Propensity score matched cumulative one year costs

<table>
<thead>
<tr>
<th>Variable</th>
<th>EES (N = 714)</th>
<th>BMS (N = 714)</th>
<th>Difference (95% CI)</th>
<th>p for Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index stenting cost, $</td>
<td>2288 ± 1404</td>
<td>1167 ± 528</td>
<td>1121 (1094-1274)</td>
<td><0.001</td>
</tr>
<tr>
<td>Follow-up costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat revascularization cost, $</td>
<td>917 ± 7551</td>
<td>2066 ± 9395</td>
<td>-1169 (2105 to -344)</td>
<td>0.010</td>
</tr>
<tr>
<td>Clot reflow therapy, %</td>
<td>1939 ± 562</td>
<td>1496 ± 862</td>
<td>443 (367 to 511)</td>
<td><0.001</td>
</tr>
<tr>
<td>Aggregate 1-year cost, $</td>
<td>5145 ± 7612</td>
<td>4689 ± 9436</td>
<td>456 (508 to 1291)</td>
<td>0.32</td>
</tr>
<tr>
<td>Assuming generic clopidogrel cost, $*</td>
<td>3537 ± 7662</td>
<td>3448 ± 9429</td>
<td>88 (864 to 922)</td>
<td>0.85</td>
</tr>
</tbody>
</table>

-values in brackets are means. *Cost of generic clopidogrel assumed as $1/day.

Conclusions: In this prospective observational registry, the cost per TLR avoided with EES was < $10,000. With the advent of generic thienopyridine availability, the cost effectiveness profile shifts significantly in favor of EES, with similar 1-year aggregate costs compared to BMS.

TCT-607

Clinical Outcome in Chinese Patients with Long Lesion or Small Vessel/Multivessel Disease Receiving XIENCE V Everolimus-Eluting Stent: Early Results From the SEEDS Study

Bo Xu1, Yuejin Yang1, Yaling Han2, Bao Li3, Qiang Liu4, Guoying Zhu5

1 Fu Wai Hospital, National Center for Cardiovascular Diseases, China, Beijing, China, 2 Shenyang North Hospital, Shenyang City, China, Shenyang, China, 3 Shanxi Provincial Cardiovascular Institute, Taiyuan, China, 4 Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, China, 5 Wuhan Asia Heart Hospital, Wuhan, China, 6 First Affiliated Hospital of Guangzhou Medical University, Nanning, China, 7 Affiliated Anchen Hospital of Capital Medical University, Beijing, China

Background: The efficacy and safety of XIENCE V® everolimus-eluting coronary stents (XIENCE V, Abbott Vascular, Santa Clara, CA, USA) have been demonstrated in pre-marketing and post-marketing studies with low rates of target lesion revascularization (TLR), major cardiac adverse events and stent thrombosis (ST). However, these results were mainly obtained in populations of European heritage. SEEDS is the first study in China to evaluate XIENCE V’s performance in high risk cohorts with long lesion and small vessel/multivessel disease from clinical settings in China. 6-month results will be available at TCT Miami.

Methods: This is a prospective, multicenter registry designed to enroll up to 1900 patients with long lesions or small vessels/multivessel coronary disease at 45 sites in Mainland China, Taiwan and Macao. The primary endpoint is ischemia-driven target lesion failure (TLF) at 12-month. Clinical follow-up is at 30 days, 6, 12 and 24 months. All clinical endpoints are adjudicated by independent clinicians and 100% of data are monitored. In this analysis, descriptive statistics are provided for baseline characteristics and clinical endpoints by an independent statistical commission.

Results: A total of 365 (19.2%) small vessel patients, 781 (41.1%) long lesion patients, and 754 (39.7%) multivessel patients with 2825 lesions were treated. Clinical, device and lesion success rates were 99.47%, 99.95%, and 99.96% respectively. The table below shows baseline characteristics and 30-day clinical outcomes.

TCT-608

Two-Year Outcomes after Implantation of XIENCE PRIME and XIENCE PRIME Long Lesion Stents in Patients with Coronary Artery Disease: Results of the SPIRIT PRIME Multicenter Pivotal Clinical Trial

Marco Costa1, Dean Kereiakes2, Robert Smith3, Ken Wu1, Xiaohhe Yu1, Louis Cannon4, John Wang5, Krishnandriy Sather6

1 Case Western Reserve University, Cleveland, USA, 2 The Christ Hospital Heart & Vascular, Center, Cincinnati, USA, 3 Abbott Vascular, Santa Clara, CA, 4 McLennan Northern Michigan Hospital, Heart & Vascular Institute, Petoskey, Michigan, 5 Union Memorial Hospital, Baltimore, MD

Background: The SPIRIT PRIME trial demonstrated the clinical equivalence of the next generation XIENCE PRIME everolimus-eluting stent (EES, Abbott Vascular, Santa Clara, CA) to the XIENCE V EES at 1 year. Longer-term outcomes with the XIENCE PRIME stent have not been investigated.

Methods: SPIRIT PRIME, a prospective, pivotal, non-randomized clinical trial with two separate arms, tested the XIENCE PRIME in both core size (CSR) and long length (LLR) (33 and 38 mm) stent registries. The CSR analyzed 401 patients and the LLR 104 patients. Treatment of up to 2 de novo lesions in different epicardial vessels was allowed. The primary endpoint was 1-year target lesion failure (TLF); cardiac death, target vessel myocardial infarction [TV-MI] or clinically indicated target lesion revascularization [CI-TLR]) compared to pre-specified performance goals based on historical data and in accordance with FDA requirements. Data were fully monitored and all endpoint events adjudicated by an independent clinical events committee.

Results: There were 447 target lesions treated in the CSR and 124 in the LLR. Clinical device success rates were 98.2% in the CSR and 97.6% in the LLR. Female and diabetic subjects were 29.7% and 34.9% in the CSR and 37.5% and 35.6%, in the LLR, respectively. Elderly subjects (≥ 65 years old) comprised 41.6% of the CSR and 46.2% of the LLR. The Table shows outcomes through 2 years.
2.70% vs. 1.43%, log-rank p

Background: PCI stent inflation pressure correlates to angiographic lumen improvement and stent expansion but the relation to the outcome is not clarified. Using comprehensive registry data our aim was to evaluate how stent inflation pressure influences restenosis and stent thrombosis following PCI.

Methods: We evaluated all consecutive coronary stent implantations in Sweden from January 1, 2008, to October 26, 2011, using data from the Swedish Coronary Angiography and Angioplasty Registry (SCAAR). We used logistic regression and Cox proportional hazard modeling to estimate risk of outcomes with different balloon pressures.

Results: In total, 93,697 stents were eligible for analysis and divided into five different pressure interval groups: ≤15 atm, 16-17 atm, 18-19 atm, 20-21 atm and ≥22 atm. The risks of stent thrombosis (Fig. 1) and restenosis were significantly higher in the ≤15 atm, 18-19 atm and ≥22 atm groups (but not in the 16-17 atm group) compared to the 20-21 atm group. Post-dilatation was associated with a higher restenosis risk ratio (RR) of 1.22 (95% confidence interval (CI) 1.14-1.32, P<0.001) but stent thrombosis did not differ statistically between procedures with or without post-dilatation.

Conclusions: Our retrospective study identified a possible optimal stent inflation pressure of 20-21 atm during PCI which was associated with a lower risk of stent thrombosis and restenosis. Post-dilatation might increase restenosis risk.