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An extension of the classical fixed charge transportation problem is developed that allows a 
wide variety of practical production, distribution, and inventory planning models to be addres- 
sed. Computational results are presented for problems with up to one thousand network con- 
straints and five thousand tletwork variables. 

1. Introduction 

The Fixed Charge Transportation Problem has attracted widespread attention 
since it was first proposed by Hirsch and Dantzig in 1954 [8]. The closely related 
Facility Location Problem [5] has also been the subject of considerable research 
effort in recent years. Both of these problem classes involve highly structured integer 
and network components. Unfortunately, these extreme structural characteristics 
are not always present in many practical applications. In this note a related problem 
class is proposed that (1) completely relaxes the topological assumptions regarding 
the structure of the underlying network, and (2) extends the fixed charge concept 
to a more realistic and useful form. This proposed problem class will be called the 
Family Constrained Network Problem. 

Virtually all formulations of the fixed charge transportation and facility location 
problems assume a bipartite transportation-type network component. A notable ex- 
ception is the work by Rardin and Unger [10] which allows a more general network 
component, but maintains the simple integer structure of the fixed charge transpor- 
tation problem. 

While admittedly an interesting problem class, very few practical applications can 
be modeled with a simple bipartite network structure. Most network based models 
possess the more general structure associated with the capacitated transshipment 
problem. The family constrained network problem will be developed without any 
assumptions regarding the underlying structure of its network component. Since any 
capacitated pure transshipment model can serve as the basic framework, the family 
constrained network model can be used to address a wide range of production, dis- 
tribution and inventory planning problems. 

The integer, or binary, components of both the fixed charge transportation prob- 
lem and the facility location problem are also highly structured. In the fixed charge 
transportation problem each binary variable controls the flow on a single network 
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arc, and in the facility location problem each binary variable controls the flow on 
the arcs associated with a single network node. The family constrained network 
problem dramatically extends this structure. In this new problem class, a single 
binary variable will be used to control a set of otherwise unrelated arcs. That is, no 
assumptions are made regarding the topological characteristics of the network arcs 
associated with a single binary variable. The set of arcs associated with a single 
binary variable will be referred to as a family and the binary variable will be called 
a family variable. A fixed charge is incurred if any member arc of a family is active. 
This provides a logical and powerful estension of the fixed charge concept. 

The family constrained network problem has many practical application areas, 
particularly in the realm of multi-period and multi-commodity models. As a simple 
example consider the multi-period production, distribution and inventory planning 
problem [7]. Obtaining additional warehouse capacity, either through construction 
or lease, is a long-term decision. A substantial fixed charge is incurred whether the 
inventory capacity is used in a single or in all time periods addressed by the model. 
In addition, a variable cost is often based on the actual level of usage during each 
period. The classical fixed charge transportation and facility location models cannot 
adequately address this type of multi-period decision. It presents no problem, how- 
ever, when formulated as a family constrained network problem. 

In the following section, the family constrained network problem will be formally 
stated. This is followed in Section 3 b y a  discussion of standard penalties for a 
branch-and-bound implementation. The development and testing of a FORTRAN 
code for solving large scale family constrained network problems will be described 
in Section 4, and some useful model generalizations will be given in the final section. 

2. Problem statement 

The family constrained network problem is composed of two types of variables; 
the binary family variables, and the integer network arc flow variables. The family 
variables will be denoted by Yh and the network variables by xk. The family con- 
strained network problem can be formally stated as follows:: 

Minimize ~ fhYh+ ~ CtXt, (1) 
h ~ F  k ~ A  

Subject to - - ~  Xk+ ~ X k = b i for i e N ,  
k ~ A ( i )  k~B( i )  : 

MhYh- ~., xk>--O f o r  heF, 
k~F(h )  

0 <_ Yh-< 1 and integer for h e F, 

(2) 

(3) 

(4) 

0 <_ x k _ U k and int.eger for k ~ A. (5) 

In this formulation of  the problem, F is an index set of family variables; A is an 
index set of network .variables, and N is an index set of network constraints or 
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nodes. In the statement of the network constraints, (2), two additional index sets 
are introduced. A(i) is an index set of the arcs that originate at node i, and B(i) is 
an index set of the arcs that terminate at node i. These two sets are often referred 
to as the node's forward and reverse stars, respectively [6]. 

The index set F(h) in the statement of the family relationship constraints, (3), 
indicates the arcs associated with family variable h. These arcs will be referred to 
as members of the family. Note that a single arc may be a member of any number 
of families. 

In the objective function, (1), fh is the positive fixed charge associated with 
family h and ck is the per unit cost associated with arc k. In the network con- 
straints, (2), bi is the net exogenous demand at node i. The upper bound for arc k 
is indicated in (5) by Uk. Both bi and Uk are assumed to be integer so that the net- 
work integrality conditions, (5), become natural. 

In the family relationship constraints, (3), Mh is simply a large positive constant 
that serves to make the constraint strictly binding when the associated family 
variable is fixed to zero and strictly redundant if it is fixed to one. An obvious choice 
for this constant is the sum of the upper bounds of the individual arcs that make 
up the family. Since the member arcs cannot exceed their own bounds, their sum 
cannot exceed the sum of their bounds. 

In order to simplify later notation, an additional index set will be introduced. 
M(k)  will be defined as the set of all families in which arc k is a member. So, 

M(k)= {heFlkeF(k)}. 
This, in a sense, serves as an inverse of the F(h) index set. 

3. Penalty generation 

One of the fundamental ingredients of a successful branch-and-bound implemen- 
tation for any integer linear programming problem is the efficient use of penalties 
to enhance the fathoming of subproblems. Numerous penalties have been proposed 
and tested for the fixed charge transportation problem, the facility location prob- 
lem, and other classes of  related integer programming problems. In this section it 
will be shown how many of these penalties can be easily generalized for the family 
constrained network problem. In order to set the framework for the development 
of  these penalties, a short presentation of the standard branch-and-bound algorithm 
will be given as well as a brief discussion of the linear programming relaxation of 
the family constrained network problem. 

An overview of the branch-and-bound algorithm for the family constrained net- 
work problem is given below. In this presentation Z I is used to denote the objective 
function value of the incumbent all-integer solution, Z p is the objective function of 
the relaxed p th  subproblem, and ZL p is a lower bound on the optimal all-integer 
solution to the pth subproblem. ZL p is generally based on the value of Z p and an 
estimated penality to convert a non-integer solution into an all4nteger solution. 
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Branch-and-Bound Algorithm 
Step 1. [INITIALIZATION] Construct the initial branch-and-bound search tree. 

Set p = 1 and Z I= 00. 
Step 2. [RELAXED OPTIMIZATION] Solve subproblem p. If feasible but not all 

integer, go to 3. If feasible and all integer, go to 4. If infeasible, to go 5. 
Step 3. [BRANCH SELECTION] Determine ZL p. If ZLP>_Z I, go to 5. Other- 

wise, select any non-integer family variable and fix it to either zero or one. 
Set p =p + 1 and go to 2. 

Step 4. [INCUMBENT UPDATE] If ZP>_Z I, go to 5. Otherwise, set Z I = Z  p, 
y l  = yp,  and x I = x p. 

Step 5. [BACKTRACK] If all subproblems of the branch-and-bound search tree 
have been fathomed, then stop. Otherwise, select one, set p =p + 1, and go 
to 2. 

In Step 2 of the branch-and-bound algorithm, a subproblem must be solved. This 
subproblem is obtained by fixing some of the binary family variables to either zero 
or one while relaxing all other family variables to be non-integer between zero and 
one. This classical relaxation yields a capacitated pure transshipment problem which 
can be easily solved by any of the efficient algorithms designed for this broad class 
of network problems. 

The discussion of this important subproblem is aided by introducing a three-way 
partitioning of the set of family variables. Let the partitioning for a given sub- 
problem be defined by the following subsets: 

F ° = {h ~ F ] Yh fixed to zero}, 

F 1 = {h ~ F [ Yh fixed to one}, 

F r = {h E F ]  Yh not fixed}. 

With this partitioning of the family variables, the resulting capacitated pure trans- 
shipment problem can be stated as follows. 

Minimize ~, fh + ~, (Ck + ~, a.) Xk, (6) 
h ~ F  I k ~ A  h e M ( k )  

Subject to - ~  Xk+ ~, Xk=bi  f o r i e N ,  (7) 
kEA(i) k ~ B ( i )  

0 < Xk <<- Wk and integer for k ~ A. (8) 

In this formulation, the family variables have been implicitly removed from con- 
sideration. Due to the well-known unimodularity characteristic of this class of  net- 
work problems, the integrality conditions on the network variables, (8), can also be 
ignored if  an extreme point solution method is employed to solve the network sub- 
problems. 

The first term in the objective function, (6), is a constant term associated with 
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the family variables that have been fixed to one. The second term reflects the relaxed 
per unit arc costs. For a given arc, this consists of the original arc cost, ck, plus the 
allocation fixed costs of the families to which it belongs. The allocated fixed costs, 
ah, are defined as follows: 

f O if h ~ F °, 
ah = if h e F 1, 

f h / M  h if h E F  r. 

(9) 

The upper bounds, (8), of this capacitated pure transshipment problem reflect both 
the original upper bounds, (5), and the status of the family variables. The new upper 
bounds are given by: 

0 if h e F ° for some h e M(k), 

Wk= Uk otherwise. 

Given a feasible solution to problem (6)-(8), various penalties can be calculated 
to aid the branch-and-bound search process. Foremost among these are the classic 
up and down penalties proposed by Driebeek [4]. They reflect a conservative one- 
step-ahead estimate of the degradation to the objective function when a free binary 
variable is fixed to either one or zero. Both penalties are based on measuring the 
impact of a single dual simplex iteration. The up penalty results from a dual simplex 
iteration to drive the slack variable associated with the family relationship con- 
straints, (3), from the basis, while the down penalty is based on a dual simplex itera- 
tion to drive the binary variable from the basis. Computationally, these iterations 
can be carried out by using a method based on the poly-o~ technique of Charnes and 
Cooper [3]. 

The development of the penalties for the family constrained network problem can 
best be presented by considering the simple down penalty. Since fixing a family 
variable to zero is equivalent to fixing each of its member arcs to zero, the down 
penalty for family variable Yh is simply equal to the largest standard down penalty 
associated with the family member arcs. This useful observation shows that many 
of the penalty methods developed for the classical fixed charge problem can be 
readily extended to this broader class of problems. 

4. Branch-and-bound implementation 

A FORTRAN implementation of the branch-and-bound algorithm was developed 
to solve the family constrained network problem. This implementation makes use 
of the commercially available optimizer ARCNET [1] to solve the numerous capaci- 
tated pure transshipment subproblems. ARCNET, a highly specialized implementa- 
tion of the upper bounded primal simplex algorithm, has recently been used in 
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another application to solve capacitated pure transshipment problems with 10,000 
constraints and 750,000 variables [9]. 

ARCNET, as well as the branch-and-bound routines that were developed for this 
study, make use of various specialized list functions to efficiently store the necessary 
problem description and working parameters [2]. The basic network optimizer 
makes use of the four arc length lists and seven node length lists. In addition to 
these, the branch-and-bound component for the family constrained network prob- 
lem uses nine more special list functions. Seven of these are family length lists, of 
which four are used to store problem data, two are used to store the branch-and- 
bound search tree, and one is used to store the incumbent solution. The two addi- 
tional lists used by the branch-and-bound component of the optimization system are 
used in a sparse storage representation scheme for the family relationship con- 
straints, (3). Their length is given by the number of non-zero coefficients in these 
constraints. Taken as a whole, the total storage requirements (integer words of com- 
puter memory) for the branch-and-bound optimizer for the family constrained net- 
work problem is 

4 Izl + 7 INI + 7 IFI + 2 ~ [F(h)l 
h e F  

where Igl denotes the cardinality of the index set X. 
A set of sixteen test problems were used for benchmark purposes during the 

development of the optimization system. Table 1 provides a basic description of the 
test problems. No explicit attempts were made to specialize either the network opti- 
mizer or the general branch-and-bound process to exploit any underlying network 
structure of the problems. 

Table 1. Test problems 

Problem Network Network Family Average family 

constraints variables variables size 

1 75 150 5 8.0 
2 100 225 5 5.4 

3 100 225 5 8.8 
4 100 275 10 4.1 

5 100 275 10 10.1 

6 200 450 10 I 1.2 

7 200 450 20 10.2 
8 200 950 10 8.8 

9 200 950 10 24.9 

10 200 1540 10 5.5 

11 500 1350 10 9.1 

12 500 1350 10 24.5 
13 500 2500 10 6.1 
14 500 2500 20 6.3 

15 1000 5000 20 6.4 
16 1000 4800 20 16.5 
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Numerous combinations of penalties and branching rules were studied in the de- 
velopment of the optimization system for the family constrained network problem. 
Only three implementations will be presented in any detail. The first implementation 
serves merely as a reference point. It makes no use of penalties, so fathoming is 
accomplished only when an infeasible or all-integer solution is obtained. It employed 
a branching strategy based on a simple LIFO ordering of the family variables. 

The other two strategies reported here make use of various penalties to aid the 
fathoming process. Not surprisingly, it was found that the overhead associated with 
computing the penalties was more than offset by the improvement in the search pro- 
cess. The same set of  penalties were used in the second and third implementations 
for the family constrained network problem. The two implementations differ only 
in their choice of branching variables. 

In the second implementation, the free family variable with the largest up or down 
penalty was selected as the branching variable. After selection, the family variable 
was always fixed to zero. Other strategies, such as always fixing to one or fixing in 
the direction of the largest or smallest penalty, were also tested to some extent, but 
the choice of fixing to zero tended to dominate the others. 

The third implementation, unlike the first two reported, attempted to fix multiple 
family variables before resolving the network problem. This implementation used 
penalties to help fathom subproblems but did not use them in the branching variable 
selection process. Instead,  the optimal solution values of the free family variables 
were used to select their branching direction. Specifically, all free variables with an 
activity level between zero and a were fixed to zero, and all between ]~ and one were 
fixed to one. When no free variable met this selection criteria, the variable closest 
to either zero or one was fixed to its nearest bound. While other parameter settings 
were examined, the testing reported here is based on values of a = 0.25 and fl = 0.75. 

A brief computational comparison of the three implementations of the branch- 
and-bound optimization system for the family constrained network problem is given 
in Table 2. This table shows the actual number of network subproblems examined 
as well as the total solution time for each of the sixteen benchmark problems. This 
testing was performed on a PRIME 750 minicomputer and the reported timing 
statistics include all computational effort except input and output. 

The value of using the penalties to improve the branch-and-bound search process 
is clear. Not only did strategies two and three result in fewer network subproblems 
than the no penalty approach, but the overall solution times were considerably 
reduced even though the penalty generation process was tedious. 

The branching rule of  the third implementation was selected as an attempt to fix 
multiple variables at a time and therefore reduce the total number of network sub- 
problems that had to be considered. It appears from this limited testing that the 
strategy was successful since it addressed the fewest number of subproblems in 
twelve of the sixteen cases. In terms of  total cpu time, it was the fastest in ten cases. 
Strategy two was fastest in five cases. 
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Table 2. Computational results 

Problem Strategy 1 

Subproblems CPU seconds 

Strategy 2 Strategy 3 

Subproblems CPU seconds Subproblems CPU seconds 

1 13 1.29 11 1.77 13 2.21 

2 46 5.26 8 1.14 7 1.34 

3 29 4.77 12 2.36 7 1.87 

4 127 13.17 9 1.67 12 2.41 

5 250 a 32.25 21 3.34 14 2.83 

6 45 10.27 21 5.73 11 4.01 

7 250 a 35.72 39 6.29 22 5.42 

8 83 46.71 25 15.87 12 9.17 

9 58 31.69 27 16.24 14 10.99 

10 91 38.70 13 9.78 17 13.13 

11 27 46.58 20 37.02 31 64.26 

12 70 210.82 32 41.74 19 32.40 

13 29 50.56 12 32.93 12 36.19 

14 143 148.51 51 74.64 23 53.27 

15 250 a 1695.05 250 a 1805.10 41 465.31 

16 250 a 2910.81 41 482.98 28 467.34 

a Reached limit before verifying optimality. 

5. Final considerations 

The FORTRAN optimization system developed for the family constrained net- 
work problem is apparently capable of solving fairly large and complex problems 
in a reasonable period of time. This can be largely attributed to the use of  an effi- 
cient network optimizer for solving the numerous pure transshipment subproblems 
[1]. This allowed full exploitation of the specialized structure of  the network sub- 
problems. 

The concept of family variables is very useful in many network modeling situa- 
tions. Since it allows a charge to be incurred if any member of a set is active. An 
extension of the family relationship constraint, (3), has certain advantages. As 
originally formulated, Mh is a large constant that serves to make (3) redundant if 
the corresponding family variable is fixed to one. If, however, Mh is given as a true 
'family capacity', then the constraint would limit the total activity level of  the family 
member arcs. In some instances, this is a powerful capability. Unfortunately, the 
resulting subproblems considered during the branch-and-bound search process are 
no longer simple pure network problems. The optimization system for this extended 
problem class would need to make use of  an efficient linear programming or em- 
bedded network/LP optimizer for the subproblems. Many other extensions of the 
family variable concept are also possible if a full linear programming optimizer is 
used by the branch-and-bound process. 
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