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ABSTRACT

Until the 1940s, relatively few agents were available for the treatment of systemic fungal infections. The
development of the polyene antifungals represented a major advance in medical mycology. Although
amphotericin B quickly became the mainstay of therapy for serious infections, its use was associated
with infusion-related side-effects and dose-limiting nephrotoxicity. The continued search for new and
less toxic antifungals led to the discovery of the azoles several decades later. Ketoconazole, the first
available compound for the oral treatment of systemic fungal infections, was released in the early
1980s. For almost a decade, ketoconazole was regarded as the drug of choice in nonlife-threatening
endemic mycoses. The introduction of the first-generation triazoles represented a second major
advance in the treatment of fungal infections. Both fluconazole and itraconazole displayed a broader
spectrum of antifungal activity than the imidazoles and had a markedly improved safety profile
compared with amphotericin B and ketoconazole. Despite widespread use, however, these agents
became subject to a number of clinically important limitations related to their suboptimal spectrum of
activity, the development of resistance, the induction of hazardous drug–drug interactions, their less
than optimal pharmacokinetic profile (itraconazole capsules), and toxicity. In order to overcome these
limitations, several analogues have been developed. These so-called ‘second-generation’ triazoles,
including voriconazole, posaconazole and ravuconazole, have greater potency and possess increased
activity against resistant and emerging pathogens, in particular against Aspergillus spp. If the toxicity
profile of these agents is comparable to or better than that of the first-generation triazoles and drug
interactions remain manageable, then these compounds represent a true expansion of our antifungal
arsenal.
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INTRODUCTION

Despite the implementation of several preventive
measures and the use of antifungal chemopro-
phylaxis, physicians have witnessed an increased
incidence of both mucosal and invasive fungal
infections during the past two decades [1–4]. This
increase is linked with progress in medical tech-
nology and novel therapeutic options and
appears to be multifactorial. The widespread use
of quinolone prophylaxis in neutropenic cancer
patients and the availability of broad-spectrum
antibacterial agents has virtually eliminated early

death due to bacterial sepsis, thereby setting the
stage for fungal colonisation and putting patients
at risk for subsequent mycotic infections. Medical
procedures have become more invasive and
aggressive; the accompanying disruption of pro-
tective anatomical barriers as a result of indwell-
ing catheters, therapy-induced mucositis, viral
infections, and graft-versus-host disease, or fol-
lowing major abdominal surgery or associated
with extensive burns, allows fungi to reach
normally sterile body sites [5]. In addition, the
community of vulnerable patients is continuously
expanding as a result of the spread of human
immunodeficiency virus (HIV) infections, the
increased use of (novel) immunosuppressive
drugs in autoimmune disorders and to prevent
or treat rejection in the expanding area of trans-
plant medicine, the popularity of dose-escalated,
often myelo-ablative cytotoxic therapy, the
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improved survival rate in premature infants, and
the availability of sophisticated life-saving med-
ical techniques [5–7]. Unfortunately, the attribut-
able mortality rate of (systemic) fungal infections
remains high [8,9]. This may partly be explained
by the difficulty of diagnosing these infections at
an early stage of their development, because
definite proof often requires time-consuming
and labour-intensive approaches that cannot al-
ways be achieved in these severely ill patients.
However, an additional explanation may be
found in shortcomings of the current antifungal
armamentarium.

Clearly, progress in the development of new
antifungals has lagged behind antibacterial
research, a fact that can be explained by at least
two factors. First, before the HIV-era, the occur-
rence of fungal infections was believed to be too
low to warrant aggressive research by the phar-
maceutical industry. Second, the ‘apparent’ lack
of a highly selective fungal target, not present in
other eukaryotic (including mammalian) cells,
precluded the development of new agents. Until
recently, the arsenal that was available for the
treatment of systemic fungal infections was lim-
ited in number and consisted mainly of the
polyene antibiotic amphotericin B, some azole
derivatives, the allylamines–thiocarbamates and
5-flucytosine. With the exception of 5-flucytosine,
all other agents acted by interfering with the
structural or functional integrity of the fungal
plasma membrane, either by physical disruption
or by blocking the biosynthesis of membrane
sterols. The past decade, however, has witnessed
an expansion of basic and clinical research in
antifungal pharmacology and many companies
have launched new compounds, including sev-
eral new azole compounds and the candins [5].

MECHANISM OF ACTION

For a detailed discussion of the mechanism of
action, the reader is referred to original work by
Vanden Bossche et al. [ 10–12] and a recent review
article by White et al. [13]. Azole antifungals are
divided into the imidazoles (e.g. miconazole and
ketoconazole) and the triazoles (e.g. itraconazole,
fluconazole, voriconazole). The latter group has
three instead of two nitrogen atoms in the azole
ring. All of the azoles operate via a common mode
of action: they prevent the synthesis of ergosterol,
the major sterol component of fungal plasma

membranes, through inhibition of the fungal
cytochrome P450-dependent enzyme lanosterol
14-a-demethylase. The resulting depletion of
ergosterol and the concomitant accumulation of
14-a-methylated precursors interferes with the
bulk function of ergosterol in fungal membranes
and alters both the fluidity of the membrane and
the activity of several membrane-bound enzymes
(e.g. chitin synthase). The net effect is an inhibi-
tion of fungal growth and replication. In addition,
a number of secondary effects, such as inhibition
of the morphogenetic transformation of yeasts to
the mycelial form, decreased fungal adherence,
and direct toxic effects on membrane phospho-
lipids, have been reported [14].

Unfortunately, as a result of the nonselective
nature of the therapeutic target, cross-inhibition
of P450-dependent enzymes involved in mamma-
lian biosynthesis has been responsible for some
toxicity, although significantly lower and less
severe with fluconazole, itraconazole and voric-
onazole than with the older compounds. The
improved toxicity profile of the triazoles com-
pared to the imidazoles (especially endocrine-
related side-effects) can be explained by their
greater affinity for fungal rather than mammalian
P450-enzymes at therapeutic concentrations [15].

HISTORY OF AZOLES

Although the first report of antifungal activity of an
azole compound, benzimidazole, was already des-
cribed in 1944 byWoolley, it was not until after the
introduction of topical chlormidazole in 1958 that
researchers became interested in the antifungal
activity of azole compounds [16]. In the late 1960s,
three new topical compounds were introduced:
clotrimazole, developed by Bayer Ag (Germany),
and miconazole and econazole, both developed by
Janssen Pharmaceutica (Belgium) [17].

The in-vitro activity of clotrimazole against
dermatophytes, yeasts, and dimorphic as well as
filamentous fungi, is well-established and com-
parable to that of amphotericin B for many
pathogens [18]. However, unacceptable side-
effects following oral administration [19] and
unpredictable pharmacokinetics as a result of
the induction of hepatic microsomal enzymes [20]
have limited the use of clotrimazole to the topical
treatment of dermatophytic infections and super-
ficial candida infections, including oral thrush
and vaginal candidiasis.
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Miconazole, a phenethyl imidazole synthesised
in 1969, was the first azole available for parenteral
administration (although not before 1978). Like
other azoles, it interferes with the biosynthesis of
fungal ergosterol, but at high concentrations,
miconazole may also cause direct membrane
damage that results in leakage of cell constituents.
The drug has a limited spectrum of activity
including dermatophytes, Candida species, dimor-
phic fungi, and Pseudallescheria boydii. The agent
has proven to be an effective topical antifungal
agent, but toxicity associated with the vehicle
used for intravenous administration has limited
its parenteral use [21], although it has been used
successfully in the treatment of systemic candida
infections, pseudallescheriasis and some refract-
ory cases of cryptococcal meningitis [22,23].
Miconazole has recently been withdrawn from
the market.

In 1981, the Food and Drug Administration
(FDA) approved the systemic use of ketoconaz-
ole, an imidazole derivative synthesised and
developed by Janssen Pharmaceutica [24]. For
almost a decade it would be regarded as the
standard and was the only available oral agent
for the treatment of systemic fungal infections.
Until the introduction of the triazoles, ketocon-
azole was indicated as the drug of choice in
chronic mucocutaneous candidiasis [25] and as
an effective alternative to amphotericin B in less
severe (nonimmunocompromised) cases of blas-
tomycosis [26], histoplasmosis [26], and paracoc-
cidioidomycosis [27]; in coccidioidomycosis, the
relapse rate after discontinuation of the drug was
high [28]. Ketoconazole has not been adequately
evaluated in deep-seated candida infections or
cryptococcosis and was ineffective in aspergil-
losis and mucormycosis.

Over the years, a number of clinically relevant
shortcomings of this compound became evident:
• The absorption of orally administered ketocon-
azole showed considerable interindividual vari-
ation and was markedly influenced by gastric
pH [29].

• An intravenous formulation was not available.
• The drug penetrated the blood–brain barrier
poorly and could therefore not be recommen-
ded for the treatment of fungal meningitis
[30,31].

• Ketoconazole was largely fungistatic and
proved to be less effective in immunocompro-
mised patients [17].

• The use of ketoconazole was associated with
several dose-related (gastrointestinal) side-
effects [26]; in addition, ketoconazole could
cause symptomatic, even fatal, drug-induced
hepatitis [32].

• When given in doses exceeding 400 mg daily,
ketoconazole might reversibly inhibit the syn-
thesis of testosterone and cortisol, resulting in a
variety of endocrine disturbances, including
rare cases of adrenal insufficiency [33].

• A number of clinically important, often unpre-
dictable, drug interactions (e.g. to cyclosporine)
have been reported [34].
Thus, the poor response rates and frequent

recurrences of major fungal infections, as well as
the toxicity associated with ketoconazole therapy,
led to the search for a second chemical group of
azole derivatives, namely the triazoles. In general,
the triazoles demonstrate a broader spectrum of
antifungal activity and reduced toxicity when
compared with the imidazole antifungals. Terc-
onazole, the first triazole marketed for human
use, was active in the topical treatment of vaginal
candidiasis and dermatomycoses.

Fluconazole (Figure 1a), a broad-spectrum
triazole antifungal developed by Pfizer and
approved for use in early 1990, covers many of
the shortcomings of the imidazoles. In contrast to
ketoconazole, fluconazole is highly water soluble
and can be given intravenously to seriously ill
patients. After oral administration, absorption is
essentially complete (� 90% bioavailability) and
not influenced by gastric pH [35]. In contrast
to ketoconazole, fluconazole enters the cerebro-
spinal fluid (CSF) extremely well, with CSF levels
of almost 80% of the corresponding serum levels
[36]. The serum half-life allows once-daily dos-
ing, and, also in contrast to ketoconazole, renal
clearance is the major route of elimination of
fluconazole, with 70–80% of unchanged drug
excreted in the urine [37]. Given this favourable
pharmacokinetic profile (Table 1), fluconazole
has been studied extensively in various clinical
settings, both in prophylaxis and in therapy.
The drug is approved for the treatment of
oropharyngeal, oesophageal, vaginal, peritoneal
and genito-urinary candida infections, dissem-
inated candidiasis (including chronic dissemin-
ated candidiasis) and cryptococcal meningitis.
Fluconazole also has good activity against coc-
cidioidomycosis and is a good alternative to keto-
conazole in chronic mucocutaneous candidiasis.
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Fluconazole has no clinically meaningful activity
in infections caused by filamentous fungi. In
addition, the drug is relatively safe (even at
daily doses up to 1600 mg) and does not inter-
fere with the synthesis of testosterone or cortisol.
Also, fluconazole has fewer drug interactions
than does ketoconazole. The clinical experience
with fluconazole is reviewed by Dr Pfaller in
this issue.

The initial enthusiasm for fluconazole, how-
ever, has been challenged by two recent develop-
ments: the evolving spectrum of fungal pathogens
and the development of azole-resistance.

The evolving spectrum of fungal pathogens

In virtually every North American and European
medical centre, hospital-acquired infections
caused by Candida species—both superficial and
deep-seated forms—have increased substantially
over the past two decades. According to the
National Nosocomial Infection Surveillance Pro-
gram from the Centers for Disease Control and
Prevention (CDC) and the Surveillance and Con-
trol of Pathogens of Epidemiological Importance
(SCOPE) study, Candida species now account for
7–8% of all nosocomial bloodstream infections
in the USA [38,39]. Although Candida albicans
remains the most commonly encountered patho-
genic yeast, a number of recent studies have
demonstrated a shift towards infection with

‘non-albicans’ Candida species. In the SCOPE
study, 50% of isolates from bloodstream infec-
tions were non-albicans species, including C.
tropicalis, C. glabrata, C. krusei, C. parapsilosis and
C. lusitaniae [39]. Some species are considered less
virulent than C. albicans but are, on the other
hand, inherently less susceptible to fluconazole.
Recent data, however, have revealed important
differences between patient groups at risk (e.g.,
oncology versus nononcology), between institu-
tions and between countries [9]. Although the
cause of this changing spectrum is multifactorial
and has not been evaluated systematically, the
selective pressure resulting from the widespread
use of fluconazole has most probably contributed
to the higher proportion of non-albicans species
[40]. Nevertheless, links between spectral changes
and prior use of fluconazole have not yet been
firmly proved; additional factors such as institu-
tion-related differences in anti-infective protocols
and treatment-specific factors may be equally
important for fungal colonisation and subsequent
infection [41].

In addition, major observational and autopsy
surveys, both in Europe and the USA, have
shown that the incidence of invasive aspergillus
infections—a pathogen not covered by flucona-
zole—has increased dramatically over the past
two decades [2,3].

Fungal infections have been important compli-
cations among patients with HIV from the begin-

Fig. 1. Chemical structures of old
and new triazoles.
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ning of the pandemic. Population-based surveil-
lance studies, conducted by the CDC and others,
have clearly reflected the impact of highly active
antiretroviral therapy (HAART) on the incidence
and spectrum of these infections in HIV-positive
patients. The incidence of cryptococcal meningitis
(from 10% to < 3%), mucosal candidiasis, asper-
gillosis, and many other fungal infections (histo-
plasmosis, penicilliosis marneffei) has decreased
spectacularly with the use of protease inhibitors
[42,43].

Although Candida and Aspergillus species still
represent the vast majority of fungal isolates
encountered in human pathology, a battery
of new species—both yeasts and filamentous
fungi—is increasingly recognized as opportunis-
tic pathogens. Of particular concern is the fact that
many of these so-called ‘emerging’ pathogens are
not covered by fluconazole, including Trichospo-
ron spp., Fusarium spp., Scedosporium prolificans,
members of the Mucoraceae, and dematiaceous or
darkly pigmented fungi [44,45].

The development of azole-resistance

Until the 1990s, acquired resistance to azole
antifungals was uncommon. In recent years,

however, particularly as a result of the liberal
use of fluconazole in immunosuppressed and
critically ill patients, clear patterns of resistance
have emerged. However, the lack of an estab-
lished definition of resistance remains problem-
atic when analysing the scope of this problem.
Clearly, the continuous or intermittent adminis-
tration of any antifungal agent may select for
overgrowth of intrinsically resistant or less sus-
ceptible strains or species, as has been docu-
mented in oncology patients receiving fluconazole
prophylaxis. This phenomenon, however, was not
reported in a very large study of female patients
with, or at risk of, HIV infection. Unfortunately,
resistance has too often been defined as ‘clinically
resistant’, referring to a patient whose infection
has progressed or persisted despite antifungal
therapy. Classical resistance refers to treatment
failure in association with high or rising mini-
mum inhibitory concentrations (MICs) for the
same fungal strain while receiving therapy: a
definition not used by many publications. Be-
sides, key features such as pharmacodynamic
parameters, fungal virulence factors, host factors
and differences in susceptibility testing methods
further impair the analysis of a possible link
between MIC and outcome [46]. Therefore, the

Table 1. Comparative data of avail-
able triazole antifungal agents Parameter Fluconazole Itraconazole Voriconazole

Formulation oral suspension oral solution tablets
tablets capsules intravenous
intravenous intravenous

Oral bioavailability (%) > 90 55 > 85
Influence of food none › (capsules) fl
fl (solution)
Influence of › pH none fl (capsules

only)
none

Tmax (h) 1–2 1.5–4.0 < 2
Steady-state plasma
concentration (mg ⁄L)

10 1 2
(200 mg bid)

Protein binding (%) < 10 > 95 60
Vd (L ⁄ kg) 0.7–0.8 10.7 2
Principal route of elimination renal hepatic hepatic
Elimination half-life 27–37 h 21–64 h 6–9 h
Cl (mL ⁄min.kg) 0.23 3.80 � 3
Unchanged drug in urine (%) 80 < 1 < 5
Relative CSF levels (%) > 60–80 < 1 > 50
Important drug interactions + + + + + + + +
Toxicity
Nephrotoxicity – – –
Hepatotoxicity + + +
Relevant other toxicity – – visual
Dose reduction in renal failure yes no ?
Dialysable yes no ?

CSF ¼ cerebrospinal fluid; Cl ¼ clearance.
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National Committee for Clinical Laboratory
Standards has recently developed a standardized
and reproducible method for the in vitro suscep-
tibility testing of yeasts to azoles (measuring true
microbial resistance) [47].

Apart from this, it is obvious from the literature
that in-vitro resistance for C. albicans has emerged
rapidly during the pre-HAART era in HIV ⁄
acquired immune deficiency syndrome (AIDS)
patients with oropharyngeal or oesophageal can-
didiasis [48]. In this setting, up to 20% ofC. albicans
strains have become resistant to fluconazole,
depending on the duration and total cumulative
dose of fluconazole given, the frequency of expo-
sure and the patient’s CD4+ cell count. Fortu-
nately, at least in developed countries, the
introduction of HAART and the subsequent host
immune reconstitution has led to a marked reduc-
tion in the number of HIV-associated opportunis-
tic fungal infections; as such, azole-resistant
isolates from AIDS patients are now seldom
encountered, although it remains to be seen
whether this improvement will be maintained. In
addition, it is critical to recognize the concept of
dose dependency in azole-susceptibility when
approaching the therapy of these infections [49].
For example, AIDS patients with oropharyngeal
candidiasis caused by strains with low MICs will
typically respond to low doses of fluconazole. In
contrast, patients with ‘susceptible, dose-depend-
ent’ strains may still respond to fluconazole
therapy provided that higher doses of 400–
800 mg ⁄day are given. In general, yeast in-vitro
resistance remains manageable in HIV ⁄AIDS
patients.

It is evident that the same phenomenon of azole
resistance could also arise in deep-seated candida
infections and candidaemia. However, evidence
of emerging resistance in this setting remains
largely equivocal. Based on a number of large
surveillance studies in developed countries, there
is no evident trend towards an increased acquired
resistance to fluconazole for bloodstream isolates
of C. albicans [46]. Although an increased preval-
ence of C. krusei and C. glabrata bloodstream
infections has been seen in oncology patients,
bone marrow transplant recipients and patients in
intensive care units, it remains debatable whether
this is (solely) the result of the introduction of
fluconazole or not.

In 1992, itraconazole (Figure 1b), a broad-
spectrum triazole from Janssen Pharmaceutica,

was approved by the Food and Drug Adminis-
tration. Compared to ketoconazole, itraconazole
was less toxic and showed a broad spectrum of
activity against Candida spp., Aspergillus spp.,
Cryptococcus neoformans, Coccidioides immitis, His-
toplasma capsulatum, Blastomyces dermatitidis, Para-
coccidioides brasiliensis, Sporothrix schenckii and
some phaeohyphomycetes [50]. Since its intro-
duction, itraconazole has gradually replaced
ketoconazole as the treatment of choice for non-
meningeal, nonlife-threatening cases of histoplas-
mosis, blastomycosis and paracoccidioidomycosis
(amphotericin B for severe or meningeal cases).
Itraconazole also has considerable spectral advan-
tages over fluconazole with greater activity
in aspergillosis and sporotrichosis [51]. However,
fluconazole demonstrates a more favourable
pharmacological and toxicity profile.

Unlike fluconazole, itraconazole is highly lipid
soluble and when first introduced, itraconazole
was formulated in capsular form only. This
formulation became widely used for the treat-
ment of onychomycosis, superficial fungal infec-
tions, endemic systemic infections, systemic
aspergillus infections, and to a much lesser extent,
systemic candida infections. The prophylactic
efficacy has been demonstrated in a number of
trials in patients with neutropenia or with HIV
infection [52]. However, because absorption of
itraconazole capsules can be erratic and low blood
concentrations (< 500 ng ⁄mL) have been asso-
ciated with treatment failure, many clinicians
disapprove of its use in patients who were
suffering from therapy-induced mucositis or
who were receiving antacids [53]. A novel oral
formulation of itraconazole, containing the solu-
bilizing excipient hydroxypropyl-b-cyclodextrin,
has therefore been developed (FDA approved in
1997). When the capsules and oral solution are
compared, the bioavailability of the solution is
approximately 60% greater than that of the
capsules. This value was obtained in healthy
volunteers [54], as well as in various patient
groups, including neutropenic patients [55], HIV
patients [56], and patients following autologous
and allogeneic transplantation [57].

Recently, an intravenous formulation has been
developed. In patients with haematological malig-
nancy, patients with advanced HIV infection, or
those in intensive care units, high and steady-
state plasma concentrations can be achieved
within 2–3 days (as opposed to 1–2 weeks when
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using capsules) using intravenous itraconazole,
400 mg ⁄day for 2 days followed by 200 mg ⁄day
for 5 days. Subsequent administration of itracon-
azole oral solution or capsules, 400 mg daily, will
maintain these high plasma levels [58]. Thus, the
availability of new formulations has introduced
more flexibility in the use of itraconazole. How-
ever, when compared with fluconazole, clinical
experience remains limited, especially with the
intravenous formulation.

Although the availability over the past decade
of both fluconazole and itraconazole represents a
major advance in the management of systemic
fungal infections, these triazole antifungal drugs
have some important limitations.

Several azole–drug interactions may result in
hazardous and unpredictable toxicity, especially
in patients receiving chemotherapy (e.g. vincris-
tine), transplant recipients (e.g. cyclosporine A,
tacrolimus) and AIDS patients (e.g. indinavir,
ritonavir). The potential for drug interactions was
greater with ketoconazole, but similar interactions
have been described with the triazoles. One type
of azole–drug interaction may result in decreased
plasma concentrations of the azole, either as a
result of decreased absorption or increased meta-
bolism of the azole. A second type of interaction
may result in increased toxicity of the coadmin-
istered drug via interference with the cytochrome
P450 systems that are involved in the metabolism
of many drugs [59].

Their antifungal spectrum remains suboptimal,
especially when considering the growing diversity
of offending species. The activity of fluconazole is
limited to dermatophytes,C. neoformans,C. albicans
and the dimorphic fungi. Although itraconazole
displays a broader spectrum of activity, including
Aspergillus spp. and some yeast strains that are
intrinsically resistant to fluconazole, neither com-
pound has documented activity against some of
the emerging pathogens, such as Fusarium spp.,
Scedosporium spp. and the Zygomycetes.

Clinical resistance associated with microbiolo-
gical resistance has been reported, both for fluc-
onazole (mainly C. albicans) and itraconazole
(including Aspergillus spp.) [60]. Meanwhile, sev-
eral mechanisms of azole-resistance have been
identified, including enhanced efflux of the azole
by up-regulation of multidrug efflux pumps,
alterations in the cellular target of azoles (Erg11p),
and modification of the ERG11 gene at the
molecular level [61]. Of note is that these mech-

anisms mediate cross-resistance amongst the
azoles [62].

Given these shortcomings, the characteristics of
the ideal azole can easily be deduced: the agent
should be available in oral and intravenous
dosage forms, demonstrate a broad spectrum of
activity, covering both yeast as well as classic and
emerging filamentous fungi, be fungicidal, dis-
play a good pharmacokinetic profile with min-
imal drug interactions, be stable to resistance and
be cost-effective. Whether the ‘second-generation’
triazole derivatives that are currently under clin-
ical development or that have recently been
launched on the market will eliminate or reduce
these shortcomings remains to be seen.

Voriconazole (Figure 1c), structurally related to
fluconazole, was developed by Pfizer Pharmaceu-
ticals as part of a programme designed to enhance
the potency and spectrum of activity of flucona-
zole [63]. Voriconazole displays wide-spectrum
in-vitro activity against fungi from all clinically
important pathogenic groups such as Candida
spp., Aspergillus spp., C. neoformans, dimorphic
fungi, dermatophytes, and some of the emerging
mould pathogens including Fusarium spp., Peni-
cillium, Scedosporium, Acremonium and Trichospo-
ron. Members of the zygomycetes still appear to
be resistant. Compared to reference triazoles,
voriconazole is several-fold more active than
fluconazole and itraconazole against Candida
spp. However, C. albicans isolates with decreased
susceptibility to fluconazole and itraconazole also
demonstrate significantly higher MICs for voric-
onazole, and isolates (Candida as well as Aspergil-
lus) that are highly resistant to both fluconazole
and itraconazole show apparent cross-resistance
to voriconazole. The drug is orally and parenteral-
ly active but exhibits complex pharmacokinetics.
Interestingly, animal studies have revealed good
penetration into the CSF and central nervous
system. The promising in-vitro activity has been
confirmed in a range of infections in immuno-
suppressed animal models where voriconazole
proved to be more effective than amphotericin B,
fluconazole and itraconazole. Data from phase II
and III clinical trials indicate that voriconazole is a
promising agent for the treatment of oropharyn-
geal candidiasis in AIDS patients, oesophageal
candidiasis, and acute and chronic invasive
aspergillosis, including cerebral aspergillosis. A
number of cases have reported activity in unusual
mould infections, such as scedosporiosis and
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fusariosis. However, voriconazole is not yet the
ideal azole, because the agent is not devoid of the
classical azole–drug interactions and class-related
side-effects (including severe cases of hepatic
dysfunction [64]). Furthermore, dose-related tran-
sient visual disturbances (without morphological
correlates) have been reported in up to 10% of
patients receiving this agent. Hence, additional
work regarding (visual) safety, drug–drug inter-
actions, metabolism and exposure (given the
genetic polymorphism of CYP2C19), and emer-
gence of (cross)-resistance is needed. The current
status of voriconazole is reviewed by Dr Donnelly
and Dr De Pauw in this issue.

Posaconazole (Figure 1d), a hydroxylated ana-
logue of itraconazole developed by Schering-
Plough Research Institute, possesses potent
broad-spectrum activity against opportunistic
and endemic fungal pathogens, including zygo-
mycetes and some of the dematiaceous moulds.
In vitro, the drug is highly active against Asperg-
illus spp. and at least eightfold more potent than
fluconazole against Candida spp. Similar to voric-
onazole, posaconazole was more effective than
amphotericin B, fluconazole and itraconazole in
animal studies [65]. Ravuconazole (Figure 1e),
another derivative of fluconazole developed by
Bristol-Myers Squibb, represents the third second-
generation triazole. Ravuconazole has a broader
antifungal spectrum than fluconazole and itrac-
onazole, particularly against strains of C. krusei
and C. neoformans. In vitro, ravuconazole is not
active against Fusarium spp. and Pseudallescheria
boydii [65]. Both posaconazole and ravuconazole
are currently undergoing phase II and III clinical
trials.

CONCLUSION

Until the 1940s, relatively few agents were
available for the treatment of systemic fungal
infections. The development of the polyene
antifungals, first nystatin and later amphotericin
B, represented a major advance in medical
mycology. Although amphotericin B quickly
became the mainstay of therapy for serious
infections, its use was associated with a number
of infusion-related side-effects and dose-limiting
nephrotoxicity. The continued search for new
and less toxic antifungals led to the discovery of
the azoles several decades later. Ketoconazole,
the first available compound for the oral

treatment of systemic fungal infections, was
released in the early 1980s. For almost a decade,
ketoconazole was regarded as the drug of choice
in nonlife-threatening endemic mycoses. The
introduction of intravenous and oral fluconazole
in 1990 and oral itraconazole in 1992 represented
a second major advance in the treatment of
fungal infections. Both first-generation triazoles
displayed a broader spectrum of antifungal
activity than the imidazoles and had a markedly
improved safety profile compared with ampho-
tericin B and ketoconazole. Fluconazole was
used frequently for prophylaxis and treatment
of candidal and cryptococcal infections, especi-
ally in the pre-HAART era, whereas itraconazole,
despite its erratic absorption, became the drug of
choice for the treatment of less severe forms of
histoplasmosis and blastomycosis, and an attract-
ive alternative to amphotericin B for the treat-
ment of select cases of invasive aspergillosis.
Although expanded uses have been suggested
for both agents—in prophylaxis as well as in
therapy—they also became subject to a number
of clinically important limitations, including
suboptimal spectrum of activity, development
of resistance, induction of hazardous drug–drug
interactions, less than optimal pharmacokinetic
profile (itraconazole capsules), and toxicity. To
overcome these limitations, several structural
analogues have been developed and tested in
various stages of clinical development. Three of
these so-called ‘second-generation’ triazoles,
including voriconazole, posaconazole and ravuc-
onazole, appear to have greater potency and
possess increased activity against resistant and
emerging pathogens. All three agents are active
following oral administration and have demon-
strated promising antifungal activity in vitro and
in animal models. These second-generation triaz-
oles seem particularly promising for the treat-
ment of Aspergillus infections and for unusual
(but emerging) opportunistic infections that are
otherwise covered only by amphotericin B or
not covered at all. However, further clinical
investigation is warranted to identify the role of
these agents in the future treatment of systemic
fungal infections. If the toxicity profile of these
agents is comparable to or better than that of the
first-generation triazoles and drug interactions
remain manageable, then these compounds rep-
resent a true expansion of our antifungal
arsenal.
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