aφ[ε]which satisfies (A1), (A2) and perhaps (A3).

First of all, note that the argument of Proposition 3.2 for the contrary fails. Indeed, since the curvature of Aφ[ε] is c = φ0ε,
d2M of an Aφ[ε]-moduleM has to factor through εM so X3-type objects can never exist.
Secondly, the question we ask is not complete, for we are not looking for an arbitrary derived category of Aφ[ε], but for

one that ‘‘deforms’’D(A) in some sense. A basic requirement in this respect seems to be that the strictmorphism Aφ[ε] −→ A
satisfies the base change property (Bs) with respect to D?(Aφ[ε]) and the usual derived category D(A). If this requirement is
fulfilled, we say that D?(Aφ[ε]) deforms D(A).
In the remainder of this section we discuss two examples where such a derived deformation does not exist.

3.4. The cdg algebras Rρ[u] and Rρ[u, u−1]

We now introduce the two types of cdg algebras we will use. Let R be a (degree zero) k-algebra and let ρ ∈ R be a central
element. Then Rρ[u] is the cdg algebra

R[u] = (0 −→ R −→ 0 −→ Ru −→ 0 −→ Ru2 −→ · · · )

where u is a variable of degree 2, with curvature c = ρu. Modules over Rρ[u] are precomplexes M of R-modules with a
distinguished map of precomplexes uM : M −→ M[2] for which d2M = ρuM . Maps f : (M, uM) −→ (N, uN) have to satisfy
uN f = fuM .
The localization Rρ[u, u−1] of Rρ[u] is the cdg algebra

R[u, u−1] = (· · · −→ Ru−1 −→ 0 −→ R −→ 0 −→ Ru −→ · · · )

with curvature c = ρu. Modules over Rρ[u, u−1] are modules over Rρ[u] where uM : M −→ M[2] is an isomorphism of
precomplexes. Up to isomorphism, they are given by precomplexes

. . . // M
d0

// N
d1

// M
d0

// N // . . .

with d1d0 = ρM and d0d1 = ρN .
We put R[u] = R0[u] and R[u, u−1] = R0[u, u−1].
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3.5. Some ‘‘derived’’ categories of deformations

Consider the following two examples of k[ε]-deformations in the diagram on the right:

k[ε]

��

Au[ε] = (A[ε], c = uε)

��

k[ε]ε[u]

��

// k[ε]ε[u, u−1]

��

k A = (A, c = 0) k[u] // k[u, u−1]

In [5, Proposition 3.13, Example 3.14], it was shown that the ‘‘graded field’’ k[u, u−1] has no Morita deformation
corresponding to the Hochschild cocycle φ = u. Our next proposition shows that in fact, it has no reasonable corresponding
‘‘derived’’ deformation either.

Proposition 3.7. For A = k[u] or A = k[u, u−1], there is no ‘‘derived’’ category of Au[ε] satisfying (A1) and deforming the
classical derived category D(A). Moreover, if k is a field, the only ‘‘derived’’ category of k[ε]ε[u, u−1] satisfying (A1) and (A2) is
D?(k[ε]ε[u, u−1]) = 0.

Proof. Put B = Au[ε] in either case. The proofwill onlymake use of k[ε]ε[u, u−1]-modules, which are considered as k[ε]ε[u]-
modules in case A = k[u]. Suppose we have a D?(B) satisfying (A1), (A2). Consider the exact sequence of B-modules

0 // M ′ ϕ
// M // M ′′ // 0

given by (from top to bottom):

0

��

0

��

0

��
. . . // 0

��

// k

ε

��

// 0

��

// . . .

. . . // k

1
��

ε
// k[ε]

1
��

1
// k

1
��

// . . .

. . . // k
0

//

��

k

��

1
// k

��

// . . .

0 0 0

The module M ′′ is contractible hence ‘‘acyclic’’. By (A1), the sequence determines a triangle in D?(B), so ϕ becomes an
isomorphism inD?(B). Now the standardMod(B)-triangle constructed on ϕ also determines a triangle inD?(B), so the object
cone(ϕ) is acyclic. Now cone(ϕ) is given by

. . . // k⊕ k
[ε ε]

// k[ε]
[1 0]t

// k⊕ k // . . .

which is readily seen to be isomorphic to the direct sumM ′[1]⊕M . It follows that bothM ′ andM are acyclic. The fact thatM ′
is acyclic shows thatD?(B) does not deformD(A). Moreover, if k is a field and A = k[u, u−1], then by Lemma 3.8 it shows that
every indecomposable A-module, and hence, by (A2), every A-module, is acyclic. But since every B-module can be written
as an extension of A-modules, this finishes the proof that D?(B) = 0. �

Lemma 3.8. Let k be a field. The indecomposable objects inMod(k[u, u−1]) are given by (shifts of)

· · · −→ k −→ 0 −→ k −→ · · ·

and

. . . // k
1

// k
0

// k // . . . .

Every object decomposes as a direct sum of these.

Proof. This easily follows from some base changes. �
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3.6. The link with Z2-graded cdg algebras

Instead of working with Z-graded cdg algebras andmodules, one can consider the parallel Z2-graded theory.Wewill call
the corresponding objects cdg2 algebras and modules, and for a cdg2 algebra A the related module categories are denoted
byMod2(A),Mod2(A), D2?(A).
Any k-algebra Rwith given central element ρ ∈ R yields a cdg2 algebra Rρ = R −→ 0 −→ Rwith curvature ρ. Modules

over Rρ are Z2-precomplexes of R-modules

M
d0

// N
d1

// M

with d1d0 = ρM and d0d1 = ρN .
We have the following tautology:

Proposition 3.9. Let R be a k algebra with central element ρ ∈ R. We have a diagram

Mod2(Rρ)
∼ //

��

Mod(Rρ[u, u−1])

��

Mod2(Rρ) ∼
// Mod(Rρ[u, u−1])

in which the first line is an equivalence and the second line is a triangle equivalence.

Corollary 3.10. Let k be a field. The only ‘‘derived’’ category of k[ε]ε which satisfies (A1) is D2?(k[ε]ε) = 0.

Proof. This is just a reformulation of Proposition 3.7. �

4. ‘‘Derived’’ categories via ‘‘homotopical projectives’’

4.1. ‘‘Derived’’ categories via ‘‘homotopical projectives’’

Let A be a cdg algebra and A? ⊆ Mod(A) a thick subcategory with triangle quotient D?(A) = Mod(A)/A?. Let
P? ⊆ Mod(A) denote the full subcategory ofA?-homotopical projectives, i.e. objects P withMod(A)(P, X) = 0 for all X ∈ A?.
By localization theory, the composed functor P? −→ D?(A) is always fully faithful, and if every object X in Mod(A) has a
homotopically projective resolution (i.e. a map P −→ X with P ∈ P? and whose cone is inA?), it becomes an equivalence.
This is the case in the situation of the classical derived category of a dg algebra.
In this section, we want to go the other way round and propose a generating class M ⊆ Mod(A) of ‘‘homotopical

projectives’’, and define X ∈ Mod(A) to beM-acyclic ifMod(A)(M[i], X) = 0 for allM ∈M and i ∈ Z.

Remark 4.1. TheM-acyclic objects can be understood in a cohomological manner. For cdg A-modules M and N , consider
the complex CM(N) = HomGr(A)(M,N) of graded A-module maps. Its cohomology is given by

H iM(N) = H
iHomGr(A)(M,N) = Mod(A)(M[−i],N).

Consequently, N isM-acyclic if and only if CM(N) is acyclic for everyM ∈M if and only if H iM(N) = 0 for everyM ∈M and
i ∈ N.

Definition 4.2. An objectM ofMod(A) is graded small if the covariant functor HomGr(A)(M, ?) : Gr(A)→ Mod(k) preserves
arbitrary coproducts.

Proposition 4.3. SupposeM is a class of objects of Mod(A) that are graded projective over A. Then theM-acyclic objects form
a thick subcategoryAM ofMod(A) (with corresponding DM(A)) which satisfies (A1) and (A3). If the objects ofM are moreover
graded small, thenAM also satisfies (A2).

Proof. AM is triangulated sinceMod(A)(M,−) is homological. The remainder of the claim follows from Remark 4.1. �

4.2. In the absence of free modules

For a dg algebra A, the classical derived categoryD(A) is generated by the freemodule A ∈ Mod(A). However, for a general
cdg algebra A, there is no natural way to make A itself into an A-module. It seems that this fact is largely responsible for the
vanishing of some ‘‘derived’’ categories discussed earlier on: in general,Mod(A) simply contains too few modules, or, more
correctly, not the right kind of modules. A related observation was made in [8, Remark 3.18].
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Remark 4.4. Let R be a k-algebra and ρ ∈ R a central element. We consider the cdg2 algebra Rρ of Section 3.6. Let
P ⊆ Mod(Rρ) be the class of Rρ-modules M −→ N −→ M with M and N projective over R. Sometimes, the category
P is considered as the derived category of Rρ (for instance for R = k[x], see [3,4,10]). The fact that this is a ‘‘good’’ definition
in this case is due to the fact that k[x] has finite global dimension (see also Section 5.2). In general, we know from the dg
case that homotopical projectivity cannot be defined on the graded level, and we have seen in Corollary 3.10 that one may
end up with nothing at all.

Proposition 4.3 suggests a way of obtaining ‘‘exotic’’ derived categories by replacing the (no longer existing) free module
A by another graded freemodule. We will investigate this further in the remainder of this section.

4.3. A cone-like construction of cdg modules

We now describe a construction which is reminiscent of taking the cone of a map. This construction lives in the world of
predifferential graded modules. A predifferential graded k-algebra (pdg k-algebra) is a graded k-algebra A with a derivation
dA : A −→ A[1]. A predifferential graded module over A is a graded A-module M with an A-derivation dM : M −→ M[1],
the predifferential. Morphisms are graded morphisms commuting with the predifferentials.
As usual, a map φ : M −→ N gives rise to a map φ[1] : M[1] −→ N[1]with dM[1] = −dM and φ[1] = φ.

Proposition 4.5. Let M and N be pdg modules over a pdg algebra A and let φ : M −→ N[1] and ϕ : N −→ M[1] be pdg maps.
There is a pdg module cone(φ, ϕ) given by N ⊕M as a graded module with predifferential

d =
(
dN φ
ϕ dM

)
.

The predifferential d satisfies

d2 =
(
d2N + φϕ 0
0 ϕφ + d2M

)
.

Proof. To see that d is an A-derivation, we consider µN : A⊗ N −→ N and µM : A⊗M −→ M and we compute

d
(
µN 0
0 µM

)
=

(
dNµN φµM
ϕµN dMµM

)
=

(
µN 0
0 µM

)
(dA ⊗ 1N⊕M + 1A ⊗ d)

Of course we have

d2 =
(
d2N + φϕ dNφ + φdM
ϕdN + dMϕ ϕφ + d2M

)
=

(
d2N + φϕ 0
0 ϕφ + d2M

)
since φ and ϕ are pdg maps. �

For a cdg algebra A, the categoryMod(A) of cdg A-modules is clearly a full subcategory of the category of pdg A-modules.
For every pdg A-moduleM , the curvature c defines a map of pdg A-modules.

cM : M −→ M[2] : m 7−→ cm.

Proposition 4.6. Let M and N be pdg A-modules over a cdg algebra A and let φ : M −→ N[1] and ϕ : N −→ M[1] be pdg
A-module maps. If we have

d2N + φϕ = cN d2M + ϕφ = cM

then cone(φ, ϕ) is a cdg A-module.

Proof. Immediate from Proposition 4.5. �

4.4. Derived categories constructed from A-splittings

We can use Proposition 4.6 to construct cdg A-module structures on graded free A-modules in the following way. A
cocycle φ ∈ Ai will be identified with any corresponding map A[j] −→ A[j+ i] depending on the context.

Definition 4.7. LetA be a cdg algebrawith curvature c ∈ A2. A splitting forA (orA-splitting) consists of two cocyclesφ ∈ A1−i
and ϕ ∈ A1+i with

c − d2A = ϕφ = φϕ.

The cdg A-module Aφ,ϕ is by definition cone(φ, ϕ)where we consider

φ : A[i] −→ A[1] ϕ : A −→ A[i][1]
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Since Aφ,ϕ is graded projective and small, we obtain a ‘‘derived’’ category Dφ,ϕ(A) satisfying (A1), (A2), (A3) by taking
M = {Aφ,ϕ} in Section 4.1.

Example 4.8. Let A be an initial cdg algebra k[c] or k[c]/cn for n > 1. Up to isomorphism, the only A-splitting is given by
φ = 1 and ϕ = c. The module A1,c is isomorphic to k+ = 0 −→ k −→ k −→ k −→ · · · , which is contractible. Hence, as
we already know by Propositions 3.2 and 4.3, D1,c(A) = 0. For A = k, there is another c-splitting given by φ = ϕ = 0. Here
k0,0 = k ⊕ k[−1], and D0,0(k) is the ordinary derived category. More generally, for a dg algebra A, D0,0(A) is the ordinary
derived category, whereas other 0-splittings will yield other ‘‘exotic’’ derived categories.

Let us now consider an arbitrary cdg algebra A with A-splitting φ ∈ A1−i, ϕ ∈ A1+i. We will try to understand the
cohomology determined by Aφ,ϕ by computing the differential on CAφ,ϕ (M) = HomGr(A)(Aφ,ϕ,M) for an arbitrary cdg A-
moduleM . As a graded module,

CAφ,ϕ (M) ∼= M ⊕M[−i]

and we obtain form ∈ M j, n ∈ M j−i:

d(m, n) = (dM(m)+ (−1)jϕn, dM(n)+ (−1)jφm).

This yields the following notions: the element (m, n) is a cocycle if

dM(m) = (−1)j+1ϕn dM(n) = (−1)j+1φm

and the element (m, n) is a boundary if there exist h ∈ M j−1, k ∈ M j−i−1 with

m = dM(h)+ (−1)j+1ϕk n = dM(k)+ (−1)j+1φh.

Example 4.9. Consider for a k-algebra Rwith central element ρ the cdg algebra A = Rρ[u] as defined in Section 3.4. We use
the A-splitting φ = ρ, ϕ = u to construct Dρ,u(A). The object Aρ,u is isomorphic to

0 // R ρ
// R

1
// R ρ

// R
1

// R ρ
// . . . .

First of all, note that if ρ is not invertible, then the object Aρ,u is not contractible. Consequently, Aρ,u is not Aρ,u-acyclic, and
Dρ,u(A) 6= 0.
Let us now take ρ = 0, so A is a dg algebra. If M is a module with uM = 0, then clearly M is acyclic if and only if M is

acyclic in the classical sense. But if we consider for exampleM = · · · −→ R[ε] −→ R[ε] −→ · · · with differential ε with
uM = 1, we have a cocycle (1, ε), but we can never have 1 = εh − εk, so (M, uM = 1) is not acyclic with respect to the
splitting (0, u).

Example 4.10. Consider A = Rρ[u, u−1] for ρ ∈ R as defined in Section 3.4. The object Aρ,u is isomorphic to

X = . . . // R ρ
// R

1
// R ρ

// R
1

// R ρ
// . . .

with uX = 1. This object is contractible hence Dρ,u(A) = 0.

4.5. Deformed derived categories

Let Aφ[ε] be a k[ε]-deformation of a dg k-algebra A.

Proposition 4.11. SupposeM is a collection of objects in Mod(Aφ[ε]) and putM0 = {k ⊗k[ε] M |M ∈ M} in Mod(A). Then
DM(Aφ[ε]) deforms DM0(A). In particular, ifM0 is a collection of homotopical projectives generating D(A), the result holds with
DM0(A) = D(A).

Proof. We haveMod(Aφ[ε])(M,N) = Mod(A)(k⊗k[ε] M,N) forM ∈M and N ∈ Mod(A). �

Wewill now consider a special case of deformed cdg algebras. Let A be a dg k-algebra and φ ∈ A2 a cocycle. The deformed
cdg algebra Aφ[ε] over k[ε] is the algebra A[ε] with curvature c = φε. We can construct the derived category Dφ,ε(Aφ[ε])
using the obvious A-splitting. However, this derived category has to be considered as a deformation of Dφ,0(A) and not of
D(A)!

Proposition 4.12. The derived category Dφ,ε(Aφ[ε]) deforms Dφ,0(A).

Proof. Immediate from Proposition 4.11. �

Example 4.13. In Examples 4.9 and 4.10, we can take R = k over k and ρ = 0, and we can take R = k[ε] over k[ε] or over k
and ρ = ε. It follows that both Du,0(k[u]) and Du,ε(k[u]u[ε]) = Du,ε(k[ε]ε[u]) are non-zero ‘‘derived’’ categories satisfying
(A1), (A2) and (A3).
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5. Some ‘‘derived’’ categories for arbitrary cdg algebras

In this sectionwe take a look at some specific definitions of ‘‘derived’’ categories that are defined for arbitrary cdg algebras,
which have been studied in the literature.

5.1. The bar derived category

Let A be a unital cdg algebra over a commutative ring k. In [9, Section 8.2], the bar derived category,Dbar(A), was defined as
a natural generalization of the relative derived category of a dg algebra. One can regard Dbar(A) as the triangle quotient of the
homotopy category of unital cdg A-modules, Mod(A), by the full subcategory formed by the so-called bar acyclic modules,
namely, those which are contractible when regarded as curved A∞-modules over A. Also, it is useful to consider Dbar(A) as
the homotopy category ofMod(A) endowed with a structure of model category constructed with the help of the bar/cobar
adjunction. Let us briefly recall here how this adjunction looks like. Let BA be the bar construction associated with A (see [9,
Section 4]), which is a counital dg k-coalgebra,Com(BA) the category of counital dg comodules over BA, and take τA : BA→ A
to be the composition of the map A[1] → A , a 7→ a, with the projection BA→ A[1]. Then we can define an adjoint pair of
functors

Mod(A)

RτA
��

Com(BA)

LτA

OO

as follows:
- LτAN is the cobar construction of N , and it is defined to be the unital graded A-module (A⊗k N,m

A
2 ⊗ 1N) endowed with

the predifferential

dLτAN := dA ⊗ 1N + 1A ⊗ dN + (mA2 ⊗ 1N)(1A ⊗ τA ⊗ 1N)(1A ⊗∆N),

where dN is the codifferential of N ,mA2 is the multiplication of A and∆N is the comultiplication of N .
- RτAM is the bar construction ofM , and it is defined to be the counital graded BA-comodule (BA⊗kM,∆BA⊗1M), endowed

with the codifferential

dRτAM := dBA ⊗ 1M + 1BA ⊗ dM − (1BA ⊗mM2 )(1BA ⊗ τA ⊗ 1M)(∆BA ⊗ 1M),

where dM is the predifferential ofM , dBA is the codifferential of BA and∆BA is the comultiplication.

Remark 5.1. It was proved in [9] that both the bar and the cobar construction admit a more conceptual definition, being
solutions of universal problems. We use this approach in the proof of Lemma 5.3 below.

Graded BA-split short exact sequences define an exact structure on Com(BA) making it into a Frobenius category. The
resulting stable category is the homotopy category Com(BA).
It turns out that a unital cdg A-module M is bar acyclic if and only if the dg BA-comodule RτAM is contractible, that is to

say, equivalent to 0 in the homotopy category Com(BA).
The following result studies conditions (A1), (A2) and (A3) in the case of bar acyclic modules.

Lemma 5.2. (1) The bar acyclic cdg A-modules satisfy (A2) and (A3).
(2) If k is a field, the bar acyclic cdg A-modules satisfy (A1).

Proof. (1) Notice that RτA preserves products because it has a left adjoint. On the other hand, it is straightforward to check
that RτA also preserves coproducts.
(2) Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence in Mod(A). Since k is a field, it splits in the category of

graded k-modules. Therefore, 0→ RτAM
′
→ RτAM → RτAM

′′
→ 0 is a short exact sequence of BA-comodules which splits

in the category of graded BA-comodules. Thus, there exists a triangle

RτAM
′
→ RτAM → RτAM

′′
→ (RτAM

′)[1]

in the homotopy category of BA-comodules, and if two of its objects vanish then so does the third. Now we use Lemma 3.1
to finish the proof. �

Let f : A→ A′ be a morphism of unital cdg algebras. Associated with it we have an adjoint pair

Mod(A′)

f ∗

��

Mod(A)

A′⊗A?

OO
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where f ∗ is the restriction of scalars along f and A′⊗A? is the extensions of scalars. We can also consider the adjoint pair

Com(BA)

B(f )∗
��

Com(BA′)

BA∗BA′ ?

OO

where B(f )∗ is the corestriction of scalars along the bar construction B(f ) of f and BA∗BA′? is the corresponding coextension of
scalars.

Lemma 5.3. The following squares are commutative up to an isomorphism of functors

Mod(A)

A′⊗A?
��

Com(BA)
LτAoo

B(f )∗
��

Mod(A′) Com(BA)
LτA′

oo

Mod(A)
RτA // Com(BA)

Mod(A′)

f ∗

OO

RτA′
// Com(BA′)

BA∗BA′ ?

OO

Proof. Here we use that the bar/cobar constructions are uniquely determined (up to isomorphism of functors) by the
following isomorphisms

Mod(A)(LτAN,M) ∼= TτAMC(Hom
•(N,M)[−1]) ∼= Com(BA)(N, RτAM)

natural in N and M , where Hom•(?, ?) is the internal Hom-functor in the category of graded k-modules, and
TτAMC(Hom

•(N,M)[−1]) is the tangent space in τA to the set of solutions of the Maurer–Cartan equation of Hom•(N,M)[−1]
regarded as a cdg module over Hom•(BA, A), which is a cdg algebra endowed with the obvious curvature, predifferential
and ‘convolution’ product (see [9, Section 6.3]). Now, it is easy to prove that we have isomorphisms

Mod(A′)(A′ ⊗A LτAN,M
′) ∼= Mod(A)(LτAN, f

∗M ′)
∼= TτAMC(Hom

•

k(N, f
∗M ′)[−1])

∼= TτA′MC(Hom
•

k(B(f )∗N,M
′)[−1])

∼= Mod(A′)(LτA′ (B(f )∗N),M
′)

natural in N andM ′, which follows from the identity f τA = B(f )τA′ . �

To study the behaviour of bar acyclic modules with respect to the change of rings, we need the following result:

Lemma 5.4. Let A′ be a unital cdg algebra and M a unital cdg A′-module. Suppose ψ : BA′ ⊗k M → BA′ ⊗k M is a morphism
of graded BA′-comodules such that ψ(1k ⊗ m) = 0 for each m ∈ M. Then for each z ∈ BA′ ⊗k M there exists a natural number
n ≥ 1 such that ψn(z) = 0. In particular, 1− ψ is an isomorphism with inverse given by

∑
n≥0 ψ

n.

Proof. Consider the filtration

0 ⊆ F0 ⊆ · · · ⊆ Fn ⊆ · · · BA′ ⊗k M,

with Fn := (k⊕ A′[1] ⊕ · · · (A′[1])⊗n)⊗k M , n ≥ 0. Let η : BA′ → k be the counit of the coalgebra BA′, and denote by ψ0
the composition of the map pM : BA′ ⊗k M → M , x⊗ m 7→ η(x)m, with ψ . Notice that ψ = (1BA′ ⊗ ψ0)(∆BA′ ⊗ 1M) and
that ψ0(1k ⊗m) = 0 for allm ∈ M . This implies that ψ(Fn) ⊆ Fn−1 for each n ≥ 0 and, in particular, ψn+1(Fn) = 0. �

Proposition 5.5. (1) The functor f ∗ : Mod(A′)→ Mod(A) preserves bar acyclic modules.
(2) Assume that k is a field and A′ (and hence A) has a non-zero curvature. Then f ∗ : Mod(A′)→ Mod(A) reflects bar acyclicity.

Proof. (1) That f ∗ preserves bar acyclicmodules follows directly from the commutativity of the second square in Lemma 5.3.
(2) Case 1: The curvature of A′ is not nilpotent. By using the obvious commutative triangle

Mod(A′)
f ∗

//

&&LLLLLLLLLL Mod(A)

yyrrrrrrrrrr

Mod(k[c])

and part (1) of this proposition, it suffices to prove the statement for A = k[c] and f : k[c] → A′ being the uniquemorphism
of cdg algebras.
Step 1.1: Construction of a morphism of graded k-modules s : A′ → k[c].We claim that for each i ≥ 1, the map

f 2i : kc i → A′2i , rc i 7→ rc iA′
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is injective. Indeed, if there exist an element r ∈ k \ {0} such that rc iA′ = 0, then c
i
A′ = r

−1rc iA′ = 0, which is a contradiction.
Therefore, since k is a field, for each i ≥ 1 the map f 2i is a split injection of k-modules, i.e. there exists a morphism of
k-modules

s2i : A′2i → kc i,

such that s2if 2i = 1. By taking si := 0 for every i ≤ 0 and every odd i, we get a morphism s : A′ → k[c] of graded k-modules.
Step 1.2: Bar acyclicity reflected. LetM be a unital cdg A′-module and assume there exists a morphism

h : Rτk[c](f
∗M)→ Rτk[c](f

∗M)

of graded comodules homogeneous of degree −1 satisfying hd + dh = 1, where d is the codifferential of Rτk[c](f
∗M). Let

s : A′ → k[c] be the morphism of graded k-modules constructed in step 1.1 of the proof, and let B(s) : BA′ → B(k[c]) be the
morphism induced by s. Define h′0 to be the composition

h′0 : RτA′ (M)
B(s)⊗1M
−→ Rτk[c](f

∗M)
h
→ Rτk[c](f

∗M)
pM
→ M,

where pM : Rτk[c](f∗M) → M , x ⊗ m 7→ η(x)m, with η : B(k[c]) → k being the counit of the coalgebra B(k[c]), and take
h′ : RτA′ (M)→ RτA′ (M) to be the morphism of graded comodules defined by

h′ = (1BA′ ⊗ h′0)(∆BA′ ⊗ 1M).

The fact that h′ is compatible with the comultiplication follows from the fact that we are working over a tensor coalgebra.
Let d′ be the codifferential of RτA′ (M) and put

φ := h′d′ + d′h′.

Since φ−1d′ = d′φ−1, it suffices to prove that φ is invertible. Thanks to Lemma 5.4, this is the case if φiM = iM , where iM is
the mapM → RτA′ (M) , m 7→ 1k ⊗ m. The identity (∆BA′ ⊗ 1M)φ = (1BA′ ⊗ φ)(∆BA′ ⊗ 1M) is easily checked. From this it
follows the identity φ = (1BA′ ⊗ pMφ)(∆BA′ ⊗ 1M), which implies that φiM = iM holds whenever pMφiM = 1M . Finally, it is
straightforward to check

pMφiM = pMh′d′iM + pMd′h′iM = pMhdiM + pMdhiM = pM iM = 1M .

Case 2: The curvature cA′ of A′ is nilpotent, with cnA′ = 0 and c
i
A′ 6= 0 for 1 ≤ i ≤ n− 1. By using the obvious commutative

triangle

Mod(A′)
f ∗

//

&&NNNNNNNNNNN Mod(A)

xxppppppppppp

Mod(k[c]/cn)

and part (1) of this proposition, it suffices to prove the statement for A = k[c]/cn and f : k[c]/cn → A′ being the unique
morphism of cdg algebras.
Step 2.1: Construction of a morphism of graded k-modules s : A′ → k[c]/cn.We claim that for each 1 ≤ i ≤ n − 1, the

map rc i 7→ rc iA is injective. Indeed, if there exists an element r ∈ k \ {0} such that rc
i
A = 0 for some 1 ≤ i ≤ n − 1, then

c iA = r
−1rc iA = 0, which is a contradiction. Then, for each 1 ≤ i ≤ n− 1, there exists a morphism s

2i of k-modules such that
s2if 2i = 1. By taking sj := 0 for j 6= 2i , 1 ≤ i ≤ n− 1, we construct a morphism s : A′ → k[c]/cn of graded k-modules.
Step 2.2: Bar acyclicity reflected. Similar to step 1.2. �

Corollary 5.6. If k is a field and A is a unital cdg k-algebra with non-vanishing curvature, then Dbar(A) = 0.

Proof. We distinguish two cases.
First case: The curvature cA is not nilpotent. In this case we know that, if f : k[c] → A is the unique morphism of cdg

algebras, then f ∗ : Mod(A) → Mod(k[c]) reflects bar acyclicity (see Proposition 5.5). Thus, it suffices to prove that every
cdg k[c]-module is bar acyclic. For this we use Lemma 5.2 together with Proposition 3.2.
Second case: cnA = 0 and c

i
A 6= 0 for 1 ≤ i ≤ n− 1.We proceed similarly, by using this time the unique morphism of cdg

algebras f : k[c]/cn → A. �

Remark 5.7. Corollary 5.6 also follows from the argument indicated at the end of Remark 7.3 of [11].
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5.2. Derived categories of the second kind

Let A be a cdg algebra. In [11, Section 3.3], three ‘‘derived’’ categories, called derived categories of the second kind, are
considered: the absolute derived category Dabs(A) is the universal (‘‘largest’’, corresponding to the smallest A?) ‘‘derived’’
category satisfying (A1), the coderived category Dco(A) is the universal ‘‘derived’’ category satisfying (A1) and (A2), and the
contraderived category Dctr(A) is the universal ‘‘derived’’ category satisfying (A1) and (A3).
Proposition 3.2 yields that for the initial cdg algebras A = k[c] or A = k[c]/cn with n > 1 over a field k, we have

Dco(A) = 0, and Proposition 3.7 yields that for A = k[ε]ε[u, u−1] = k[u, u−1]u[ε], Dco(A) = 0.
On the other hand, as soon as a cdg algebra A has a non-zero ‘‘derived’’ category with the correct (Ai), it follows that the

corresponding derived category of the second kind is non-zero as well. A concrete example where this occurs was given
in Example 4.13. In fact, as soon as Mod(A) contains a graded projective (resp. graded projective and graded small) object
which is not contractible, we thus conclude that Dctr(A) is (resp. Dctr(A) and Dco(A) are) non-zero. It is easy to see that all
graded projective objects are ‘‘homotopical projective’’ with respect to Actr and all graded projective graded small objects
are ‘‘homotopical projective’’ with respect toAco.
The following converse is due to Positselski:

Theorem 5.8 (Section 3.6, 3.7 in [11]). Let A be a cdg algebra and let P ⊆ Mod(A) be the full subcategory of graded projective
objects.
If A is graded Artinian (i.e satisfies the descending chain condition on graded submodules), then Dctr(A) ∼= P .
If A has finite homological dimension as a graded algebra (i.e. the abelian category Gr(A) has finite homological dimension),

then the absolute derived category, the coderived category and the contraderived category coincide, and they are all equivalent to
P .

That for a cdg algebra Awith finite graded homological dimension and zero predifferential, the absolute derived category
Dabs(A) can be considered to be the derived category of A, follows from the following well known fact:

Proposition 5.9. Let A be a graded algebra with finite graded homological dimension. Then a differential graded A-module is
homotopically projective if and only if it is graded projective. In particular, the derived category D(A) is equivalent to the full
subcategory P ⊆ Mod(A) of graded projective modules.

Proof. Let P be a graded projective acyclic A-module. Consider
. . .

d
// P

d
// P

d
// C // 0

as a projective resolution of C = Coker(d) in the category Gr(A). Since A has finite homological dimension as a graded
algebra, it follows that the image of d is graded projective as well, whence P is contractible. �

For a (graded) algebra A with infinite homological dimension, graded projective modules need not be homotopical
projective, as the example of

. . .
ε

// k[ε]
ε

// k[ε]
ε

// . . .

over A = k[ε] shows.
The existence of non-zero derived categories of the second kind in spite of the vanishing of those categories for the initial

cdg algebra k[c] corresponds to the fact that the derived categories of the second kind do not satisfy the strong base change
property (Bs). On the other hand, it is easily seen that the derived categories of the second kind do satisfy (Bw).
The main application of derived categories of the second kind in [11] is to cdg coalgebras. More precisely, for a cdg

coalgebra C with cdg Cobar construction B = Cobω(C) (associated with a k-linear section ω of C −→ k), the author proves
a beautiful ‘‘Koszul triality’’ theorem ([11, Section 6.7]) in which the coderived category of C-comodules, the contraderived
category of C-contramodules, and the absolute derived category of B-modules are proved to be equivalent. Moreover, since
B = Cobω(C) has finite homological dimension as a graded algebra, by Theorem 5.8, its three derived categories of the
second kind coincide.
In [11, Section 9.4], the author proves that for cofibrant dg algebras (over a ground ring of finite homological dimension),

the classical derived category and all the derived categories of the second kind coincide. He also uses this fact to argue
that for general dg algebras, the classical derived category and the derived categories of the second kind have to differ,
as they satisfy very different functoriality properties (the classical derived category is of course invariant under classical
quasi-isomorphisms of dg algebras, and every dg algebra is quasi-isomorphic to a cofibrant one).
As far as we know, there is no natural definition of a derived category of a curved dg algebra, that coincides with the

classical derived category for all ordinary dg algebras.
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