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Abstract

Whenever a structure with a particularly interesting computability-theoretic property is found,
it is natural to ask whether similar examples can be found within well-known classes of algebraic
structures, such as groups, rings, lattices, and so forth. One way to give positive answers to this
question is to adapt the original proof to the new setting. However, this can be an unnecessary
duplication of e7ort, and lacks generality. Another method is to code the original structure into a
structure in the given class in a way that is e7ective enough to preserve the property in which we
are interested. In this paper, we show how to transfer a number of computability-theoretic prop-
erties from directed graphs to structures in the following classes: symmetric, irre9exive graphs;
partial orderings; lattices; rings (with zero-divisors); integral domains of arbitrary characteristic;
commutative semigroups; and 2-step nilpotent groups. This allows us to show that several theo-
rems about degree spectra of relations on computable structures, nonpreservation of computable
categoricity, and degree spectra of structures remain true when we restrict our attention to struc-
tures in any of the classes on this list. The codings we present are general enough to be viewed
as establishing that the theories mentioned above are computably complete in the sense that, for
a wide range of computability-theoretic nonstructure type properties, if there are any examples
of structures with such properties then there are such examples that are models of each of these
theories. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

With the formalization of the notions of algorithm and computable function in the
Frst half of the 20th century, and the subsequent development of computability the-
ory, there has been increasing interest in recent decades in investigating the e7ective
content of mathematics. In this paper, we are concerned with the connection between
two branches of this e7ective mathematics program: computable model theory and
computable algebra. We assume the reader is familiar with basic concepts of com-
putability theory, model theory, and algebra; standard references are [40], [21], and
[28], respectively.

One of the main concerns of computable model theory is the study of computability-
theoretic properties of countable structures. We will always assume we are working
with computable languages. We will denote the domain of a structure A by |A|.
(We will not always use calligraphic letters for structures, so A may denote a di7erent
structure, usually one isomorphic to A.) Let us for the moment focus on computable
structures.

De�nition 1.1. A structure A is computable if both |A| and the atomic diagram of
(A; a)a∈|A| are computable. If, in addition, the n-quantiFer diagram of (A; a)a∈|A| is
computable then A is n-decidable, while if the full Frst-order diagram of (A; a)a∈|A|
is computable then A is decidable.

An isomorphism from a structure M to a computable structure is called a computable
presentation of M. We often abuse terminology and refer to the image of a computable
presentation as a computable presentation. If M has a computable presentation then it
is computably presentable.

Whenever a structure with a particularly interesting computability-theoretic property
is found, it is natural to ask whether similar examples can be found within well-known
classes of algebraic structures, such as groups, rings, lattices, and so forth. As an
example, let us consider the computable dimension of computable structures, which
is a special case of the following deFnition. (Here and below, degree means Turing
degree.)

De�nition 1.2. Given a degree d, the d-computable dimension of a computably
presentable structure M is the number of computable presentations of M up to
d-computable isomorphism. If M has d-computable dimension 1 then it is d-computably
categorical.

For an ordinal �, 0�-computably categorical structures are usually called �0
�+1-

categorical structures. An equivalent deFnition of �0
�-categoricity, which also works

for limit ordinals �, is that a computably presentable structure is �0
�-categorical if any

two of its computable presentations are isomorphic via a �0
� isomorphism.

It is easy to construct computable structures with computable dimension 1 or !.
Indeed, most familiar structures, and even all members of many familiar classes of
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structures, have computable dimension 1 or !. For example, Nurtazin [34] showed
that all decidable structures fall into this category. Goncharov [8] later extended this
result to 1-decidable structures, and there have been several other well-known algebraic
classes of structures for which similar results have been proved.

Theorem 1.3. (Goncharov; Goncharov and Dzgoev; Metakides and Nerode; Nurtazin;
LaRoche; Remmel). All structures in each of the following classes have computable
dimension 1 or !: algebraically closed 7elds; real closed 7elds; Abelian groups; linear
orderings; Boolean algebras; and �0

2-categorical structures.

The result for algebraically closed and real closed Felds is implied by the results in
[34]; the result for algebraically closed Felds was also independently proved in [32].
The result for Abelian groups appears in [10], that for linear orderings independently
in [13] and [37], and that for �0

2-categorical structures in [11]. The result for Boolean
algebras appears in full in [12], though it is implicit in earlier work of Goncharov and,
independently, in [29].

In most cases, these results were proved via structure theorems, that is, theorems
that connect computability-theoretic properties of structures in the relevant classes to
their structural properties. For example, a linear ordering with Fnitely many pairs of
adjacent elements is computably categorical, while one with inFnitely many such pairs
has inFnite computable dimension. The methods in this paper can be seen as the
development of a nonstructure theory for computable model theory, in the same sense
that, for instance, the study of Borel completeness provides such a theory for descriptive
set theory. We will comment on this further below.

In light of results such as those mentioned above, an important question early in the
development of computable model theory was whether there exist computable structures
with Fnite computable dimension greater than 1. This question was answered positively
by Goncharov [9].

Theorem 1.4 (Goncharov). For each n¿0 there is a computable structure with com-
putable dimension n.

Further investigation led to examples of computable structures with Fnite computable
dimension greater than 1 in several classes of algebraic structures. In each case, the
proof consisted of coding families of computably enumerable (c.e.) sets with a Fnite
number of computable enumerations (up to a suitable notion of computable equivalence
of enumerations) in a suKciently e7ective way.

Theorem 1.5 (Goncharov; Goncharov, Molotov and Romanovskii, Kudinov). For each
n¿0 there are structures with computable dimension n in each of the following
classes: graphs; lattices; partial orderings; 2-step nilpotent groups; and integral do-
mains.

The results for partial orderings and (implicitly) graphs appear in [9], and the result
for lattices is an easy consequence of the results in that paper. The result for 2-step
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nilpotent groups (which improves a result in [10]) appears in [15], and that for integral
domains in [27].

We now turn to the other computability-theoretic properties of structures with which
this paper is concerned, and give examples of the kinds of results we would like to show
remain true when we restrict our attention to certain classes of algebraic structures. For
more thorough treatments of these and related results, see [24] or the articles in [6].

One way to understand the di7erences between noncomputably isomorphic com-
putable presentations of a structure M is to compare (from a computability-theoretic
point of view) the images in these presentations of additional relations on the domain
of M, that is, relations that are not the interpretation in M of relation symbols in the
language of M. The study of relations on computable structures began with the work
of Ash and Nerode [2], who were concerned with relations that maintain some degree
of e7ectiveness in di7erent computable presentations of a structure.

De�nition 1.6. Let U be a relation on the domain of a computable structure A and
let C be a class of relations. We say that U is intrinsically C on A if the image of
U in any computable presentation of A is in C.

A di7erent way to approach the study of relations on computable structures, intro-
duced by Harizanov and Millar, is to look at the degrees of the images of a relation
in di7erent computable presentations of a structure.

De�nition 1.7. Let U be a relation on the domain of a computable structure A. The
degree spectrum of U on A, which is denoted by DgSpA(U ), is the set of degrees
of the images of U in all computable presentations of A.

It is easy to give examples of relations on computable structures whose degree
spectra are singletons or inFnite. Harizanov [16] was the Frst to give an example of
an intrinsically �0

2 relation with a two-element degree spectrum that includes 0. This
was improved by Khoussainov and Shore [23] as follows.

Theorem 1.8 (Khoussainov and Shore). For each n¿0 there exists an intrinsically
c.e. relation U on the domain of a computable structure A of computable dimension
n such that DgSpA(U ) consists of n distinct c.e. degrees; including 0.

The n= 2 case of the above theorem is also due to Goncharov and Khoussainov
[14]. The following result was also proved in [23].

Theorem 1.9 (Khoussainov and Shore). For each computable partial ordering P

there exists an intrinsically c.e. relation U on the domain of a computable struc-
ture A such that (DgSpA(U );6T)∼=P. If P has a least element then we can pick
A and U so that 0∈DgSPA(U ).

Later, Hirschfeldt [18] and Khoussainov and Shore [25] independently obtained the
following strengthenings of the previous two theorems.
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Theorem 1.10 (Hirschfeldt; Khoussainov and Shore). Let a0; : : : ; an−1 be c.e. degrees.
There exists an intrinsically c.e. relation U on the domain of a computable structure
A of computable dimension n such that DgSpA(U ) = {a0; : : : ; an−1}.

Theorem 1.11 (Hirschfeldt). Let {Ai}i∈! be a uniformly c.e. collection of c.e. sets.
There exists an intrinsically c.e. relation U on the domain of a computable structure
A such that DgSpA(U ) = {deg(Ai) : i∈!}.

A related issue is the question of what happens to the computable dimension of a
computably categorical structure when it is expanded by Fnitely many constants. Millar
[33] showed that, with a relatively small additional amount of decidability, computable
categoricity is preserved under expansion by Fnitely many constants.

Theorem 1.12 (Millar). If A is computably categorical and 1-decidable then any ex-
pansion of A by 7nitely many constants remains computably categorical.

However, preservation of categoricity does not hold in general, as was shown by
Cholak, Goncharov, Khoussainov and Shore [4].

Theorem 1.13 (Cholak, Goncharov, Khoussainov and Shore). For each k¿0 there ex-
ist a computably categorical structure A and an a∈ |A| such that (A; a) has com-
putable dimension k.

In fact, as shown by Hirschfeldt, Khoussainov and Shore [19], not even Fniteness
of computable dimensionality is always preserved under expansion by a constant.

Theorem 1.14 (Hirschfeldt, Khoussainov and Shore). There are a computably cate-
gorical structure A and an a∈ |A| such that (A; a) has computable dimension !.

Another important topic in computable model theory is studying the complexity of
the isomorphisms between di7erent computable presentations of a structure. We say
that a computable structure is strictly �0

�-categorical if it is �0
�-categorical but not

�0
�-categorical for any �¡�. The following result was proved by Ash [1].

Theorem 1.15 (Ash). For each computable limit ordinal � (including �= 0) and each
n∈!; there is a strictly �0

�+2n-categorical well-ordering.

The work of computable model theory is not restricted to computable structures, of
course. When a countable structure is not computably presentable, it is of interest to
Fnd out just how far from being computably presentable it is. One way to measure
this is to look at the degrees of presentations of the structure.

De�nition 1.16. Let d be a degree. A structure A with computable domain is
d-computable if the atomic diagram of (A; a)a∈|A| is d-computable. The degree of
A, denoted by deg(A), is the least degree d (which always exists) such that A is
d-computable.
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An isomorphism from a structure M to a (d-computable) structure with computable
domain is called a (d-computable) presentation of M. We often abuse terminology and
refer to the image of a (d-computable) presentation as a (d-computable) presentation.
In particular, when we refer to the degree of a presentation, we always mean the
degree of the image, rather than that of the isomorphism. If M has a d-computable
presentation then it is d-computably presentable.

A countable structure M is relatively computably categorical if any two presenta-
tions M;M ′ of M are isomorphic via a (deg(M)∨ deg(M ′))-computable isomorphism.

Every countable structure is isomorphic to a structure with computable domain.
Therefore, whenever we mention a countable structure we assume that it has com-
putable domain, so that it may be thought of as a presentation of itself.

De�nition 1.17. The degree spectrum of a countable structure A, which is denoted by
DgSp(A), is the set of degrees of presentations of A.

As shown by Knight [26], in all nontrivial cases, the degree spectrum of a countable
structure is closed upwards.

De�nition 1.18. A countable structure A is trivial if for some Fnite set S of elements
of |A|, every permutation of |A| that keeps the elements of S Fxed is an automorphism
of A.

Theorem 1.19 (Knight). If A is a nontrivial countable structure then DgSp(A) is
closed upwards.

Trivial structures are not very interesting from the point of view of computable
model theory, and obviously cannot occur within certain classes of structures, such as
rings of characteristic 0. Thus we will restrict our attention to nontrivial structures.

Any set that is computable in every nonzero degree is in fact computable, but as
shown independently by Slaman [39] and Wehner [41], the analogous fact is not true
of structures.

Theorem 1.20 (Slaman; Wehner). There is a structure A that has presentations of
every degree except 0. (In other words; DgSp(A) =D − {0}; where D is the set of
all degrees.)

In the original proofs of Theorems 1.8–1.11, 1.13, and 1.14, the structures in question
were directed graphs, and the relations mentioned in Theorems 1.8–1.11 were unary.
The structures in the proofs of Theorem 1.20 had more complicated signatures, but
could easily be modiFed to be directed graphs (for instance, by the method outlined in
Appendix A). It is natural to ask, in the spirit of what was done for structures of Fnite
computable dimension, for which theories these theorems remain true if we require
that A be a model of the given theory. Our main result gives a partial answer to this
question.
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The following condition on a theory T is clearly suKcient for the theorems mentioned
in the previous paragraph, as well as other similar results, to remain true when we
restrict our attention to models of T .

De�nition 1.21. A theory T is complete with respect to degree spectra of nontrivial
structures, e<ective dimensions, expansion by constants, and degree spectra of rela-
tions if for every nontrivial countable graph G there is a nontrivial A �T with the
following properties.
1. DgSp(A) = DgSp(G).
2. If G is computably presentable then the following hold.

(a) For any degree d; A has the same d-computable dimension as G.
(b) If x∈ |G| then there exists an a ∈ |A| such that (A; a) has the same computable

dimension as (G; x).
(c) If S ⊆ |G| then there exists a U ⊆ |A| such that DgSpA(U ) = DgSpG(S) and if

S is intrinsically c.e. then so is U .

The terminology adopted in DeFnition 1.21 suggests that a theory satisfying this
deFnition should still satisfy it if “every nontrivial countable graph G” is replaced by
“every nontrivial countable structure G”. This is indeed the case, since it is not hard to
code a countable structure into a countable graph in a highly e7ective way. We give
such a coding in Appendix A.

We can now state our main result.

Theorem 1.22. Let T be any of the following theories: symmetric; irre=exive graphs;
partial orderings; lattices; rings (with zero-divisors); integral domains of arbitrary
characteristic; commutative semigroups; and 2-step nilpotent groups. Then T is com-
plete with respect to degree spectra of nontrivial structures; e<ective dimensions;
expansion by constants; and degree spectra of relations. In particular; Theorems 1:8–
1:11; 1:13–1:15; and 1:20 remain true if we require that A |=T . Furthermore;
Theorems 1:8–1:11 remain true if we also require that U be a submodel of A.

Notice that, by Theorem 1:3, this result cannot be extended from partial orderings
to linear orderings, from lattices to Boolean algebras, or from commutative semigroups
and 2-step nilpotent groups to Abelian groups. A natural open question is what is the
situation for Felds. It is not even known whether there exist Felds of Fnite computable
dimension greater than 1. Of course, some of the theorems mentioned in our main
result do not involve Fnite computable dimension, and thus could in principle still
hold for some of the classes mentioned in Theorem 1:3. For instance, in the case
of linear orderings, Hirschfeldt [17] has shown that Theorem 1.8 does not hold, but
whether Theorem 1.20 holds is still an open question (see [5] for a discussion of this
question).

The rest of this paper is dedicated to the proof of Theorem 1.22. Most of the cases
are handled by coding graphs with the desired properties into models of the given
theories in a way that is e7ective enough to preserve these properties. This approach
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is much simpler and more general than attempting to adapt the original proofs of the
relevant theorems. Furthermore, our codings are suKciently e7ective to make similar
results that might be proved for graphs in the future carry over to the classes of
structures mentioned in Theorem 1.22 without additional work.

As mentioned above, our results Ft into a framework that has become important
in several areas of mathematical logic and theoretical computer science, namely the
study of dichotomies between structure theory, represented here by results such as
Theorem 1:3, and nonstructure theorems, the latter often proved by coding structures
that are known to be “as complicated as possible” into the particular structures be-
ing studied. In model theory, interpretations of various kinds have long been used to
transfer model-theoretic properties from classes of structures in which they are easy to
determine to other classes in which they are less obvious. One example is Mekler [31].
In descriptive set theory, the study of Borel reducibilities and Borel completeness has
received much attention in recent years, for example in Friedman and Stanley [7],
Hjorth and Kechris [20], and Camerlo and Gao [3]. A recent survey is Kechris [22].
Another example of the use of codings to show that certain phenomena that can occur
in general already occur in what would seem to be a much more restricted setting
is the work of Peretyat’kin [35] on Fnitely axiomatizable theories, which touches on
both classical and computable model theory. Probably best-known of all, of course,
is the use of highly e7ective reducibilities in complexity theory to show that certain
problems are complete for various complexity classes, which is modeled on the use of
reducibilities to prove index set results in computability theory.

In all the examples mentioned above, uncovering the correct notions of reducibility
is essential. In Sections 2 and 4, we present suKcient conditions for a coding of a
graph into a structure to be e7ective enough for our purposes. These conditions will
be useful in all cases except that of nilpotent groups, in which, instead of coding
graphs, we code rings into nilpotent groups. Even in this case, the properties of the
coding that must be veriFed are very similar to those in our general conditions.

Section 3 deals with undirected graphs, partial orderings, and lattices, Section 4 with
rings, Section 5 with integral domains and commutative semigroups, and Section 6
with 2-step nilpotent groups.

2. A su�cient condition

In this section, we give a suKcient condition for a coding of a graph into a structure
to be e7ective enough for our purposes. This condition is far from being the most
general one we could give, but it is suKcient for our needs. It corresponds to an
especially e7ective version of interpretations of theories (in the standard model-theoretic
sense) in which equality is interpreted as equality. In Section 4, we will present a
generalization of this condition which corresponds to interpretations in which equality is
interpreted as an equivalence relation. (See Chapter 5 of [21] for more on interpretations
of theories.) We begin with a few deFnitions.
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De�nition 2.1. A relation U on a structure M is invariant if for every automorphism
f :M∼=M we have f(U ) =U .

De�nition 2.2. Let d be a degree. A d-computable de7ning family for a structure M is
a d-computable set of existential formulas ’0(̃a; x); ’1(̃a; x); : : : such that ã is a tuple of
elements of |M|, each x∈ |M| satisFes some ’i, and no two elements of |M| satisfy
the same ’i.

Because we will be dealing with arbitrary presentations, rather than only computable
ones, we will need to consider the relativized version of the notion of intrinsic com-
putability.

De�nition 2.3. A relation U on the domain of a structure A is relatively intrinsically
computable if for every presentation f :A∼=A, the image f(U ) is computable in
deg(A).

Now let G be a nontrivial, countable directed graph with edge relation E and let
A be a countable structure. Assume that there exist relatively intrinsically computable,
invariant relations D(x) and R(x; y) on the domain of A and a map G 	→AG from the
set of presentations of G to the set of presentations of A with the following properties.
(We will use the notation D(AG) instead of DAG to emphasize that we think of D(AG)
as a subset of |AG|.)
(P0) For every presentation G of G, the structure AG is deg(G)-computable.

(P1) For every presentation G of G there is a deg(G)-computable map gG :D(AG) 1–1→
onto

|G| such that RAG (x; y)⇔EG(gG(x); gG(y)) for every x; y ∈ D(AG).

(P2) If f :D(A) 1–1→
onto

D(A) is such that R(x; y)⇔R(f(x); f(y)) then f can be

extended to an automorphism of A.
(P3) For every presentation G of G there exists a deg(G)-computable deFning fam-

ily for (AG; b)b∈D(AG), that is, a deg(G)-computable set of existential formulas
’0(̃a; b̃0; x); ’1(̃a; b̃1; x); : : : such that ã is a tuple of elements of |AG|, each b̃i is a
tuple of elements of D(AG), each x∈ |AG| satisFes some ’i, and no two elements
of |AG| satisfy the same ’i.

We wish to show that the following hold.
1. DgSp(A) = DgSp(G).
2. If G is computably presentable then

(a) for any degree d, A has the same d-computable dimension as G;
(b) if x∈ |G| then there exists an a∈D(A) such that (A; a) has the same com-

putable dimension as (G; x); and
(c) if S ⊆ |G| then there exists a U ⊆D(A) such that DgSpA(U ) = DgSpG(S) and

if S is intrinsically c.e. then so is U .

Remark. We will use condition (P3) only for computable presentations, but all our
examples below satisfy (P3) as stated, and this fact could be useful for future results.
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We begin with a series of lemmas.

Lemma 2.4. Let A and G be computable presentations of A and G; respectively; and
let f :A∼=AG. Then f is deg(f �D(A))-computable.

Proof. It is enough to show that f−1 is deg(f�D(A))-computable. Given x∈ |AG|,
Fnd an i∈! such that AG �’i (̃a; b̃i; x), where ’i (̃a; b̃i; x) is as in (P3). By deFnition,
x is the only element of |AG| that satisFes ’i. Thus there exists a unique y∈ |A| such
that A �’i(f−1(̃a); f−1(̃bi); y), and f−1(x) =y. Since both AG and A are computable,
f−1 is deg(f �D(A))-computable.

Lemma 2.5. Let A and G be computable presentations of A and G; respectively.
Suppose that there exists a map f :D(A) 1–1→

onto
D(AG) such that RA(x; y) ⇔ RAG (f(x);

f(y)) for each x; y∈D(A). Then f can be extended to a deg(f)-computable isomor-
phism f̂ :A∼=AG.

Proof. Since A and AG are both presentations of A, there exists an isomorphism
h :A∼=AG. Let k = h �D(A). Then c=f ◦ k−1 is a one-to-one map from D(AG) onto
itself such that RAG (x; y)⇔RAG (c(x); c(y)) for each x; y∈D(AG). So, by (P2), c can
be extended to ĉ :AG

∼=AG. Now let f̂= ĉ ◦ h. Then f̂ :A∼=AG and f̂�D(A) =f ◦ k−1

◦ k =f. Lemma 2.4 implies that f̂ is deg(f)-computable.

Lemma 2.6. If G and G′ are computable presentations of G and h :G∼=G′ is an
isomorphism then there exists a deg(h)-computable isomorphism f̂ :AG

∼=AG′ such
that f̂ �D(AG) = g−1

G′ ◦ h ◦ gG.

Proof. Let f :D(AG) 1–1→
onto

D(AG′) be deFned by f= g−1
G′ ◦ h ◦ gG. Clearly, f is deg(h)-

computable. Furthermore, for each x; y∈D(AG) we have RAG (x; y)⇔EG(gG(x); gG(y))
⇔EG′

((h ◦ gG)(x); (h ◦ gG)(y)) ⇔ RAG′ (f(x); f(y)). So, by Lemma 2.5, there exists a
deg(h)-computable isomorphism f̂ :AG

∼=AG′ extending f.

For any presentation A of A, let G̃A be the graph whose domain is D(A), with
an edge between x and y if and only if RA(x; y). Clearly, there exist a deg(A)-
computable map hA and a deg(A)-computable graph GA such that hA : G̃A →GA is a
deg(A)-computable presentation of G̃A. If A is computable then we take GA = G̃A and
let hA be the identity. In any case, it is easy to check that GA is a deg(A)-computable
presentation of G.

Lemma 2.7. If A and A′ are computable presentations of A and f :A∼=A′ is an
isomorphism then f �D(A) is a deg(f)-computable isomorphism from GA to GA′ .

Proof. We have EGA(x; y)⇔RA(x; y)⇔RA′
(f(x); f(y))⇔EGA′ (f(x); f(y)). Since

|GA|=D(A) and |GA′ |=D(A′), it follows that f�D(A) is an isomorphism from GA

to GA′ .
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Lemma 2.8. If G is a computable presentation of G then gG is a computable isomor-
phism from GAG to G.

Proof. If x; y∈ |GAG | then EGAG (x; y)⇔RAG (x; y)⇔EG(gG(x); gG(y)). Thus gG is a
computable isomorphism from GAG to G.

Lemma 2.9. If A is a computable presentation of A then there exists a computable
isomorphism f :A∼=AGA such that f �D(A) = g−1

GA
◦ hA.

Proof. The map g−1
GA

◦ hA is computable, and for each x; y∈D(A) we have RA(x; y)⇔
EGA(x; y)⇔RAGA ((g−1

GA
◦ hA)(x); (g−1

GA
◦ hA)(y)). So, by Lemma 2.5, g−1

GA
◦ hA can be ex-

tended to a computable isomorphism from A to AGA .

We are now ready to show that 1 and 2a–c above hold.

Proposition 2.10. DgSp(A) = DgSp(G).

Proof. First note that, since G is nontrivial, (P1) implies that A is nontrivial. For any
presentation G of G, (P0) implies that deg(AG) 6 deg(G), so, by Theorem 1.19, there
is a presentation A of A such that deg(A) = deg(G). Thus DgSp(G)⊆DgSp(A).

On the other hand, for any presentation A of A, it follows from the deFnition of
GA that deg(GA) 6 deg(A), so, by Theorem 1.19, there is a presentation G of G such
that deg(G) = deg(A). Thus DgSp(A)⊆DgSp(G).

Now assume that G is computably presentable.

Proposition 2.11. For any degree d; A has the same d-computable dimension as G.

Proof. Let G and G′ be computable presentations of G that are not d-computably
isomorphic. By Lemma 2.8, GAG and GAG′ are not d-computably isomorphic. Thus,
by Lemma 2.7, AG and AG′ are not d-computably isomorphic. So the d-computable
dimension of A is greater than or equal to that of G.

Now let A and A′ be computable presentations of A that are not computably iso-
morphic. By Lemma 2.9, AGA and AGA′ are not d-computably isomorphic. Thus, by
Lemma 2.6, GA and GA′ are not d-computably isomorphic. So the d-computable di-
mension of G is greater than or equal to that of A.

Proposition 2.12. Let x∈ |G|. There exists an a∈D(A) such that (A; a) has the
same computable dimension as (G; x).

Proof. Let f :G∼=G be a computable presentation of G, let h :A∼=AG be an
isomorphism, and let a= (h−1 ◦ g−1

G ◦f)(x). By Lemma 2.6, for every computable
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presentation f′ :G∼=G′ of G there exists an isomorphism k :A∼=AG′ such that
a= (k−1 ◦ g−1

G′ ◦f′)(x). The rest of the proof is similar to the proof of Proposition 2.11.
Let (G; xG) and (G′; xG

′
) be computable presentations of (G; x) that are not com-

putably isomorphic. By Lemma 2.8, (GAG ; g
−1
G (xG)) and (GAG′ ; g

−1
G′ (xG

′
)) are not com-

putably isomorphic. Thus, by Lemma 2.7, (AG; g−1
G (xG)) and (AG′ ; g−1

G′ (xG
′
)) are not

computably isomorphic. So the computable dimension of (A; a) is greater than or equal
to that of (G; x).

Now let (A; aA) and (A′; aA
′
) be computable presentations of (A; a) that are not

computably isomorphic. By Lemma 2.9, (AGA ; g
−1
GA

(aA)) and (AGA′ ; g
−1
GA′

(aA
′
)) are not

computably isomorphic. Thus, by Lemma 2.6, (GA; aA) and (GA′ ; aA
′
) are not com-

putably isomorphic. So the computable dimension of (G; x) is greater than or equal to
that of (A; a).

Proposition 2.13. Let S ⊆ |G|. There exists a U ⊆D(A) such that DgSpA(U )
= DgSpG(S) and if S is intrinsically c.e. then so is U .

Proof. Let f :G∼=G be a computable presentation of G, let h :A∼=AG be an isomor-
phism, and let U = (h−1 ◦ g−1

G ◦f)(S).
Let f′ :G∼=G′ be a computable presentation of G. By Lemma 2.6, there exists an

isomorphism k :A∼=AG′ such that U = (k−1 ◦ g−1
G′ ◦f′)(S). Since gG′ is computable,

deg(f′(S)) = deg(k(U ))∈DgSpA(U ). So DgSpG(S)⊆DgSpA(U ).
Now let k :A∼=A be a computable presentation of A. We claim that there ex-

ists an isomorphism m :G∼=GA such that S = (m−1 ◦ k)(U ). Indeed, let f, G, and
h be as above. Then S = (f−1 ◦ gG ◦ h)(U ), so if we let m= k ◦ h−1 ◦ g−1

G ◦f then
(m−1 ◦ k)(U ) = (f−1 ◦ gG ◦ h ◦ k−1 ◦ k)(U ) = (f−1 ◦ gG ◦ h)(U ) = S. Furthermore, it is
not hard to check that m :G∼=GA. This establishes our claim, which implies that
deg(k(U )) = deg(m(S))∈DgSpG(S) and that if m(S) is c.e. then so is k(U ). So
DgSpA(U)⊆DgSpG(S), and if S is intrinsically c.e. then so is U .

We conclude from the previous four propositions that, given a theory T , if for
every nontrivial, countable directed graph G we can Fnd A �T and relations D and R
satisfying properties (P0)–(P3), then T is complete with respect to degree spectra of
nontrivial structures, e7ective dimensions, expansion by constants, and degree spectra
of relations. But it is not actually necessary that we be able to code every nontrivial
countable graph into a model of T , as long as we can code enough such graphs.

Proposition 2.14. Let T be a theory and let C be a theory of directed graphs that is
complete with respect to degree spectra of nontrivial structures; e<ective dimensions;
expansion by constants; and degree spectra of relations. If for every nontrivial count-
able G �C we can 7nd A �T and relatively intrinsically computable; invariant re-
lations D and R satisfying properties (P0)–(P3) then T is complete with respect to
degree spectra of nontrivial structures; e<ective dimensions; expansion by constants;
and degree spectra of relations.
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Fig. 1. A portion of HG .

3. Simple codings

Coding symmetric, irre9exive graphs into structures is usually easier than coding
arbitrary directed graphs. Thus we begin this section by showing that the theory of
symmetric, irre9exive graphs is complete with respect to degree spectra of nontrivial
structures, e7ective dimensions, expansion by constants, and degree spectra of relations.
We then show how to apply this result to partial orderings and lattices.

3.1. Undirected graphs

Let G be a countably inFnite directed graph with edge relation E. The deg(G)-
computably presentable symmetric, irre9exive graph HG = (|HG|; F) is deFned as fol-
lows. (Recall that it makes sense to talk of deg(G) because we think of any countable
structure as a presentation of itself.)
1. |HG|= {a; â; b}∪ {ci; di; ei : i∈ |G|}.
2. F(x; y) holds only in the following cases.

(a) F(a; â) and F(â; a).
(b) For all i∈ |G|,

(i) F(a; ci) and F(ci; a),
(ii) F(b; ei) and F(ei; b),
(iii) F(ci; di) and F(di; ci),
(iv) F(di; ei) and F(ei; di).

(c) If E(i; j) then F(ci; ej) and F(ej; ci).

As an example, Fig. 1 shows a portion of the graph HG in the case in which E(0; 1);
E(1; 0); E(1; 2); E(2; 2); ¬E(0; 0); ¬E(0; 2); ¬E(1; 1); ¬E(2; 0), and ¬E(2; 1). On the
left is HG itself; on the right is a picture highlighting the edges (and missing edges)
that are used to code E: edges that code positive facts about E are pictured as solid
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lines, missing edges that code negative facts about E are pictured as dotted lines, and
all other edges are pictured as dashed lines.

Let a; â; b, and ci be as in the deFnition of HG and deFne

D(x) = {x ∈ |HG| : x �= â ∧ F(a; x)} = {ci : i ∈ |G|}
and

R(x; y) = {(x; y) :D(x) ∧ D(y) ∧ ∃d; e(F(b; e) ∧ F(y; d) ∧ F(d; e) ∧ F(x; e))}:
Clearly, D is relatively intrinsically computable, and so is R, since, for x; y∈D(HG),

∃d; e(F(b; e) ∧ F(y; d) ∧ F(d; e) ∧ F(x; e))

⇔ ¬∃d; e(F(b; e) ∧ F(y; d) ∧ F(d; e) ∧ ¬F(x; e)):

To see that D and R are invariant, it is enough to notice that x= a is the only element
of HG that satisFes the formula

∃∞y(F(x; y)) ∧ ∃z(F(x; z) ∧ ∀w(F(w; z) → w = x));

x= â is the only element of HG that satisFes

F(x; a) ∧ ∀y(F(x; y) → y = a);

and x= b is the only element of HG that satisFes

∃∞y(F(x; y)) ∧ ¬F(a; x) ∧ ¬∃z(F(a; z) ∧ F(x; z)):

Fix a deg(G)-computable presentation of HG for which the map gG : ci 	→ i is deg(G)-
computable and identify HG with this presentation.

Let G′ be a presentation of G. The deg(G′)-computable symmetric, irre9exive graph
HG′ and the deg(G′)-computable map gG′ are deFned in an analogous way.

Clearly, HG′ ∼=HG, so HG′ is a deg(G′)-computable presentation of HG. Furthermore,
it is easy to check that D(HG′) = dom(gG′) and RHG′ (x; y) ⇔ EG′

(gG′(x); gG′(y)).

If f :D(HG) 1–1→
onto

D(HG) is such that R(x; y) ⇔ R(f(x); f(y)) then we can extend f

as follows. Let a; â; b; di, and ei be as in the deFnition of HG. Let f(a) = a; f(â) = â;
f(b) = b; f(di) =d(gG◦f)(ci), and f(ei) = e(gG◦f)(ci). It can be easily veriFed that this
extended map is an automorphism of HG.

Finally, let a; â, and b be as in the deFnition of HG and consider the deg(G)-
computable set of formulas

{x = a; x = â; x = b} ∪ {x = c : c ∈ D(HG)}
∪ {x �= a ∧ F(c; x) ∧ ¬F(b; x) : c ∈ D(HG)}
∪ {F(b; x) ∧ ∃d(F(c; d) ∧ F(d; x)) : c ∈ D(HG)}:

Clearly, every x∈ |HG| satisFes some formula in this set, with no two elements sat-
isfying the same formula, so this set is a deg(G)-computable deFning family for
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Fig. 2. A portion of PG .

(HG; z)z∈D(HG). For any presentation G′ of G, a deg(G′)-computable deFning family
for (HG′ ; z)z∈D(HG′ ) can be deFned in an analogous way.

Theorem 1.22 in the case of symmetric, irre9exive graphs now follows from
Proposition 2.14.

Theorem 3.1. The theory of symmetric; irre=exive graphs is complete with respect to
degree spectra of nontrivial structures; e<ective dimensions; expansion by constants;
and degree spectra of relations. In particular; Theorems 1:8–1:11; 1:13–1:15; and 1:20
remain true if we require that A be a symmetric; irre=exive graph.

Thus we may take the theory C in Proposition 2.14 to be the theory of symmetric,
irre9exive graphs.

3.2. Partial orderings

Let G be a symmetric, irre9exive, countably inFnite computable graph with edge
relation E. The deg(G)-computably presentable partial ordering PG = (|PG|;≺) is deFned
as follows.
1. |PG|= {a; b}∪ {ci : i∈ |G|} ∪ {di; j : i¡j ∧ i; j∈ |G|}.
2. The relation ≺ is the smallest transitive relation on |PG| satisfying the following

conditions.
(a) a≺ ci ≺ b for all i∈ |G|.
(b) If i¡j and E(i; j) then di; j ≺ ci; cj.
(c) If i; j∈ |G|; i¡j, and ¬E(i; j), then ci; cj ≺di; j.

As an example, Fig. 2 shows a portion of the partial ordering PG in the case in
which E(0; 1), E(1; 2), and ¬E(0; 2). An arrow from x to y represents the fact that
x≺y. The solid arrows represent facts used to code E.

Let a, b, and ci be as in the deFnition of PG and deFne

D(x) = {x ∈ |PG| : a ≺ x ≺ b} = {ci : i ∈ |G|}

and

R(x; y) = {(x; y) : x �= y ∧ D(x) ∧ D(y) ∧ ∃z �= a(z ≺ x; y)}:
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Clearly, D is relatively intrinsically computable and invariant, and so is R, since

∃z �= a(z ≺ x; y) ⇔ ¬∃z �= b(x; y ≺ z):

(Invariance follows from the fact that a is the only element of PG with inFnitely many
elements above it and b is the only element of PG with inFnitely many elements below
it.)

Fix a deg(G)-computable presentation of PG for which the map gG : ci 	→ i is deg(G)-
computable and identify PG with this presentation.

Let G′ be a presentation of G. The deg(G′)-computable partial ordering PG′ and the
deg(G′)-computable map gG′ are deFned in an analogous way.

Clearly, PG′ ∼= PG, so PG′ is a deg(G′)-computable presentation of PG. Furthermore,
it is easy to check that D(PG′) = dom(gG′) and RPG′ (x; y) ⇔ EG′

(gG′(x); gG′(y)).

If f : D(PG) 1–1→
onto

D(PG) is such that R(x; y) ⇔ R(f(x); f(y)) then we can extend f

as follows. Let a, b, and di; j be as in the deFnition of PG. Let f(a) = a, f(b) = b, and

f(di;j) =

{
d(gG◦f)(ci);(gG◦f)(cj) if (gG ◦ f)(ci) ¡ (gG ◦ f)(cj);

d(gG◦f)(cj);(gG◦f)(ci) otherwise:

It can be easily veriFed that this extended map is an automorphism of PG.
Finally, let a and b be as in the deFnition of PG and consider the deg(G)-computable

set of formulas

{x = a; x = b} ∪ {x = c : c ∈ D(PG)}

∪ {((x ≺ c; c′) ∨ (c; c′ ≺ x))

∧ x �= a ∧ x �= b : c �= c′ ∧ c; c′ ∈ D(PG)}:
Clearly, every x∈ |PG′ | satisFes some formula in this set, with no two elements sat-
isfying the same formula, so this set is a deg(G)-computable deFning family for
(PG; z)z∈D(PG). For any presentation G′ of G, a deg(G′)-computable deFning family
for (PG′ ; z)z∈D(PG′ ) can be deFned in an analogous way.

Theorem 1.22 in the case of partial orderings now follows from Proposition 2.14,
with the theory C mentioned in that proposition being the theory of symmetric, ir-
re9exive graphs.

Theorem 3.2. The theory of partial orderings is complete with respect to degree
spectra of nontrivial structures; e<ective dimensions; expansion by constants; and
degree spectra of relations. In particular; Theorems 1:8–1:11; 1:13–1:15; and 1:20
remain true if we require that A be a partial ordering.

3.3. Lattices

Let G be a symmetric, irre9exive, countably inFnite graph with edge relation E.
We may assume that G has at least one node that is not connected to any other
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Fig. 3. A portion of LG .

node, since the theory of graphs with this property is clearly complete with respect
to degree spectra of nontrivial structures, e7ective dimensions, expansion by constants,
and degree spectra of relations.

The deg(G)-computably presentable lattice LG = (|LG|;f;g) is the unique lattice sat-
isfying the following conditions.
1. |LG|= {a; b; k}∪ {ci; mi : i∈ |G|} ∪ {di; j : i¡j ∧ E(i; j)}.
2. For all x; y∈ |LG|, if x �=y then xgy= a and xfy= b, except as required to satisfy

the following conditions.
(a) If i¡j and E(i; j) then ci g cj =di; j.
(b) If i∈ |G| then k g ci =mi.

As an example, Fig. 3 shows a portion of the lattice LG in the case in which
E(0; 1); E(1; 2), and ¬E(0; 2). To simplify the picture, we omit the top element a and
the bottom element b of the lattice. The coding of E is done on the left side of the
picture, where d0;1 and d1;2 are.

Remark. It is interesting to note that LG has height 4. Clearly, any lattice of height
less than 4 is relatively computably categorical.

Let a, b, k, and ci be as in the deFnition of LG and deFne

D(x) = {x ∈ |LG| : (k g x �= a) ∧ (k g x �= x)} = {ci : i ∈ |G|}
and

R(x; y) = {(x; y) : (x �= y) ∧ D(x) ∧ D(y) ∧ (x g y �= a)}:
Clearly, D and R are relatively intrinsically computable. To see that they are also
invariant, it is enough to notice that, because of our assumption that G has an isolated
node, k is the only element of LG whose join with any level-2 element of LG is not a.

Fix a deg(G)-computable presentation of LG for which the map gG : ci 	→ i is deg(G)-
computable and identify LG with this presentation.

Let G′ be a presentation of G. The deg(G′)-computable lattice LG′ and the deg(G′)-
computable map gG′ are deFned in an analogous way.

Clearly, LG′ ∼= LG, so LG′ is a deg(G′)-computable presentation of LG. Furthermore,
it is easy to check that D(LG′) = dom(gG′) and RLG′ (x; y) ⇔ EG′

(gG′(x); gG′(y)).

If f : D(LG) 1–1→
onto

D(LG) is such that R(x; y) ⇔ R(f(x); f(y)) then we can extend f as

follows. Let a, b, k, mi, and di; j be as in the deFnition of LG. Let f(a) = a; f(b) = b;
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f(k) = k; f(mi) =m(gG◦f)(ci), and

f(di;j) =

{
d(gG◦f)(ci);(gG◦f)(cj) if (gG ◦ f)(ci)¡(gG ◦ f)(cj);

d(gG◦f)(cj);(gG◦f)(ci) otherwise:

It can be easily veriFed that this extended map is an automorphism of LG.
Finally, let a, b, and k be as in the deFnition of LG and consider the deg(G)-

computable set of formulas

{x = a; x = b; x = k} ∪ {x = c : c ∈ D(LG)}
∪ {c g c′ = x : (c; c′) ∈ RLG} ∪ {k g c = x : c ∈ D(LG)}:

Clearly, every x∈ |LG| satisFes some formula in this set, with no two elements sat-
isfying the same formula, so this set is a deg(G)-computable deFning family for
(LG; z)z∈D(LG). For any presentation G′ of G, a deg(G′)-computable deFning family
for (LG′ ; z)z∈D(LG′ ) can be deFned in an analogous way.

Since, for any computable presentation L of LG, the sublattice of L generated by any
subset S of D(L) has the same degree as S, and is c.e. if S is c.e., Theorem 1.22 in
the case of lattices now follows from Proposition 2.14, with the theory C mentioned
in that proposition being the theory of symmetric, irre9exive graphs with at least one
isolated node.

Theorem 3.3. The theory of lattices is complete with respect to degree spectra of
nontrivial structures; e<ective dimensions; expansion by constants; and degree spectra
of relations. In particular; Theorems 1:8–1:11; 1:13–1:15; and 1:20 remain true if we
require that A be a lattice. Furthermore; Theorems 1:8–1:11 remain true if we also
require that U be a sublattice of A.

4. A weaker su�cient condition and its application to rings

In this section we give a strengthening of Proposition 2.14 which will be used in the
next section, as well as an example of its application to rings. If Q is an equivalence
relation on a set D then by a set of Q-representatives we mean a set of elements of
D containing exactly one member of each Q-equivalence class.

Proposition 4.1. Let T be a theory and let C be a theory of directed graphs that is
complete with respect to degree spectra of nontrivial structures; e<ective dimensions;
expansion by constants; and degree spectra of relations. Suppose that for every non-
trivial countable G |=C we can 7nd an A |=T ; relatively intrinsically computable;
invariant relations D(x); Q(x; y); and R(x; y) on |A|; and a map G 	→AG from the
set of presentations of G to the set of presentations of A with the following proper-
ties.
(P0) For every presentation G of G; the structure AG is deg(G)-computable.
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(P1′) For every presentation G of G there is a deg(G)-computable map gG :D(AG) onto→
|G| such that; for all x; y∈D(AG); we have RAG (x; y) ⇔ EG(gG(x); gG(y)) and
QAG (x; y)⇔ (gG(x) = gG(y)). (Note that this implies that Q is an equivalence
relation and that if Q(x; x′) and Q(y; y′) then R(x; y)⇔R(x′; y′):)

(P2′) For every pair S; S ′ of sets of Q-representatives; if f : S 1–1→
onto

S ′ is such that

R(x; y)⇔R(f(x); f(y)) for every x; y∈ S then f can be extended to an auto-
morphism of A.

(P3′) If G is a presentation of G and S is a deg(G)-computable set of QAG -represen-
tatives then there exists a deg(G)-computable de7ning family for (AG; a)a∈S .

Then T is complete with respect to degree spectra of nontrivial structures; e<ective
dimensions; expansion by constants; and degree spectra of relations. Furthermore; in
each of Theorems 1:8–1:11 with the extra requirement that A |=T; the relation U
can be chosen so that U ⊆D(A) and Q(x; y)⇒ (U (x)⇔U (y)).

Proof. It is enough to show that if the nontrivial countable graph G |=C and the
model A |=T satisfy (P0) and (P1′)–(P3′) then Propositions 2.10–2:13 hold of G and
A and, in Proposition 2.13, U can be chosen so that Q(x; y)⇒ (U (x)⇔U (y)). The
argument is similar to what was done in Section 2, so we present only the necessary
changes. We begin with two remarks.

Remark 4.2. If G is a presentation of G and S is a set of QAG -representatives then
gG�S is one-to-one.

Remark 4.3. If S and S ′ are sets of Q-representatives and f : S 1–1→
onto

S ′ is such that

Q(x; f(x)) for every x∈ S then (P1′) implies that R(x; y)⇔R(f(x); f(y)) for every
x; y∈ S; so that, by (P2′), f can be extended to an automorphism of A.

We now need new versions of Lemmas 2.4 and 2.5.

Lemma 4.4. Let A and G be computable presentations of A and G; respectively; let
S be a computable set of QA-representatives; and let f :A∼=AG. Then f is deg(f�S)-
computable.

Lemma 4.5. Let A and G be computable presentations of A and G; respectively.
Let S be a computable set of QA-representatives and let S ′ be a computable set of
QAG -representatives. Suppose that there exists a map f : S 1–1→

onto
S ′ such that RA(x; y)⇔

RAG (f(x); f(y)) for each x; y∈ S. Then f can be extended to a deg(f)-computable
isomorphism f̂ :A∼=AG.

The proof of Lemma 4.4 is the same as that of Lemma 2.4, using (P3′) in place of
(P3). The proof of Lemma 4.5 is essentially the same as that of Lemma 2.5, with D(A)
replaced by S and D(AG) by S ′; and using (P2′) in place of (P2) and Lemma 4.4 in
place of Lemma 2.4. The only other change is that the isomorphism h :A∼=AG must be
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such that h(S) = S ′. The existence of such an isomorphism is an immediate consequence
of Remark 4.3.

We now need a few deFnitions. Let A be a presentation of A. Let

D̂(A) = {x ∈ D(A) :y ¡ x ⇒ ¬QA(x; y)};
where ¡ is the natural ordering on !. Notice that D̂(A) is a deg(A)-computable set
of QA-representatives. Let G̃A be the graph whose domain is D̂(A); with an edge
between x and y if and only if RA(x; y). Clearly, there exist a deg(A)-computable map
hA and a deg(A)-computable graph GA such that hA : G̃A →GA is a deg(A)-computable
presentation of G̃A. If A is computable then we take GA = G̃A and let hA be the identity.
For any presentation G of G; let ĝG = gG�D̂(AG). Note that, by Remark 4.2, ĝG is one-
to-one and hence invertible.

The following are the new versions of Lemmas 2.6–2.9.

Lemma 4.6. If G and G′ are computable presentations of G and h :G∼=G′ is an
isomorphism then there exists a deg(h)-computable isomorphism f̂ :AG

∼=AG′ such
that f̂�D̂(AG) = ĝ−1

G′ ◦ h ◦ ĝG.

Lemma 4.7. If A and A′ are computable presentations of A and f :A∼=A′ is an
isomorphism then there exists a map h :f(D̂(A)) 1–1→

onto
D̂(A′) such that h ◦ (f�D̂(A)) is

a deg(f)-computable isomorphism from GA to GA′ .

Lemma 4.8. If G is a computable presentation of G then ĝG is a computable isomor-
phism from GAG to G.

Lemma 4.9. If A is a computable presentation of A then there exists a computable
isomorphism f :A∼=AGA such that f�D̂(A) = ĝ−1

GA
◦ hA.

In most cases, the proofs of these lemmas are essentially the same as those of the
corresponding lemmas in Section 2, with a few obvious modiFcations. The only ex-
ception is Lemma 4.7, which can be proved as follows. For x∈f(D̂(A)); let h(x) be
the unique y∈ D̂(A′) such that QA′

(x; y). Then EGA(x; y)⇔RA(x; y)⇔RA′
(f(x); f(y))

⇔RA′
((h◦f)(x); (h◦f)(y))⇔EGA′ ((h◦f)(x); (h◦f)(y)). Thus h◦(f�D̂(A)) is a

deg(f)-computable isomorphism from GA to GA′ .
We can now prove Propositions 2.10–2.13 in much the same way as before, using

Lemmas 4.6–4.9 in place of Lemmas 2.6–2.9. The other necessary changes to the
proofs of these propositions are described below.

No other changes to the proofs of Propositions 2.10 and 2.11 are needed.
In establishing Proposition 2.12, the proof that the computable dimension of (A; a)

is at least the same as that of (G; x) is as before, with gG and gG′ replaced by ĝG and
ĝG′ ; respectively.

For the other direction, if (B; aB) and (B′; aB
′
) are computable presentations of

(A; a) that are not computably isomorphic then, by Lemma 4.5, there exist computable
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presentations (A; aA) and (A′; aA
′
) of (A; a) such that (A; aA) is computably isomorphic

to (B; aB); (A′; aA
′
) is computably isomorphic to (B′; aB

′
); aA ∈ D̂(A); and aA

′ ∈ D̂(A′).
Now the proof proceeds as before, with gGA and gGA′ replaced by ĝGA

and ĝGA′
; re-

spectively.
For the proof of Proposition 2.13, let f; G; and h be as in that proof and redeFne

U = {x∈D :∃y[Q(x; y)∧y∈ (h−1 ◦ ĝ−1
G ◦f)(S)]}. Notice that this deFnition guaran-

tees that Q(x; y)⇒ (U (x)⇔U (y)).
Now, by Lemma 4.6, for every computable presentation f′ :G∼=G′ of G there exists

an isomorphism k :A∼=AG′ such that

k(U ) = {x ∈ D(AG′) : ∃y[QAG′ (x; y) ∧ y ∈ (ĝ−1
G′ ◦ f′)(S)]}

= {x ∈ D(AG′) : ¬∃y[QAG′ (x; y) ∧ y ∈ (ĝ−1
G′ ◦ f′)(|G| − S)]};

which implies that DgSpG(S)⊆DgSpA(U ).
On the other hand, for every computable presentation k :A∼=A of A; Remark 4.3

implies that there exists an automorphism p :A∼=A such that (p ◦ h−1)(D̂(AG)) =
k−1(D̂(A)). It is not hard to check that m= k ◦p ◦ h−1 ◦ ĝ−1

G ◦f is an isomorphism
from G to GA; and that m(S) = k(U�k−1(D̂(A))). This implies that DgSpA(U )
⊆DgSpG(S) and that if S is intrinsically c.e. then so is U .

We now give a relatively simple example of the application of Proposition 4.1 to
rings, via a coding based on one due to Rabin and Scott [36].

Let G be a symmetric, irre9exive, countably inFnite graph with edge relation E. We
may assume that there exist x; y; z ∈G such that E(x; y); E(x; z); and E(y; z); since the
theory of graphs with this property is clearly complete with respect to degree spectra of
nontrivial structures, e7ective dimensions, expansion by constants, and degree spectra
of relations.

To simplify our notation, we will assume without loss of generality that |G|=!. (We
can do this because every inFnite d-computable structure is computably isomorphic to
a d-computable structure with domain !.) The deg(G)-computably presentable ring AG

is deFned as follows.
1. AG is generated by elements a; b; d; e; and ci; i∈!.
2. Multiplication is commutative.
3. AG has characteristic 0.
4. a2 = b2 = ab= ad= bd= ae= be= 0; e2 = a; and de=d3 = b.
5. For all i∈!; c2

i = a; aci = bci =dci = 0; and eci = b.
6. For all i; j∈!; if E(i; j) then cicj = b. (Notice that if E(i; j) then i �= j.)
7. For all i; j∈!; if i �= j and ¬E(i; j) then cicj = 0.

It is easy to check that AG satisFes the ring axioms, using the fact that each of its
elements is of the form

n0 + n1a + n2b + n3d + n4d2 + n5e +
p∑
i=0

ni+6ci; (4.1)

where p∈! and n0; : : : ; np+6 ∈Z.
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Let a; b; d; and e be as in the deFnition of AG and deFne

D(x) = {x ∈ |AG| : x2 = a ∧ dx = 0 ∧ ex = b};
R(x; y) = {(x; y) : D(x) ∧ D(y) ∧ xy = b};

and

Q(x; y) = {(x; y) : D(x) ∧ D(y) ∧ xy = a}:
Clearly, D; R; and Q are relatively intrinsically computable. We claim they are also

invariant. To see this, Fx an automorphism f of AG. Let P = {x∈ |AG| : x4 = 0} and
P2 = {y∈ |AG| :∃x∈P(x2 =y)}.

Let x be of the form (4.1). Since x4 is a sum of n4
0 and terms involving a; b; d; e;

or some ci; it follows that if x∈P then n0 = 0. Conversely, if n0 = 0 then

x2 =

(
n2

5 +
p∑
i=0

n2
i+6

)
a + 2

(
n3n4 + n3n5 + n5

p∑
i=0

ni+6

+
p∑
i=0

(∑
{j 6 p : EG′

(i; j)}ni+6nj+6

))
b + n2

3d
2; (4.2)

and hence x4 = 0; so x∈P if and only if n0 = 0. It will be clear from this fact that all
the elements that we consider below are in P.

We will need to consider several elements with square equal to a. It follows easily
from (4.2) that these are all of one of the forms n1a+ n2b+ n4d2 ± ci or n1a+ n2b+
n4d2 ± e. Note in particular that this means that if x2 = a then x3 = 0.

Eq. (4.2) also shows that every element of P2 is of the form ka + lb + md2; where
k; m∈! and l∈Z. Furthermore, if x∈P then x3 = n3

3b; so f(b) = lb for some l∈Z.
This is only possible if l=± 1. Since every element of P2 can be expressed as a
sum of nonnegative integer multiples of a and d2 and an integer multiple of b; and
P2 is invariant, it follows that every element of P2 can be expressed as a sum of
nonnegative integer multiples of f(a) and f(d2) and an integer multiple of f(b) =± b.
In particular, a and d2 can be so expressed. This means that if we write f(a) = ka +
lb + md2 then k; m61.

We will now show that f(a) = a. Let x be any element of the form (4.1) such
that x2 =f(a) = ka+ lb+md2; where k; m61. As mentioned above, for any y∈ |AG|;
if y2 = a then y3 = 0; so it must be the case that x3 = 0. Now, k = n2

5 +
∑p

i=0 n
2
i+6;

l= 2(n3n4 +n3n5 +n5
∑p

i=0 ni+6 +
∑p

i=0

∑
j6p:EG′ (i; j) ni+6nj+6); and m= n2

3. So if k = 0
then ni+6 = 0 for all i6p; which means that if at least one of l and m is nonzero
then n3 �= 0; and hence x3 �= 0. If k = 1 then either n5 =± 1 and ni+6 = 0 for all i6p;
or n5 = 0; ni+6 = ± 1 for some i6m; and nj+6 = 0 for all j �= i. Again, if at least one
of l and m is nonzero then n3 �= 0; and hence x3 �= 0. Since x3 = 0; this means that
l=m= 0; which implies that k = 1. In other words, f(a) = a.

We will now show that f(b) = b. Take i0; i1; and i2 such that E(i0; i1); E(i0; i2); and
E(i1; i2). For each j62; the fact that c2

ij = a implies that f(cij) is of one of the forms
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nj;1a+nj;2b+nj;4d2+”jci′j or nj;1a+nj;2b+nj;4d2+”je; where ”j =± 1. The second case
cannot happen for two di7erent j; k62; since then f(cij)f(cik ) =± a �= ± b=f(b) =
f(cij cik ). So we can assume without loss of generality that f(cij) is of the form
nj;1a + nj;2b + nj;4d2 + ”jci′j for j = 0; 1. Now, ci0ci1 = ci0ci2 = ci1ci2 ; so we must have
f(ci0 )f(ci1 ) =f(ci0 )f(ci2 ) =f(ci1 )f(ci2 ); which implies that ”0 = ”1 = ”2. This means
that f(b) =f(ci0 )f(ci1 ) = ci′0ci′1 . Since f(b) =± b and ci′0ci′1 �=−b; it follows that
f(b) = b.

We will now show that D; R; and Q are invariant. As in the case of a; if we write
f(d2) = ka+ lb+md2 then k; m61. But, since f(a) = a and f(b) = b; it follows that
k must equal 0; since otherwise we could not express d2 as a sum of nonnegative
integer multiples of f(a) and f(d2) and an integer multiple of f(b). This implies that
m= 1. If x2 =d2 + lb then x is of the form n1a + n2b±d + n4d2; so f(d) is of this
form. But f(d)3 = b; so f(d) is of the form n1a + n2b + d + n4d2. From this fact it
follows easily that f(d)x=dx for all x∈ |AG| such that x2 = a. Furthermore, e2 = a
and de= b; so f(e) must be of the form n1a + n2b + n4d2 + e; from which it follows
that f(e)x= ex for all x∈ |AG| such that x2 = a. This is enough to show that D; R;
and Q are invariant.

Fix a deg(G)-computable presentation of AG for which the map gG that sends ma+
nb + ci to i; for each m; n∈Z and i∈!; is deg(G)-computable, and identify AG with
this presentation.

Let G′ be a presentation of G. The deg(G′)-computable ring AG′ and the deg(G′)-
computable map gG′ are deFned in an analogous way.

Clearly, AG′ ∼=AG; so AG′ is a deg(G′)-computable presentation of AG. We claim
that D(AG′) = dom(gG′); RAG′ (x; y)⇔EG′

(gG′(x); gG′(y)); and QAG′ (x; y)⇔ gG′(x) =
gG′(y).

To avoid notational confusion, we verify this claim for G; the proof for G′ is anal-
ogous. Let a; b; d; e; and ci be as in the deFnition of AG. It is easy to check that
dom(gG)⊆D(AG). Now let x∈D(AG). As mentioned above, the fact that x2 = a im-
plies that x is of one of the forms n1a + n2b + n4d2 ± ci or n1a + n2b + n4d2 ± e.
The second case cannot happen, because e(n1a + n2b + n4d2 ± e) = ± e2 = ± a �= b;
so x= n1a + n2b + n4d2 ± ci. Since d(n1a + n2b + n4d2 ± ci) = n4b; it follows that
n4 = 0. Since ex= b; it follows that x= n1a + n2b + ci. This shows that D(AG) =
dom(gG).

Now suppose that x; y∈D(AG). Then, as we have seen in the previous paragraph,
for some i; j∈! and m; n; m′; n′ ∈Z; we have x=ma+nb+ci and y=m′a+n′+cj; and
hence xy= cicj. Thus RAG (x; y)⇔ xy= b⇔E(gG(x); gG(y)) and QAG (x; y)⇔ xy= a⇔
i= j⇔ gG(x) = gG(y).

To apply Proposition 4.1, we are left with showing that properties (P2′) and (P3′)
in the statement of that proposition are satisFed.

Let S and S ′ be sets of Q-representatives and let f : S 1–1→
onto

S ′ be such that R(x; y)⇔
R(f(x); f(y)). We can extend f as follows. Let a; b; d; e; and ci be as in the deFnition
of AG. Clearly, S = {m0a+n0b+c0; m1a+n1b+c1; : : :} for some m0; m1; : : : ; n0; n1; : : : ∈Z;
so given x∈ |AG|; we have x= k0 + k1a+ k2b+ k3d+ k4d2 + k5e+

∑p
i=0 ki+6si for some
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p∈!; k0; : : : ; kp+6 ∈Z; and s0; : : : ; sp ∈ S. Let

f(x) = k0 + k1a + k2b + k3d + k4d2 + k5e +
p∑
i=0

ki+6f(si):

It can be easily veriFed that this extended map is an automorphism of AG.
Finally, given a deg(G)-computable set S of QAG -representatives, let a; b; d; and

e be as in the deFnition of AG and let t0; t1; : : : be a deg(G)-computable list of all
terms generated by applying addition and multiplication to a; b; d; e; 1; −1; and the
elements of S. Consider the deg(G)-computable set of formulas {x= ti : i∈!}. Every
x∈ |AG| satisFes some formula in this set, with no two elements satisfying the same
formula, so this set is a deg(G)-computable deFning family for (AG; z)z∈D(AG). For any
presentation G′ of G; a deg(G′)-computable deFning family for (AG′ ; z)z∈D(AG′ ) can be
deFned in an analogous way.

It is straightforward to check that, for any computable presentation A of AG; if U is
a subset of D(A) such that Q(x; y)⇒ (U (x)⇔U (y)) then the subring of A generated
by U has the same degree as U; and is c.e. if U is c.e.. Thus Theorem 1.22 in the case
of rings of characteristic 0 follows from Proposition 4.1, with the theory C mentioned
in that proposition being the theory of symmetric, irre9exive graphs containing at least
one triangle.

Theorem 4.10. The theory of rings of characteristic 0 is complete with respect to
degree spectra of nontrivial structures; e<ective dimensions; expansion by constants;
and degree spectra of relations. In particular; Theorems 1:8–1:11; 1:13–1:15; and 1:20
remain true if we require that A be a ring of characteristic 0. Furthermore; Theorems
1:8–1:11 remain true if we also require that U be a subring of A.

5. Integral domains and commutative semigroups

In this section we present a coding of a graph into an integral domain inspired by
Kudinov’s coding [27] of a family of c.e. sets into an integral domain of characteristic 0;
and show how this leads to a proof of Theorem 1.22 in the case of integral domains of
arbitrary characteristic. Because our coding will not make use of the additive structure
of the domain, we will simultaneously handle the case of commutative semigroups.

Let p be either 0 or a prime. We adopt the convention that Z0 =Z. If p= 0 then
let F=Q; otherwise, let F=Zp. Let I be the set of invertible elements of Zp. Note
that I is Fnite.

The graphs constructed in Section 3.1 have the following property: for every Fnite set
of nodes S there exist nodes x; y =∈ S that are connected by an edge. Thus the theory of
such graphs is complete with respect to degree spectra of nontrivial structures, e7ective
dimensions, expansion by constants, and degree spectra of relations.

Let G be a symmetric, irre9exive, countably inFnite graph with edge relation E;
having the property mentioned in the previous paragraph. As in the previous section,
we assume without loss of generality that |G|=!.
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The deg(G)-computably presentable integral domain AG is deFned to be

Zp[xi : i ∈ !]
[

y
xixj

: E(i; j)
] [

z
xixj

: ¬E(i; j)
] [

y
xni

: i; n ∈ !
]
:

Note that, since G is irre9exive, z=x2
i is included as a generator for each i∈!.

It is easy to see that AG is deg(G)-computably presentable. In fact, if we Fx a
computable presentation P of the ring F(xi : i∈!)[y; z] then AG has an obvious deg(G)-
computable presentation induced from that of P. (Just take as the domain of this
presentation a deg(G)-computable copy of the set of all elements of P that can be
generated from the generators of AG.) In what follows, we will identify AG with this
presentation. We will also assume that we have chosen P so that the map gG : axi 	→ i;
a∈ I; is deg(G)-computable.

Let G′ be a presentation of G. The deg(G′)-computable integral domain AG′ and the
deg(G′)-computable map gG′ are deFned in an analogous way. Clearly, AG′ ∼=AG.

Let y and z be as in the deFnition of AG and deFne

D(x) = {x ∈ |AG| : x =∈ I ∧ ∃r(x2r = z)};
Q(x; x′) = {(x; x′) : D(x) ∧ ∃a ∈ I(x′ = ax)};

and

R(x; x′) = {(x; x′) : D(x) ∧ D(x′) ∧ ¬Q(x; x′) ∧ ∃r(rxx′ = y)}:
We will show that D; Q; and R are relatively intrinsically computable and invariant,
and satisfy properties (P1′)–(P3′) in the statement of Proposition 4.1.

Since AG is a subring of F(xi : i∈!)[y; z], it makes sense to talk of the degree in y
or z (in the algebraic sense) of an element r of AG. We will denote these by degy(r)
and degz(r), respectively. Let

Gen = {±1} ∪ {xi : i ∈ !} ∪
{

y
xixj

:E(i; j)
}
∪
{

z
xixj

:¬E(i; j)
}

∪
{

y
xni

: i; n ∈ !
}
:

It will be useful to think of elements of AG as sums of products of elements of Gen. (Of
course, such representations are not unique, but this will not matter for our purposes.)

Whenever we mention another ring B, such as Zp[xi; 1=xi : i∈!][y; z] or Zp[xi : i∈!],
for example, we will think of AG as a subring of B or of B as a subring of AG, as
appropriate. The relationships between such rings should be clear. For instance, if
degy(r) = degz(r) = 0 then r can be expressed as a sum of products of the generators
xi, i∈!, so that r is in the subring Zp[xi : i∈!] of AG. In this case, it makes sense
to talk of the degree in xi of r, denoted by degxi(r), for any i∈!. We will make
frequent use of these and similar facts. One ring that will be mentioned often is

M = Zp

[
xi;

1
xi

: i ∈ !
]

[y; z]:
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Lemma 5.1. The only invertible elements of AG are the elements of I .

Proof. If rs= 1 then degy(r) = degz(r) = 0, and hence r ∈Zp[xi : i∈!]. Clearly, the
only invertible elements of Zp[xi : i∈!] are the invertible elements of Zp.

Lemma 5.2. Let r; s∈ |AG|. Suppose that r2s= z and r =∈ I . Then r = axi for some
i∈! and a∈ I .

Proof. Clearly, degy(r) = degz(r) = 0. Since r =∈ I , it must be the case that r = xir0 + r1
for some i∈!, r0 ∈Zp[xk : k ∈!], r0 �= 0, and r1 ∈Zp[xk : k �= i].

Now, degy(s) = 0 and degz(s) = 1, so that, working in M , we can write s= (z=x2
i )s0+

(z=xi)s1 + s2, where s0 ∈Zp[xj : j �= i], s1 ∈Zp[xj; 1=xj : j �= i], and s2 ∈Zp[xj : j∈!]
[1=xj : j �= i][z].

We Frst show that r1 = 0. Assume for a contradiction that r1 �= 0. It is easy to check
that

x2
i z = x2

i r
2s = zr2

1s0 + xi(2zr0r1s0 + zr2
1s1) + x2

i t

for some t ∈Zp[xj : j∈!][1=xj : j �= i][z], and hence that zr2
1 s0 = xiu for some

u∈Zp [xj : j∈!][1=xj : j �= i][z]. Since degxi(zr
2
1 s0) = 0, it must be the case that s0 = 0.

Now xi(zr2
1 s1) = x2

i (z − t). Since degxi(zr
2
1 s1) = 0, it follows from this fact that s1 = 0.

But then s2 �= 0 and

x2
i r

2
0s2 = (xir0 + r1)2s2 − (2xir0r1 + r2

1)s2 = z − (2xir0r1 + r2
1)s2:

Since now

degxi(x
2
i r

2
0s2) = 2 degxi(r0) + degxi(s2) + 2

¿ degxi(r0) + degxi(s2) + 1 ¿ degxi(z − (2xir0r1 + r2
1)s2);

this is a contradiction. So in fact r1 = 0, and hence r = xir0.
We now show that r0 ∈ I . We have

x2
i r

2
0s2 = x2

i r
2
0s− (r2

0s0z + xir2
0s1z) = z − (r2

0s0z + xir2
0s1z):

Since s2 �= 0 implies that

degxi(x
2
i r

2
0s2) = 2 degxi(r0) + degxi(s2) + 2

¿ 2 degxi(r0) + 1 ¿ degxi(z − (r2
0s0z + xir2

0s1z));

it must be the case that s2 = 0. Now xir2
0 s1z = z − r2

0 s0z. Since s1 �= 0 implies that

degxi(xir
2
0s1z) = 2 degxi(r0) + 1 ¿ 2 degxi(r0) ¿ degxi(z − r2

0s0z);

it must be the case that s1 = 0. Thus s= (z=x2
i )s0. So z = x2

i r
2
0 (z=x2

i )s0 = r2
0 s0z, and hence

r0 ∈ I .
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Corollary 5.3. If we let G′ be a presentation of G and let x′i be the image of xi in AG′

then D(AG′) = {ax′i : i∈!∧ a∈ I}. Furthermore; D and Q are relatively intrinsically
computable.

Proof. The Frst statement follows immediately from Lemma 5.2; we prove the second.
It is enough to show that D is relatively intrinsically computable.

Let A be a presentation of AG. We want to show that D(A) is deg(A)-computable.
Abusing notation, we refer to the images of y and z in A as y and z, respectively.
Let D̂(A) be as in Section 4. Since I is Fnite and x∈D(A)⇔∃a∈ I(ax∈ D̂(A)), it is
enough to show that D̂(A) is deg(A)-computable.

Clearly, D̂(A) is deg(A)-c.e., and hence so is the set

GenA = D̂(A)∪{r ∈ |A| :∃x; x′ ∈ D̂(A)(∃n ∈ !(xx′r = y∨xx′r = z ∨ xnr = y))}:

Given x∈ |A|, we can write x as a sum of products of elements of GenA, and hence
deg(A)-computably determine degy(x) and degz(x). If it is not the case that degy(x)
= degz(x) = 0 then x =∈ D̂(A). Otherwise, x is a polynomial over the elements of D̂(A)
with coeKcients in Zp, and checking whether a polynomial over a linearly independent
deg(A)-c.e. set is an element of that set can be done deg(A)-computably.

Lemma 5.4. If i �= j and ¬E(i; j) then there is no r ∈ |AG| such that rxixj =y.
Similarly; if E(i; j) then there is no r ∈ |AG| such that rxixj = z.

Proof. The proofs of both statements are similar; we prove the Frst.
Assume for a contradiction that, for some i �= j∈! and r ∈ |AG|, we have ¬E(i; j) and

xixjr =y. We work in the ring M . Since degy(r) = 1 and degz(r) = 0, thinking of r as a
sum of products of elements of Gen, we see that we can write r = (y=xi)r0 +(y=xj)r1 +
r2, where r0 ∈Zp[xk : k �= i][1=xk : k �= j], r1 ∈Zp[xk : k �= j][1=xk : k �= i], and r2 ∈Zp[xk :
k ∈!][1=xk : k �= i; j][y].

Let n∈! be such that xni r0; x
n
j r2 ∈Zp[xk : k ∈!][1=xk : k �= i; j]. Then

(xixj)n+1r2 = (xixj)ny − (xni x
n+1
j r0y + xn+1

i xnj r1y):

Since degxi(x
n
i x

n+1
j r0y), degxj (x

n+1
i xnj r1y), and degxi((xixj)

ny) are all less than or equal
to n, and r2 ∈Zp[xk : k ∈!][1=xk : k �= i; j][y], it must be the case that r2 = 0.

Now

(xixj)ny = xni x
n+1
j r0y + xn+1

i xnj r1y:

But

r0 �= 0 ⇒ degxi(x
n
i x

n+1
j r0y) 6 n ∧ degxj (x

n
i x

n+1
j r0y) ¿ n

and

r1 �= 0 ⇒ degxi(x
n+1
i xnj r1y) ¿ n ∧ degxj (x

n+1
i xnj r1y) 6 n:
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Since we cannot have r0 = r1 = 0, this means that at least one of degxi(x
n
i x

n+1
j r0y +

xn+1
i xnj r1y) and degxj (x

n
i x

n+1
j r0y + xn+1

i xnj r1y) is greater than n. But degxi((xixj)
ny)

= degxj ((xixj)
ny) = n, so this is a contradiction.

Corollary 5.5. We have

R = {(x; x̂) :D(x) ∧ D(x̂) ∧ ¬Q(x; x̂) ∧ ∃r(rxx̂ = y)}

= {(x; x̂) :D(x) ∧ D(x̂) ∧ ¬∃r(rxx̂ = z)};

and hence R is relatively intrinsically computable. Furthermore; if we let G′ be a
presentation of G and let x′i be the image of xi in AG′ then

RAG′ = {(ax′i ; bx
′
j) :EG′

(i; j) ∧ a; b ∈ I}:

We now need to show that D, Q, and R are invariant. Fix an automorphism f :AG ∼=
AG. We will show that f(D) =D, f(Q) =Q, and f(R) =R.

Lemma 5.6. Suppose that i∈! and f(xi) = rs for some r; s∈ |AG|. Then either r ∈ I
or s∈ I .

Proof. Since f(I) = I and xi =f−1(r)f−1(s), it is enough to show that if xi = r′s′ for
some r′; s′ ∈ |AG| then either r′ ∈ I or s′ ∈ I . But this follows easily from the fact that if
xi = r′s′ then degy(r′) = degz(r

′) = degy(s′) = degz(s
′) = 0, so that r′; s′ ∈Zp[xj : j∈!].

Lemma 5.7. We have f(D) =D; which implies that f(Q) =Q.

Proof. It is enough to show that f(D)⊆D. Since f is an arbitrary automorphism of
AG, the same proof will show that f−1(D)⊆D, and hence that D⊆f(D).

Let i∈!. Let n= degy(f(y)) and let r =f(y=xn+1
i ). Then f(xi)n+1r =f(y), and

hence n= degy(f(y))¿degy(f(xi)n+1) = (n+ 1) degy(f(xi)). Thus it must be the case
that degy(f(xi)) = 0. A similar argument shows that degz(f(xi)) = 0. Since f(xi) =∈ I ,
this means that f(xi) = xjs0 + s1 for some j∈!, s0 ∈Zp[xl : l∈!], s0 �= 0, and s1∈Zp
[xl : l �= j].

Let k be such that xkj f(y)∈Zp[xl : l∈!][1=xl : l �= j][y; z] and let n= degxj (x
k
j f(y))

+ 1. For some r ∈ |AG|, we have xkj f(xi)nr = xkj f(y). Working in M , we can write

r =
1

xk+1
j

r0 +
1
xkj

r1 + · · · + rk+1;

where r0 ∈Zp[xl : l �= j][1=xl : l∈!][y; z], r1; : : : ; rk ∈Zp[xl; 1=xl : l �= j][y; z], and rk+1

∈Zp[xl : l∈!][1=xl : l �= j][y; z].
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Now

xkj (xjs0 + s1)nrk+1 = xkj (xjs0 + s1)nr − xkj (xjs0 + s1)n(r − rk+1)

= xkj f(y) −
(
xkj (xjs0 + s1)n

(
1

xk+1
j

r0 +
1
xkj

r1 + · · · +
1
xj
rk

))
:

But it is easy to check that if rk+1 �= 0 then

degxj (x
k
j (xjs0 + s1)nrk+1)

= n degxj (s0) + degxj (rk+1) + k + n

¿ n degxj (s0) + k + n− 1

¿ degxj

(
xkj f(y) −

(
xkj (xjs0 + s1)n

(
1

xk+1
j

r0 +
1
xkj

r1 + · · · +
1
xj
rk

)))
:

It follows that rk+1 = 0.
It is not hard to see that we may now repeat the above argument with k in place of

k + 1 (assuming k¿0). Proceeding in this fashion, we see that r1 = · · · = rk+1 = 0.
So

sn1r0

xj
= xkj (xjs0 + s1)n

1

xk+1
j

r0 − xkj ((xjs0 + s1)n − sn1)
1

xk+1
j

r0

= xkj f(y) − ((xjs0 + s1)n − sn1)
1
xj
r0:

But sn1 r0 ∈Zp[xl : l �= j][1=xl : l∈!][y; z], which implies that either sn1 r0 = 0 or sn1 r0=xj =∈
Zp[xl : l∈!][1=xl : l �= j][y; z]. Since

xkj f(y) − ((xjs0 + s1)n − sn1)
1
xj
r0 ∈Zp[xl : l ∈ !]

[
1
xl

: l �= j
]

[y; z];

it must be the case that sn1 r0 = 0. Since r �= 0, we conclude that s1 = 0.
Thus f(xi) = s0 xj. By Lemma 5.6, s0 ∈ I .

Corollary 5.8. f(Zp[xi : i∈!]) =Zp[xi : i∈!].

Lemma 5.9. Let r ∈ |AG| be such that r �= 0; degy(r) = 0; and degz(r)6n. For all i∈!;
we have x2n+1

i r =∈Zp[xj; 1=xj : j �= i][y; z].

Proof. We work in the ring M . Let i∈!. We think of r as a sum of products of ele-
ments of Gen. Each term t in this sum can be written as (zm=x2m

i )s, where m6n and
s∈Zp[xj : j∈!][1=xj : j �= i]. So x2n+1

i t = xiu for some u∈Zp[xj : j∈!][1=xj : j �= i][z].
Thus x2n+1

i r = xiv for some v∈Zp[xj : j∈!][1=xj : j �= i][z], and hence x2n+1
i r =∈Zp

[xj; 1=xj : j �= i][y; z].
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Lemma 5.10. degy(f(y)) = 1 and degz(f(y)) = 0.

Proof. Let i∈! be such that f(y)∈Zp[xj; 1=xj : j �= i][y; z]. Working in M , we can
write f(y) =ys0 + s1, where s0 ∈ |M |, s1 ∈ |AG|, and degy(s1) = 0. Let n= degz(s1).

By Lemma 5.7, there exists an r ∈ |AG| such that x2n+1
i r =f(y) =ys0 + s1. We can

write r =yr0 + r1, where r0 ∈ |M |, r1 ∈ |AG|, and degy(r1) = 0. Now x2n+1
i r1 = s1. Since

degz(r1) = degz(s1) = n, it follows from Lemma 5.9 that either r1 = 0 or s1 =∈Zp[xj; 1=xj :
j �= i][y; z]. But the latter possibility would imply that f(y) =∈Zp[xj; 1=xj : j �= i][y; z],
contradicting our choice of i. So r1 = 0, and hence s1 = 0.

Thus f(y) =ys0. A similar argument shows that degy(f−1(y))¿1. We now need
to show that degy(s0) = degz(s0) = 0.

Let t ∈Zp[xj : j∈!] be such that ts0 ∈Zp[xj : j∈!][y; z]. Then

f−1(t)y = f−1(tf(y)) = f−1(ts0y) = f−1(ts0)f−1(y):

By Corollary 5.8, f−1(t)∈Zp[xj : j∈!], which means that degy(f−1(t)y) = 1 and
degz(f

−1(t)y) = 0. Since degy(f−1(y))¿1, this means that f−1(ts0)∈Zp[xj : j∈!].
By Corollary 5.8, ts0 ∈Zp[xj : j∈!]. So degy(s0) = degz(s0) = 0.

Lemma 5.11. f(y) = ty for some t ∈ |AG|.

Proof. Let i; j; i′; j′ ∈! be such that i �= j, f(xi′) = axi and f(xj′) = bxj for some
a; b∈I , f(y)∈Zp[xk ; 1=xk : k �= i; j][y; z], and E(i′; j′). Such numbers exist by
Lemma 5.7 and the assumption about G that we made at the beginning of this section.

Let r =f(aby=x′i x
′
j). Then xixjr =f(y). By Lemma 5.10, degy(f(y)) = 1 and degz

(f(y)) = 0, and hence degy(r) = 1 and degz(r) = 0. Working in M and thinking of r
as a sum of products of elements of Gen, we see that we can write

r = yr0 +
y
xi
r1 +

y
xj
r2 +

y
xixj

r3 + r4;

where r0 ∈Zp[xk : k ∈!][1=xk : k �= i; j], r1 ∈Zp[xk : k �= i][1=xk : k �= j], r2 ∈Zp[xk : k �= j]
[1=xk : k �= i], and r3; r4 ∈Zp[xk : k �= i; j].

Let n∈! be such that xni r1; x
n
j r2 ∈Zp[xk : k ∈!][1=xk : k �= i; j]. Then

(xixj)n+1r0y + (xixj)n+1r4 = (xixj)nf(y) − (xni x
n+1
j r1y + xn+1

i xnj r2y + (xixj)nr3y):

Now, degxi(x
n
i x

n+1
j r1y), degxj (x

n+1
i xnj r2y), degxi((xixj)

nr3y), and degxi((xixj)
nf(y)) are

all less than or equal to n. Furthermore, r0; r4 ∈Zp[xk : k ∈!][1=xk : k �= i; j] and degy
((xixj)n+1r4) = 0. So it must be the case that r0 = r4 = 0.

Now

(xixj)nf(y) − (xixj)nr3y = xni x
n+1
j r1y + xn+1

i xnj r2y:

But

r1 �= 0 ⇒ degxi(x
n
i x

n+1
j r1y) 6 n ∧ degxj (x

n
i x

n+1
j r1y) ¿ n
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and

r2 �= 0 ⇒ degxi(x
n+1
i xnj r2y) ¿ n ∧ degxj (x

n+1
i xnj r2y) 6 n;

which means that either r1 = r2 = 0 or at least one of degxi(x
n
i x

n+1
j r1y+xn+1

i xnj r2y) and
degxj (x

n
i x

n+1
j r1y + xn+1

i xnj r2y) is greater than n. Since

degxi((xixj)
nf(y) − (xixj)nr3y); degxj ((xixj)

nf(y) − (xixj)nr3y) 6 n;

it must be the case that r1 = r2 = 0. Thus f(y) = xixj(y=xixj)r3 =yr3. Since r3 ∈ |AG|,
we are done.

Corollary 5.12. If ∃r(xixjr =y) then ∃r(xixjr =f(y)).

Lemma 5.13. f(R) =R.

Proof. It is enough to show that R⊆f(R). Since f is an arbitrary automorphism of
AG, the same proof will show that R⊆f−1(R), and hence that f(R)⊆R.

By Corollaries 5.5 and 5.12, R(xi; xj)⇒∃r(xixjr =y)⇒∃r(xixjr =f(y))⇒R(f(xi);
f(xj)).

Since f is an arbitrary automorphism of AG, Lemmas 5.7 and 5.13 imply the fol-
lowing result.

Lemma 5.14. The relations D; Q; and R are invariant.

To apply Proposition 4.1, we are left with showing that properties (P2′) and (P3′)
in the statement of that proposition are satisFed.

Lemma 5.15. For every pair S; S ′ of sets of Q-representatives; if f : S 1–1→
onto

S ′ is such

that R(x; y)⇔R(f(x); f(y)) for every x; y∈ S then f can be extended to an auto-
morphism of AG.

Proof. Let y, z, and xi be as in the deFnition of AG. A set of Q-representatives contains
one element of the form axi, a∈ I , for each i∈!, and it contains no other elements.
So there exist sequences a0; a1; : : : ∈ I and b0; b1; : : : ∈ I such that S = {a0x0; a1x1; : : :}
and S ′ = {b0x0; b1x1; : : :}. Thus, for some permutation 8 of !, f : aixi 	→ b8(i)x8(i).

Now R(xi; xj)⇔R(x8(i); x8(j)) for all i; j∈!. So it is clear from what we have previ-
ously done that the map xi 	→ x8(i) can be extended to an automorphism of AG. Thus it is
enough to show that the map aixi 	→ b8(i)xi, or equivalently, the map h : xi 	→ (b8(i)=ai)xi,
can be extended to an automorphism of AG. But h can clearly be extended to an auto-
morphism of F(xi : i∈!)[y; z] that Fxes y and z. Since (b8(i)=ai)∈ I , this automorphism
restricts to an automorphism of AG.
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Lemma 5.16. For every presentation G′ of G and every deg(G′)-computable set
S of QAG′ -representatives; there exists a deg(G′)-computable de7ning family for
(AG′ ; a)a∈S .

Proof. We let S be a deg(G)-computable set of QAG -representatives and construct
a deg(G)-computable deFning family for (AG; a)a∈S . An analogous construction can be
performed for G′.

Let y; z, and xi be as in the deFnition of AG. As mentioned in the proof of the
previous lemma, S = {a0x0; a1x1; : : :} for some sequence a0; a1; : : :∈ I . Let si = aixi and
consider the sets

Gen′ = {±1} ∪ {si : i ∈ !} ∪
{

y
sisj

: E(i; j)
}
∪
{

z
sisj

:¬E(i; j)
}

∪
{
y
sni

: i; n ∈ !
}

and

Gen′k = {±1} ∪ {si : i 6 k} ∪
{

y
sisj

: E(i; j) ∧ i; j 6 k
}

∪
{

z
sisj

: ¬E(i; j) ∧ i; j 6 k
}
∪
{
y
sni

: i; n6 k
}
:

For each i; j; n∈!, let the formula ’i; j; n over the language of rings with additional
constants y; z; s0; s1; : : : be deFned by

’i;j;n =

{
sisjui;j = y ∧ sni vi;n = y if E(i; j);

sisjui;j = z ∧ sni vi;n = y if ¬E(i; j):

(Here ui; j and vi; n are the free variables of ’i; j; n.) For each sum t of products of
elements of Gen′, let t′ be the result of substituting all occurrences of y=sisj or z=sisj
in t by ui; j, and all occurrences of y=sni by vi; n. Let k be the least number such that t
is a sum of products of elements of Gen′k and let t̂ be the formula

∃u0;0; v0;0; : : : ; u0;k ; v0;k ; : : : ; uk;0; vk;0; : : : ; uk;k ; vk;k


t′ ∧

∧
i;j;n6k

’i;j;n


 :

Let t0; t1; : : : be a deg(G)-computable list of all sums of products of elements of
Gen′. Since each si is a product of xi with an element of I , each element of AG is
equal to ti for some i∈!. It follows easily that {t̂ i : i∈!} is a deFning family for
(AG; a)a∈S .

Lemmas 5:3 and 5.14–5.16 and Corollary 5.5 are enough to enable us to apply
Proposition 4.1. It is straightforward to check that, for any computable presentation
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A of AG, if U is a subset of D(A) such that Q(x; y)⇒ (U (x)⇔U (y)) then the subring
of A generated by U has the same degree as U , and is c.e. if U is c.e.. This establishes
Theorem 1.22 in the case of integral domains of arbitrary characteristic.

Theorem 5.17. Let p be either 0 or a prime. The theory of integral domains of char-
acteristic p is complete with respect to degree spectra of nontrivial structures; e<ec-
tive dimensions; expansion by constants; and degree spectra of relations. In particular;
Theorems 1:8–1:11; 1:13–1:15; and 1:20 remain true if we require that A be an inte-
gral domains of characteristic p. Furthermore; Theorems 1:8–1:11 remain true if we
also require that U be a subring of A.

Now consider the commutative semigroup generated (multiplicatively) by the ele-
ments of Gen. Let

D(x) = {x ∈ |AG| : ∃r(x2r = z)};

Q(x; x′) = {(x; x′) : D(x) ∧ x′ = x};

and

R(x; x′) = {(x; x′) : D(x) ∧ D(x′) ∧ x �= x′ ∧ ∃r(rxx′ = y)}:

It is not hard to check that Proposition 4.1 applies in this case, with essentially the
same proof as above. (Though, of course, many of the details could be simpliFed in
this case.) This establishes Theorem 1.22 in the case of commutative semigroups.

Theorem 5.18. The theory of commutative semigroups is complete with respect to de-
gree spectra of nontrivial structures; e<ective dimensions; expansion by constants; and
degree spectra of relations. In particular; Theorems 1:8–1:11; 1:13–1:15; and 1:20 re-
main true if we require that A be a commutative semigroup. Furthermore;
Theorems 1:8–1:11 remain true if we also require that U be a subsemigroup of A.

6. Nilpotent groups

In this section, we prove Theorem 1.22 in the case of 2-step nilpotent groups. Much
of the proof consists of verifying the e7ectiveness of a coding of rings into groups
due to Mal’cev [30]. Combined with the results of Section 5, this will enable us to
provide analogs of Lemmas 2.6–2.9, which can then be used to establish analogs of
Propositions 2.10–2.13.

We recall the following deFnitions from the theory of groups.

De�nition 6.1. Let G be a group. The center of G is the set {x∈ |G| :∀y∈ |G|(xy=
yx)}. The commutator [x; y] of x; y∈ |G| is the element xyx−1y−1. The group G is
2-step nilpotent if [x; y] is in the center of G for every pair of elements x; y∈ |G|.
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(A group is 1-step nilpotent if and only if it is Abelian. For the more general deFnition
of n-step nilpotent groups, see any standard textbook on group theory, such as [38].)

Let R= (|R|;+; ·; 0; 1) be a countably inFnite ring with unit of characteristic p¿2.
The deg(R)-computably presentable group GR is deFned to be the set of all triples
(a; b; c); a; b; c∈ |R|, with multiplication given by the formula

(a; b; c)(x; y; z) = (a + x; b + y; b · x + c + z):

It is easy to check that this multiplication is associative, that the triple e= (0; 0; 0) is
the identity element for it, and that (a; b; c)−1 = (−a;−b; b · a− c). Note that the center
of GR consists of all elements of the form (0; 0; c).

Fix a deg(R)-computable presentation of GR for which the map gR : (0; 0; c) 	→ c is
deg(R)-computable and identify GR with this presentation. For any presentation R′ of
R, the deg(R′)-computable group GR′ and the deg(R′)-computable map gR′ are deFned
in an analogous way.

Remark. The above deFnition also works for nonassociative rings. When R is asso-
ciative, GR can be represented as the group of upper triangular 3× 3 matrices via the
isomorphism

(a; b; c) 	→




1 b c

0 1 a

0 0 1


 ;

a; b; c∈ |R|, in which form GR is known as the Heisenberg group of R.

We begin by establishing an analog of Lemma 2.6. Let the relation D on |GR| be
deFned by

D(x) ⇔ x is in the center of GR:

Lemma 6.2. If h :R∼=R′ is an isomorphism then there exists a deg(h)-computable
isomorphism f :GR

∼=GR′ such that f �D(GR) = g−1
R′ ◦ h ◦ gR.

Proof. It is easy to check that f((a; b; c)) = (h(a); h(b); h(c)) is the desired isomor-
phism.

Let us now consider the following properties of an expanded group (G; a1; a2), in-
troduced in [30].
(G1) G is 2-step nilpotent.
(G2) The subsets

Ci = {x ∈ |G| : xai = aix}; i = 1; 2;

are Abelian subgroups of G.
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(G3) The intersection of C1 and C2 is exactly the center Z of G.
(G4) For each pair z1; z2 ∈Z there exists an h(z1; z2)∈ |G| such that

[a1; h(z1; z2)] = z1 and [a2; h(z1; z2)] = z2:

(G5) There exist isomorphisms fi :Z∼=Ci ; i= 1; 2, such that f1([a2; a1]) = a1; f2([a2;
a1]) = a−1

2 , and [a2; f1(z)] = [a1; f2(z)] = z for all z ∈Z.
Let

a1 = (1; 0; 0) ∈ |GR|; a2 = (0; 1; 0) ∈ |GR|:

Lemma 6.3. (GR; a1; a2) satis7es (G1)–(G4).

Proof. Let Z be the center of GR and let Ci = {x∈ |GR| : xai = aix}; i= 1; 2.
Direct computation shows that C1 consists of all triples of the form (a; 0; c); C2

consists of all triples of the form (0; b; c), and Z consists of all triples of the form
(0; 0; c), so GR satisFes (G3).

Since

(a; b; c)(x; y; z)(a; b; c)−1(x; y; z)−1 = (0; 0; b · x − y · a) ∈ Z;

GR satisFes (G1).
It can be easily checked that for all a; b; c; x; y; z ∈ |R| we have (a; 0; c)(x; 0; y) =

(x; 0; y)(a; 0; c) and (0; b; c)(0; y; z) = (0; y; z)(0; b; c), so GR satisFes (G2).
Finally, letting h((0; 0; c); (0; 0; c′)) = (c′;−c; 0), we see that GR satisFes (G4).

Lemma 6.4. Let m :GR →G be an isomorphism and let b1 =m(a1) and b2 =m(a2).
Then (G; b1; b2) satis7es (G1)–(G5). Moreover; the functions f1 and f2 in (G5) can
be chosen to be deg(G)-computable.

Proof. It is easy to check that, since (GR; a1; a2) satisFes (G1)–(G4), so does (G; b1; b2).
Let Z be the center of G and let Ci = {x∈ |G| : xbi = bix}; i= 1; 2. To prove that

a deg(G)-computable isomorphism f1 as in (G5) exists, we Frst note that the mapping
9 :C1 →Z deFned by 9(x) = [b2; x] is a homomorphism of C1 onto Z. Indeed,

[b2; xy] = b2xyb−1
2 y−1x−1 = b2xb−1

2 b2yb−1
2 y−1x−1

= b2xb−1
2 [b2; y]x−1 = [b2; x][b2; y];

since [b2; y]∈Z, and 9 is onto because of (G4).
Now, any element of Z is equal to m((0; 0; c)) for some c∈ |R|, and the fact that

R has characteristic p implies that (0; 0; c)p = (0; 0; pc) = (0; 0; 0) for every c∈ |R|. So
Z is an Abelian group satisfying the identity xp = e, and can thus be thought of as
a vector space over Zp via kz = zk ; k ∈Zp. Since Zp is Fnite, there exists a deg(G)-
computable basis {zi : i∈!} for Z as a vector space with z0 = [b2; b1]. Furthermore,
the set {ci : i∈!} of elements of C1 such that 9(ci) = zi is also deg(G)-computable.
Note that c0 = b1.
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Given z ∈Z, there is a unique way to express z as
∏n

i=1 z
ki
i with 0¡k1; : : : ; kn¡p.

DeFne f1(z) =
∏n

i=1 c
ki
i . Then

b2f1(z)b−1
2 f1(z)−1 = [b2; f1(z)] = 9(f1(z)) = 9

(
n∏

i=1

ckii

)
=

n∏
i=1

zkii = z:

Furthermore, f1([b2; b1]) =f1(z0) = c0 = b1.
A deg(G)-computable isomorphism f2 as in (G5) can be constructed in a similar

way.

Let the relations P and M on |GR| be deFned by

P(x; y; z) ⇔ xy = z

and

M (x; y; z) ⇔ ∃w; w′([a1; w] = x ∧ [a2; w′] = y ∧

[a2; w] = [a1; w′] = e ∧ [w′; w] = z):

As we will see, P and M code + and ·, respectively.

Lemma 6.5. Let G be a computable presentation of GR. Let m :GR →G be an iso-
morphism and let b1 =m(a1) and b2 =m(a2). Suppose that x1; x2; y1; y2 ∈ |G| are such
that [bi; xj] = [bi; yj] for i; j∈{1; 2}. Then [x1; x2] = [y1; y2].

Proof. Let C1; C2, and Z be as in the proof of Lemma 6.4.
For i; j∈{1; 2}, the fact that [bi; xj] = [bi; yj] implies that bix−1

j yj = x−1
j yjbi. So

x−1
j yj ∈C1 ∩C2 =Z for j = 1; 2. Thus we have

x1x2x−1
1 x−1

2 = y1y−1
1 x1y2y−1

2 x2x−1
1 x−1

2 = y1y2y−1
1 x1x−1

1 y−1
2 x2x−1

2

= y1y2y−1
1 y−1

2 :

Lemma 6.6. The relations D; M; and P are relatively intrinsically computable. The
relations D and P are invariant; while M is mapped to itself by any automorphism
of GR that 7xes a1 and a2. Let R′ be a presentation of R. Then D(GR′) = dom(gR′);
and for x; y; z ∈D(GR′);

PGR′ (x; y; z) ⇔ (gR′(x) + gR′(y) = gR′(z))

and

MGR′ (x; y; z) ⇔ (gR′(x) · gR′(y) = gR′(z)):

Proof. The relations D and P are algebraic, and hence invariant, while M is algebraic
over {a1; a2}, and hence is mapped to itself by any automorphism of GR that Fxes a1

and a2.
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The relation P is obviously relatively intrinsically computable, and the fact that every
presentation of GR satisFes (G3) implies that so is D. It is also obvious that for each
x; y∈D(GR′) there is at most one z such that PGR′ (x; y; z).

Let b1; b2 ∈ |GR′ | be deFned by b1 = (1; 0; 0); b2 = (0; 1; 0). By Lemma 6.5,

∃w; w′([b1; w] = x ∧ [b2; w′] = y ∧ [b2; w] = [b1; w′] = e ∧ [w′; w] = z)

⇔∀w; w′(([b1; w] = x ∧ [b2; w′] = y ∧ [b2; w] = [b1; w′] = e)

→ [w′; w] = z):

This implies that M is relatively intrinsically computable. It also implies that for each
x; y∈D(GR′) there is at most one z such that MGR′ (x; y; z).

Now let r; s∈ |R′|. We are left with showing that PGR′ ((0; 0; r); (0; 0; s); (0; 0; r + s))
and MGR′ ((0; 0; r); (0; 0; s); (0; 0; r · s)).

By the deFnition of multiplication in GR′ , we have (0; 0; r)(0; 0; s) = (0; 0; r + s), so
indeed PGR′ ((0; 0; r); (0; 0; s); (0; 0; r + s)).

Let w= (0;−r; 0) and w′ = (s; 0; 0). Direct computation shows that [b1; w] = (0; 0; r);
[b2; w′] = (0; 0; s); [b2; w] = [b1; w′] = e, and [w′; w] = (0; 0; r · s), which implies that
MGR′ ((0; 0; r); (0; 0; s); (0; 0; r · s)).

For any presentation G of GR, let R̃G be the ring whose domain is D(G), with
addition deFned by x + y= z⇔PG(x; y; z) and multiplication deFned by x ·y= z⇔
MG(x; y; z). Clearly, there exist a deg(G)-computable map hG and a deg(G)-computable
ring RG such that hG : R̃G →RG is a deg(G)-computable presentation of R̃G. If G is
computable then we take RG = R̃G and let hG be the identity. In any case, Lemma 6.6
implies that RG is a deg(G)-computable presentation of R.

The following lemma, which is an analog of Lemma 2.8, can be easily checked.

Lemma 6.7. Let R′ be a computable presentation of R. Then gR′ is a computable
isomorphism from RGR′ to R′.

We now establish an analog of Lemma 2.9.

Lemma 6.8. Let G be a computable presentation of GR. Then G is computably iso-
morphic to GRG via a map whose restriction to D(G) is equal to g−1

RG
◦ hG.

Proof. Let f1 and f2 be computable functions as in (G5). On pp. 225–226 of [30],
property (G5) is used to show that the mapping

z = (z1; z2; z3) 	→ :(z) = f1(h−1
G (z1))f2(h−1

G (z2))−1h−1
G (z3)

is an isomorphism from GRG to G. (Of course, in [30] hG is not present, since there it is
not important that RG have computable domain.) Since f1; f2, and h−1

G are computable,
so is :. Finally, if x∈D(G) then :−1(x) = (0; 0; hG(x)) = (g−1

RG
◦ hG)(x).
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We now come to the analog of Lemma 2.7. The fact that M is not invariant creates
a diKculty, but this can be remedied by showing that, for any computable presentation
G of GR and any automorphism h of G, there exists a computable automorphism g of
G such that g(aGi ) = h(aGi ) for i= 1; 2. (See Lemma 6.14. The situation is similar to
what we encountered in Section 4 in connection with Lemma 4.7.)

All the results obtained so far in this section are true for any ring R with unit of
characteristic p. To prove the statement in the previous paragraph we need to impose
the following additional conditions on R.
1. R is an integral domain.
2. The only invertible elements of R are 1; : : : ; p− 1.

Note that, by Lemma 5.1, the integral domains of characteristic p constructed in
Section 5 satisfy Condition 2. Since the result we wish to prove is of interest only in
the case in which R is computably presentable, we will assume for the remainder of
this argument that R is computable.

Let h :GR
∼=GR be an automorphism. Let b1 = (a; b; c); b2 = (a′; b′; c′)∈ |GR| be such

that h(ai) = bi; i= 1; 2.
Let r = a · b′−b · a′. Note that r �= 0, since h((0; 0; 1)) = h([a1; a2]) = [b1; b2]=(0; 0; r).

Let R̃=R[1=r]. Since we are assuming that R is computable, we can take R̃ to be
a computable ring. We think of GR as a subgroup of GR̃.

Let g :GR̃ →GR̃ be deFned by

g((x; y; z)) =
(
a · x + a′ · y ; b · x + b′ · y ; b · a′x · y +

p + 1
2

· a · b · (x2 − x)

+
p + 1

2
· a′ · b′ · (y2 − y) + c · x + c′ · y + (a · b′ − b · a′) · z

)
:

Lemma 6.9. The function g is a computable automorphism of GR̃ such that g(ai) = bi;
i= 1; 2.

Proof. It is clear that g is computable and that g((1; 0; 0)) = (a; b; c) and g((0; 1; 0)) =
(a′; b′; c′).

Let (x; y; z); (x′; y′; z′)∈ |GR̃|. Straightforward but tedious expansion and matching of
terms shows that g((x; y; z)(x′; y′; z′)) = g((x; y; z))g((x′; y′; z′)). (Recall that p + 1 = 1
in R̃.)

We now need to show that g is surjective and injective. To show that g is surjec-
tive, pick an arbitrary element (x; y; z) of GR̃. Let d0 = (1=r · b′ · x;−1=r · b · x; 0) and
d1 = (−1=r · a′ ·y; 1=r · a ·y; 0). It is straightforward to check that, for some z0; z1 ∈ |R̃|,
we have g(d0) = (x; 0; z0) and g(d1) = (0; y; z1). Let d2 = (0; 0; 1=r · (z− z0 − z1)). Then
g(d2) = (0; 0; z− z0 − z1), and hence g(d0d1d2) = (x; 0; z0)(0; y; z1)(0; 0; z− z0 − z1) =
(x; y; z).

To see that g is injective, suppose that g((x; y; z)) = (0; 0; 0). Then a · x+a′ ·y= b · x+
b′ ·y= 0. Thus, working in the Feld of fractions of R̃, we have a′=a ·y= b′=b ·y, so
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that, unless y= 0, we have r = a · b′ − b · a′ = 0, which is a contradiction. So y= 0,
which implies that x= 0. Now g((x; y; z)) = (0; 0; r · z), so that r · z = 0, which implies
that z = 0.

Lemma 6.10. Let f :GR →GR̃ be a group homomorphism such that f(ai) = ai; i=
1; 2. Let u; v; w∈D(GR) be such that MGR̃(f(u); f(v); f(w)). Then MGR(u; v; w).

Proof. There exists a w′ ∈D(GR) such that MGR(u; v; w′), and it is clear from the
deFnition of M that MGR̃(f(u); f(v); f(w′)). But this means that f(w′) =f(w), so
w′ =w.

Lemma 6.11. R= R̃.

Proof. It is enough to show that r is invertible in R. Let s and t be such that
h((0; 0; s)) = (0; 0; 1) and h((0; 0; t)) = (0; 0; r2). Recall that h((0; 0; 1)) = (0; 0; r). Let
i :GR →GR̃ be the inclusion map and deFne f= g−1 ◦ i ◦ h. Now f is a group homo-
morphism from GR into GR̃.

It is easy to check that f(a1) = a1, f(a2) = a2, f((0; 0; 1)) = (0; 0; 1); f((0; 0; s)) =
(0; 0; 1=r), and f((0; 0; t)) = (0; 0; r). Since MGR̃((0; 0; 1=r); (0; 0; r); (0; 0; 1)), it follows
from Lemma 6.10 that MGR((0; 0; s); (0; 0; t); (0; 0; 1)), so that s · t = 1.

Thus s is invertible in R. By our assumption on R, this means that s= k for some 1 6
k 6 p − 1. Let n¡p be such that kn= 1 modp. It follows that (0; 0; r) = h((0; 0; 1))
= h((0; 0; k)n) = (h((0; 0; k)))n = (0; 0; 1)n = (0; 0; n), so r is invertible in R.

The above argument obviously holds for any computable presentation R′ of R in
place of R. With R′ =RG, the following lemma follows from Lemma 6.8.

Lemma 6.12. Let G be a computable presentation of GR and let h be an automor-
phism of G. There exists a computable automorphism g of G such that g(aGi ) = h(aGi );
i= 1; 2.

Corollary 6.13. If G and G′ are computable presentations of GR and f :G∼=G′ is
an isomorphism then there exists an automorphism g of G′ such that g ◦f is a
deg(f)-computable isomorphism and (g ◦f)(MG) =MG′

.

Proof. Since G and G′ are presentations of GR and f is an isomorphism, there is
an automorphism h of G′ such that (h ◦f)(aGi ) = aG

′
i for i= 1; 2. By Lemma 6.12,

there is a computable automorphism g of G′ such that (g ◦f)(aGi ) = aG
′

i for i= 1; 2.
By Lemma 6.6, (g ◦f)(MG) =MG′

.

The following analog of Lemma 2.7 follows easily from Corollary 6.13.

Lemma 6.14. If G and G′ are computable presentations of GR and f :G∼=G′ is an
isomorphism then there exists an automorphism g of G′ such that (g ◦f) �D(G) is
a deg(f)-computable isomorphism from RG to RG′ .
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Using Lemmas 6.2, 6.14, 6.7, and 6.8 in place of Lemmas 2.6, 2.7, 2.8, and 2.9,
respectively, we can establish the following result by essentially the same arguments
as were used in the proofs of Propositions 2.10–2.13.

Proposition 6.15. Let R= (|R|;+; ·; 0; 1) be a countably in7nite integral domain of
characteristic p¿2 whose only invertible elements are 1; : : : ; p − 1. Let GR be the
group whose domain is the set of all triples (a; b; c); a; b; c∈ |R|; and whose group
operation is given by the formula

(a; b; c)(x; y; z) = (a + x; b + y; b · x + c + z):

Then DgSp(GR) = DgSp(R); and if R is computably presentable then the following
hold.
1: For any degree d; GR has the same d-computable dimension as R.
2: Let x∈ |R|. There exists an a∈D(GR) such that (GR; a) has the same computable

dimension as (R; x).
3: Let S be a subring of R. There exists a subgroup U of GR such that DgSpGR

(U ) =
DgSpR(S) and if S is intrinsically c.e. then so is U .

(The fact that U can be taken to be a subgroup in part 3 of Proposition 6.15 follows
from the fact that if S is a subring of R then g−1

R (S) is a subgroup of GR.)
It follows from Proposition 6.15 and the results of Section 5 that Theorem 1.22

holds in the case of 2-step nilpotent groups.

Theorem 6.16. The theory of 2-step nilpotent groups is complete with respect to
degree spectra of nontrivial structures; e<ective dimensions; expansion by constants;
and degree spectra of relations. In particular; Theorems 1:8–1:11; 1:13–1:15; and 1:20
remain true if we require that A be a 2-step nilpotent group. Furthermore; Theorems
1:8–1:11 remain true if we also require that U be a subgroup of A.

Appendix A. The universality of directed graphs

In this appendix, we justify the terminology adopted in DeFnition 1.21 by giving
a suKciently e7ective coding of a given countable structure into a countable graph,
thus showing that if a theory satisFes DeFnition 1.21 then it still satisFes it if “every
nontrivial countable graph G” is replaced by “every nontrivial countable structure G”.

Let A be a nontrivial countable structure in a computable language with (possibly
Fnitely many) constants c0; c1; : : : ; function symbols f0; f1; : : : ; and relation symbols
R0; R1; : : : . Let ki be the arity of fi and let li be the arity of Ri.

The nontrivial directed graph G consists of the following nodes and edges.
1. A node x with an edge from x to itself.
2. A node xi for each i∈ |A|, with an edge from x to each xi.
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Fig. 4. A portion of G.

3. For each constant ci, a cycle of length 4i + 2 with an edge from xj to one of the
elements of this cycle, where j = cAi .

4. For each function fi and each tuple (j0; : : : ; jki−1)∈ |A|, a cycle O of length 4i+3;
a chain of elements y0; : : : ; yki , where y0 is an element of O, with an edge from yn

to yn+1 for each n¡ki; an edge from xjn to yn for each n¡ki; and an edge from
yki to xj, where j =fA

i (j0; : : : ; jki−1).
5. For each relation Ri and each tuple (j0; : : : ; jli−1)∈ |A| such that RA

i (j0; : : : ; jli−1)
holds, a cycle O of length 4i + 4; a chain of elements y0; : : : ; yli−1, where y0 is an
element of O, with an edge from yn to yn+1 for each n¡li − 1; and an edge from
xjn to yn for each n¡li.

6. For each relation Ri and each tuple (j0; : : : ; jli−1)∈ |A| such that RA
i (j0; : : : ; jli−1)

does not hold, a cycle O of length 4i + 5; a chain of elements y0; : : : ; yli−1, where
y0 is an element of O, with an edge from yn to yn+1 for each n¡li − 1; and an
edge from xjn to yn for each n¡li.

As an example, Fig. 4 shows a portion of G in the case in which the language of
A has one constant c0, one unary function symbol f0, and one binary relation symbol
R0; cA0 = 0; fA

0 (0) = 0; fA
0 (1) = 0; and the only ordered pairs of numbers less than 2

of which RA
0 holds are (0; 0) and (1; 0). The expressions under each cycle show which

fact is being coded by that cycle and its connections.
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It is not hard to check, using methods similar to those of Section 2, that G has the
following properties.
1. DgSp(G) = DgSp(A).
2. If A is computably presentable then the following hold.

(a) For any degree d; G has the same d-computable dimension as A.
(b) if a∈ |A| then there exists an x∈ |G| such that (G; x) has the same computable

dimension as (A; a).
(c) if S ⊆ |A| then there exists a U ⊆ |G| such that DgSpG(U ) = DgSpA(S) and if

S is intrinsically c.e. then so is U .
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