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We use the δN formalism to study the trispectrum Tζ of the primordial curvature perturbation ζ when
the latter is generated by vector field perturbations, considering the tree-level and one-loop contributions.
The order of magnitude of the level of non-gaussianity in the trispectrum, τNL, is calculated in this
scenario and related to the order of magnitude of the level of non-gaussianity in the bispectrum, fNL,
and the level of statistical anisotropy in the power spectrum, gζ . Such consistency relations will put
under test this scenario against future observations. Comparison with the expected observational bound
on τNL from WMAP, for generic inflationary models, is done.

© 2010 Elsevier B.V.

1. Introduction

Non-gaussianity in the primordial curvature perturbation ζ is one of the subjects of more interest in modern cosmology, because the
non-gaussianity parameters fNL and τNL together with the spectrum amplitude Aζ and spectral index nζ allow us to discriminate between
the different models proposed for the origin of the large-scale structure (see for example Refs. [1–4]). In most of these cosmological models
it is assumed that the n-point correlators of ζ are translationally and rotationally invariants. However, since violations of the translational
(rotational) invariance (i.e. violations of the statistical homogeneity (isotropy)) seem to be present in the data [5–10] ([11–15]), many
researchers have started to build theoretical models that include those violations, which could be due to the presence of vector field
perturbations [16–34], spinor field perturbations [35–37], or p-form perturbations [38–42], due to anisotropic expansion [22,29,35,40,
43–48] or due to an inhomogeneous background [16,30,49].

Violation of the statistical isotropy is implemented via modifications of the usual definitions of the statistical descriptors [16,49,50]
of the primordial curvature perturbation ζ . For example, to parametrize the statistical anisotropy under the assumption of statistical
homogeneity, the power spectrum P ′(k) must include an isotropic piece P (k) and an anisotropic piece proportional to the former and
exhibiting explicitly the appearance of a preferred direction [50]:

P ′(k) = P (k)
(
1 + gζ (d̂ · k̂)2 + · · ·). (1)

In the previous expression gζ is a dimensionless parameter, k̂ is the unitary wave-vector, and d̂ is the unitary vector along the pre-
ferred direction. Some recent papers [11–15] claim for the presence of statistical anisotropy in the five-year data from the NASA’s WMAP
satellite [51]. In particular, if considering just the quadrupolar term of Eq. (1):

Pζ (k) = P iso
ζ (k)

(
1 + gζ (d̂ · k̂)2), (2)

Ref. [11] gives gζ � 0.290 ± 0.031 which rules out statistical isotropy at more than 9σ . Nevertheless, the preferred direction lies near the
plane of the solar system, which makes the authors of Ref. [11] believe that this effect could be due to an unresolved systematic error
(among other possible systematic errors which have not been demonstrated either to be the source of this statistical anisotropy nor to be
completely uncorrelated [11]). Even if the result found in Ref. [11] turns out to be due to a systematic error, some forecasted constraints
on gζ show that the statistical anisotropy subject is worth studying [52]: |gζ | � 0.1 for the NASA’s WMAP satellite [51] if there is no
detection, and |gζ | � 0.02 for the ESA’s PLANCK satellite [53] if there is no detection.
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Recent works show that the particular presence of vector fields in the inflationary dynamics may generate sizeable levels of non-
gaussianity described by fNL [54–56] and τNL [57]. As shown in Ref. [56], including vector fields allows us to get consistency relations
between the order of magnitude of the non-gaussianity parameter fNL and the amount of statistical anisotropy in the spectrum gζ . The
above studies may transform the violation of the statistical isotropy in a decisive tool to discriminate among some of the most usual
cosmological models.

In this Letter we use the δN formalism to calculate the tree-level and one-loop contributions to the trispectrum Tζ of ζ including
vector and scalar field perturbations. We then calculate the order of magnitude of the level of non-gaussianity in Tζ including the one-
loop contributions and write down formulas that relate the order of magnitude of τNL with the amount of statistical anisotropy in the
spectrum, gζ , and the order of magnitude of the level of non-gaussianity in the bispectrum, fNL. Finally, comparison with the expected
observational bound from WMAP is done.

2. Trispectrum from vector field perturbations

The δN formalism [58–62] extended to include the possible statistical anisotropy in the primordial curvature perturbation ζ origi-
nated from vector field perturbations [30], provides a powerful tool to calculate ζ and its statistical descriptors. Assuming an inflationary
dynamics dominated by just one scalar field φ and one vector field A, ζ is expressed as [30]1

ζ(x) ≡ δN
(
φ(x), Ai(x), t

) = Nφδφ + Ni
AδAi + 1

2
Nφφ(δφ)2 + Ni

φ AδφδAi + 1

2
Nij

A AδAiδA j, (3)

where

Nφ ≡ ∂N

∂φ
, Ni

A ≡ ∂N

∂ Ai
, Nφφ ≡ ∂2N

∂φ2
, Nij

A A ≡ ∂2N

∂ Ai∂ A j
, Ni

φ A ≡ ∂2N

∂φ∂ Ai
, (4)

and i denotes the spatial indices running from 1 to 3. Now, we define the power spectrum Pζ and the trispectrum Tζ for the primordial
curvature perturbation, through the Fourier modes of ζ , as:

〈
ζ(k1)ζ(k2)

〉 ≡ (2π)3δ(k1 + k2)Pζ (k) ≡ (2π)3δ(k1 + k2)
2π2

k3
Pζ (k), (5)

〈
ζ(k1)ζ(k2)ζ(k3)ζ(k4)

〉 ≡ (2π)3δ(k1 + k2 + k3 + k4)Tζ (k1,k2,k3,k4)

≡ (2π)3δ(k1 + k2 + k3 + k4)
(2π2)3

k3
1k3

2|k2 + k3|3
Tζ (k1,k2,k3,k4). (6)

As shown in Ref. [30], the tree-level contribution to the spectrum has the form of Eq. (2). This is simply obtained by using Eqs. (3) and (5).
Assuming again only tree-level contributions, the level of non-gaussianity fNL in the bispectrum Bζ was calculated in Ref. [54]. The same
calculation was performed in Ref. [56] but this time including also one-loop contributions and considering them to be dominant over the
tree-level terms. In both works, Pζ and fNL were shown to exhibit anisotropic contributions coming from the vector field perturbation. In
this Letter we show that it is possible to obtain an analogous expression for the level of non-gaussianity τNL in the trispectrum Tζ . To do
it, we first need to calculate the expressions for Pζ and Tζ , defined in Eqs. (5) and (6). Considering contributions up to one-loop order,
we find2:

P tree
ζ (k) = N2

φ Pδφ(k) + Ni
A N j

A Ti j(k) = N2
φ Pδφ(k) + N2

A P+(k) + (NA · k̂)2 P+(k)(rlong − 1), (7)

P 1-loop
ζ (k) =

∫
d3 p k3

4π |k + p|3 p3

[
1

2
N2

φφ Pδφ

(|k + p|)Pδφ(p) + Ni
φ A N j

φ A Pδφ

(|k + p|)Ti j(p) + 1

2
Nij

A A Nkl
A A Tik(k + p)T jl(p)

]
, (8)

T tree
ζ (k1,k2,k3,k4) = N2

φ N2
φφ

[
Pδφ(k2)Pδφ(k4)Pδφ

(|k1 + k2|
) + 11 perm.

]
+ Ni

A N j
A Nkl

A A Nmn
A A

[
Tik(k2)T jm(k4)Tln(k1 + k2) + 11 perm.

]
+ N2

φ Ni
Aφ N j

Aφ

[
Pδφ(k2)Pδφ(k4)Ti j(k1 + k2) + 11 perm.

]
+ Ni

A N j
A Nk

Aφ Nl
Aφ

[
Tik(k2)T jl(k4)Pδφ

(|k1 + k2|
) + 11 perm.

]
+ Nφ Nφφ Ni

A N j
Aφ

[
Pδφ(k2)Ti j(k4)Pδφ

(|k1 + k2|
) + 23 perm.

]
+ Nφ Ni

A N j
Aφ Nkl

A A

[
Pδφ(k2)Tik(k4)T jl(k1 + k2) + 23 perm.

]
, (9)

T 1-loop
ζA

(k1,k2,k3,k4) = Nij
A A Nkl

A A Nmn
A A Nop

A A

∫
d3 p k3

1k3
3|k3 + k4|3

4π p3|k1 − p|3|k3 + p|3|k3 + k4 + p|3
× Tim(p)T jk(k1 − p)Tnp(k3 + p)Tlo(k3 + k4 + p), (10)

where

Ti j(k) ≡ T even
i j (k)P+(k) + iT odd

i j (k)P−(k) + T long
i j (k)Plong(k), (11)

1 This expression corrects Eq. (3.14) of Ref. [30], and Eq. (3) of Ref. [54], where a factor 2 in the fourth term of the expansion is missing.
2 Eq. (8) corrects a mistake in Eq. (4.12) of Ref. [30] where the infinitesimal volume element d3 p was incorrectly expressed in terms of dp.
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and

T even
i j (k) ≡ δi j − k̂ik̂ j, T odd

i j (k) ≡ εi jkk̂k, T long
i j (k) ≡ k̂ik̂ j . (12)

Eq. (7) was written in the form of Eq. (2) with d̂ = N̂A , NA being a vector with magnitude N A ≡
√

Ni
A Ni

A , and rlong ≡ Plong/P+ , where
Plong is the power spectrum of the longitudinal component, and P+ and P− are the parity conserving and violating power spectra defined
by

P± ≡ 1

2
(P R ± PL), (13)

with P R and PL denoting the power spectra of the transverse components with right-handed and left-handed polarizations [30]. Eq. (10)
only includes terms coming from vector field perturbations; this is because the complete expression (including the scalar and the mixed
terms) is too large and in the current paper we are assuming that the contributions to Tζ coming only from vector fields dominate over
all the other contributions.

3. Vector field contributions to the statistical descriptors

When statistical anisotropy is assumed, there is an important restriction from observation: one related to the amount of statistical
anisotropy present in the spectrum, which is given by the parameter gζ in Eq. (2). Recent studies of the data coming from the WMAP
experiment, set an upper bound over gζ : gζ � 0.383 [11]. The latter observational constraint is fully satisfied when we assume that the
contributions coming from vector fields in Eqs. (7) and (8) are smaller than those coming from scalar fields. That means that the first
term in Eq. (7) dominates over all the other terms, even those coming from one-loop contributions.

In our study we will assume that the terms coming only from the vector field dominate over those coming from the mixed terms and
from the scalar fields only, except for the case of the tree-level spectrum, where we will assume that the scalar term is the dominant one.3

Of course, for an actual realization of this scenario, we need to show that such constraints are fully satisfied. From the above assumptions
it follows that:

Pζ
tree(k) = Pζ

tree
φ (k) + Pζ

tree
A (k), (14)

P 1-loop
ζ (k) = Pζ

1-loop
A (k), (15)

T tree
ζ (k1,k2,k3,k4) = Tζ

tree
A (k1,k2,k3,k4), (16)

T 1-loop
ζ (k1,k2,k3,k4) = Tζ

1-loop
A (k1,k2,k3,k4), (17)

where the subscripts ζφ and ζA mean scalar field or vector field contributions to ζ . The above expressions lead us to two different
possibilities that let us study and probably get a high level of non-gaussianity:

• Vector field spectrum (PζA ) and trispectrum (TζA ) dominated by the tree-level terms.
• Vector field spectrum (PζA ) and trispectrum (TζA ) dominated by the one-loop contributions.

Other possibilities are not viable because it is impossible to satisfy simultaneously that the vector field spectrum (PζA ) is dominated by
the tree-level terms and the trispectrum (TζA ) is dominated by the one-loop contributions, or the vector field spectrum (PζA ) is dominated
by the one-loop contributions and the trispectrum (TζA ) is dominated by the tree-level terms.4 This is perhaps related to the fact that we
have taken into account only one vector field. Such a conclusion may be relaxed if we take into account more than one vector field, as
analogously happens in the scalar multi-field case [63,64].

In order to study the above possibilities, we need to estimate the integrals coming from loop contributions. From Eqs. (8), (10), (15),
and (17) the integrals to solve are:

Pζ
1-loop(k) = 1

2
Nij

A A Nkl
A A

∫
d3 p k3

4π p3|k + p|3 Tik(k + p)T jl(p), (18)

T 1-loop
ζA

(k1,k2,k3,k4) = Nij
A A Nkl

A A Nmn
A A Nop

A A

∫
d3 p k3

1k3
3|k3 + k4|3

4π p3|k1 − p|3|k3 + p|3|k3 + k4 + p|3
× Tim(p)T jk(k1 − p)Tnp(k3 + p)Tlo(k3 + k4 + p). (19)

The above integrals cannot be done analytically, but they can be estimated using the same technique shown in Appendix A; it is found
that the integrals are proportional to ln(kL) (where L is the box size) if the spectrum is scale invariant. Following it, we find from Eqs. (18)
and (19):

P 1-loop
ζA

(k) = 1

2
Nij

A A Nkl
A A(2P+ + Plong)δik T jl(k) ln(kL), (20)

T 1-loop
ζA

(k1,k2,k3,k4) = Nij
A A Nkl

A A Nmn
A A Nop

A A ln(kL)(2P+ + Plong)δim
[

T jk(k1)Tnp(k3)Tlo(k4 + k3)
]
. (21)

3 The power spectrum Pζ must be dominated by the tree-level terms. Otherwise there would be too much scale dependence in conflict with the current observational
limit on nζ .

4 See the relevant discussion regarding the vector field bispectrum BζA in Ref. [56].
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Observations are available within the observable universe and, except for the low multipoles of the CMB, all observations probe scales
k � H0. To handle them, one should choose the box size as L = H−1

0 [65]. A smaller choice would throw away some of the data while a

bigger choice would make the spatial averages unobservable. Low multipoles 
 of the CMB anisotropy explore scales of order H−1
0 /
 not

very much smaller than H−1
0 . To handle them one has to take L bigger than H−1

0 . For most purposes, one should use a box, such that
ln(LH0) is just a few (i.e. not exponentially large) [66–68]. When comparing the loop contribution with observation one should normally
set L = H−1

0 , except for the low CMB multipoles where one should choose L � H−1
0 with ln(kL) ∼ 1. With the choice L = H−1

0 , ln(kL) ∼ 5
for the scales explored by the CMB multipoles with 
 ∼ 100, while ln(kL) ∼ 10 for the scales explored by galaxy surveys. Since we are
interested in giving orders of magnitude and simple mathematical expressions, we will set ln(kL) ∼ 1 without loss of generality.

4. Calculation of the non-gaussianity parameter τNL

The non-gaussianity parameter τNL is defined by [69]:

τNL = 2Tζ (k1,k2,k3,k4)

[Pζ (k1)Pζ (k2)Pζ (k1 + k4) + 23 perm.] . (22)

Remember that the isotropic contribution in Eq. (2) is always dominant compared to the anisotropic one so that we may write in the
above expression only the isotropic part of the spectrum Pζ

iso(k):

τNL = 2Tζ (k1,k2,k3,k4)

[Pζ
iso(k1)Pζ

iso(k2)Pζ
iso(|k1 + k4|) + 23 perm.] . (23)

Using the above expression, we will estimate the possible amount of non-gaussianity generated by the anisotropic part of the primordial
curvature perturbation, taking into account different possibilities and assuming that the non-gaussianity is produced solely by vector field
perturbations.

4.1. Vector field spectrum (PζA ) and trispectrum (TζA ) dominated by the tree-level terms

In this first case, we assume that the trispectrum is dominated by vector field perturbations and that the higher order terms in the δN
expansion in Eq. (3) involving the vector field are sub-dominant against the first-order term: Ni

AδAi � Nij
A AδAiδA j . The latter implies that

both the spectrum and the trispectrum are dominated by the tree-level terms, i.e. Pζ
tree
A � Pζ

1-loop
A and Tζ

tree
A � Tζ

1-loop
A . Thus, we have

from Eq. (23):

τNL = 2Tζ
tree
A (k1,k2,k3,k4)

[Pζ
iso(k1)Pζ

iso(k2)Pζ
iso(|k1 + k4|) + 23 perm.] , (24)

which, in view of Eqs. (9) and (16), looks like:

τNL � 2Ni
A N j

A Nkl
A A Nmn

A A[Tik(k2)T jm(k4)Tln(k1 + k2) + 11 perm.]
[Pζ

iso(k1)Pζ
iso(k2)Pζ

iso(|k1 + k4|) + 23 perm.] . (25)

We will just consider here the order of magnitude of τNL. Therefore, we will ignore the specific k dependence of Ti j . Instead, we will
assume that Plong, P+ , and P− are all of the same order of magnitude, which is a good approximation for some specific actions (see
for instance Ref. [30]), and take advantage of the fact that the spectrum is almost scale invariant [70]. Thus, after getting rid of all the k
dependences, the order of magnitude of τNL looks like:

τNL � P 3
A N2

A N2
A A

(Pζ
iso)3

, (26)

where P A = 2P+ + Plong. Employing our assumption that N AδA > N A AδA2, and since the root mean squared value for the vector field
perturbation δA is

√
P A , the contribution of the vector field to ζ is given by ζA ∼ √

PζA ∼ N A
√

P A . An upper bound for τNL is therefore
given by:

τNL �
Pζ

2
A

(Pζ
iso)3

. (27)

Since the order of magnitude of gζ is PζA /Pζ
iso, under the assumptions made above we get:

τNL � 8 × 106
(

gζ

0.1

)2

, (28)

where (Pζ
iso)1/2 � 5 × 10−5 [70] has been used. Eq. (28) gives an upper bound for the level of non-gaussianity τNL in terms of the

level of statistical anisotropy in the power spectrum gζ when the former is generated by the anisotropic contribution to the curvature
perturbation. Comparing with the expected observational limit on τNL coming from future WMAP data releases, τNL ∼ 2 × 104 [71],5 we

5 The trispectrum in this scenario might be either of the local, equilateral, or orthogonal type. We are not interested in this Letter on the shape of the non-gaussianity
but on its order of magnitude. Being that the case, comparing with the expected bound on the local τNL [71] makes no sensible difference under the assumption that the
expected bounds on the equilateral and orthogonal τNL are of the same order of magnitude, as analogously happens in the fNL case for single-field inflation [72].
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conclude that in this scenario a large level of non-gaussianity in the trispectrum Tζ of ζ is possible, leaving some room for ruling out this
scenario if the current expected observational limit is overtaken.

As an example of this scenario, we apply the previous results to a specific model, e.g. the vector curvaton model [17–19], where the
N-derivatives are [54]:

N A = 2

3A
r, (29)

N A A = 2

A2
r, (30)

where A ≡ |A| is the value of vector field just before the vector curvaton field decays and the parameter r is the ratio between the energy
density of the vector curvaton field and the total energy density of the Universe just before the vector curvaton decay.

First, we check if the conditions under which the vector field spectrum and trispectrum are always dominated by the tree-level terms
are fully satisfied. From Eqs. (7), (9), (20) and (21) our constraint leads to:

P A N2
A � P 2

A N2
A A, (31)

P 3
A N2

A N2
A A � P 4

A N4
A A, (32)

which mean that the if the vector field spectrum is dominated by the tree-level terms so is the vector field trispectrum. An analogous
situation happens when the vector field spectrum is dominated by the one-loop terms: the vector field trispectrum is also dominated by
this kind of terms. As a result, it is impossible that simultaneously the vector field spectrum is dominated by the tree-level (one-loop)
terms and the vector field trispectrum is dominated by the one-loop (tree-level) terms. Following Eq. (31), we get:

P A 	
(

N A

N A A

)2

, (33)

which, in view of ζA ∼ √
PζA ∼ N A

√
P A and Eqs. (29) and (30), reduces to:

r � 2.25 × 10−4 g1/2
ζ . (34)

This lower bound on the r parameter has to be considered when building a realistic particle physics model of the vector curvaton scenario.
Second, looking at Eq. (26), we obtain the level of non-gaussianity τNL for this scenario:

τNL � 2 × 10−2

r2

(
gζ

0.1

)3

. (35)

This is a consistency relation between τNL, gζ , and r which will help when confronting the specific vector curvaton realization against
observation. Indeed, a similar consistency relation between fNL and gζ was derived for this scenario in Ref. [56]:

fNL � 4.5 × 10−2

r

(
gζ

0.1

)2

. (36)

Thus, in the framework of the vector curvaton scenario, the levels of non-gaussianity fNL and τNL are related to each other via the r
parameter in this way:

τNL � 2.1

r1/2
f 3/2

NL , (37)

in contrast to the standard result

τNL = 36

25
f 2

NL, (38)

for the scalar field case (including the scalar curvaton scenario) found in Ref. [73].

4.2. Vector field spectrum (PζA ) and trispectrum (TζA ) dominated by the one-loop contributions

From Eqs. (21) and (23) we get

τNL � Nij
A A Nkl

A A Nmn
A A Nop

A A ln(kL)(2P+ + Plong)δim[T jk(k1)Tnp(k3)Tlo(|k4 + k3|)]
[Pζ

iso(k1)Pζ
iso(k2)Pζ

iso(|k1 + k4|) + 23 perm.] . (39)

Assuming again that Plong, P+ , and P− are all of the same order of magnitude, and that the spectrum is scale invariant, we end up
with:

τNL � P 4
A N4

A A

(Pζ
iso)3

. (40)

Performing a similar analysis as done in the previous subsection, but this time taking into account that the vector field spectrum is
dominated by the one-loop contribution and therefore ζA ∼ √

PζA ∼ N A A P A , we arrive at:

τNL ∼ Pζ
2
A

(P iso)3
∼ 8 × 106

(
gζ

0.1

)2

. (41)

ζ
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The above result gives a relation between the non-gaussianity parameter τNL and the level of statistical anisotropy in the power spec-
trum gζ .

Now, we call a similar result that we found for the non-gaussianity parameter fNL in Ref. [56], that is:

fNL ∼ 103
(

gζ

0.1

)3/2

. (42)

By combining Eqs. (41) and (42) we get:

τNL ∼ 8 × 102 f 4/3
NL , (43)

which gives a consistency relation between the non-gaussianity parameters fNL and τNL for this particular scenario. The consistency
relations in Eqs. (41), (42), and (43) will put under test this scenario against future observations. In particular, the consistency relation in
Eq. (43) differs significantly from those obtained when ζ is generated only by scalar fields (see e.g. Eq. (38) and Ref. [73]).

Again when we apply our result to the vector curvaton scenario, we get from Eqs. (7), (9), (20), (21), (29) and (30):

r < 2.25 × 10−4 g1/2
ζ , (44)

which is an upper bound on the r parameter that must be considered when building a realistic particle physics model of the vector
curvaton scenario.

5. Conclusions

We have studied in this Letter the order of magnitude of the level of non-gaussianity τNL in the trispectrum Tζ when statistical
anisotropy is generated by the presence of one vector field. We have shown that it is possible to get an upper bound on the order of
magnitude of τNL if we assume that the tree-level contributions dominate over all higher order terms in both the vector field spectrum
(PζA ) and the trispectrum (TζA ); this bound is given in Eq. (28). We also show that it is possible to get a high level of non-gaussianity τNL,
easily exceeding the expected observational bound from WMAP, if we assume that the one-loop contributions dominate over the tree-level
terms in both the vector field spectrum (PζA ) and the trispectrum (TζA ). τNL is given in this case by Eq. (41), where we may see that
there is a consistency relation between the order of magnitude of τNL and the amount of statistical anisotropy in the spectrum gζ . Two
other consistency relations are given by Eqs. (42) and (43), this time relating the order of magnitude of the non-gaussianity parameter
fNL in the bispectrum Bζ with the amount of statistical anisotropy gζ and the order of magnitude of the level of non-gaussianity τNL
in the trispectrum Tζ . Such consistency relations let us fix two of the three parameters by knowing about the other one, i.e. if the non-
gaussianity in the bispectrum (or trispectrum) is detected and our scenario is appropriate, the amount of statistical anisotropy in the
power spectrum and the order of magnitude of the non-gaussianity parameter τNL (or fNL) must have specific values, which are given
by Eqs. (42) (or (41)) and (43). A similar conclusion is reached if the statistical anisotropy in the power spectrum is detected before the
non-gaussianity in the bispectrum or the trispectrum is.

Appendix A. One-loop integral for Pζζζ

We sketch in this appendix the mathematical procedure to estimate the integrals in Eqs. (8) and (10). We only work one integral since
the other ones are estimated in a similar way.

The one-loop contribution to the spectrum is:

P 1-loop
ζ (k) =

∫
d3 p k3

4π |k + p|3 p3

[
1

2
N2

φφ Pδφ

(|k + p|)Pδφ(p) + Ni
φ A N j

φ A Pδφ

(|k + p|)Ti j(p) + 1

2
Nij

A A Nkl
A A Tik(k + p)T jl(p)

]
. (45)

As we can see, the total contribution to P 1-loop
ζ corresponds to three integrals, each one having two singularities: one in p = 0 and the

other one in p = −k. If the fields spectra are scale invariant, the first integral may be written as:

P 1-loop(a)
ζ (k) = 1

8π
P 2

δφ N2
φφ

∫
d3 p k3

4π |k + p|3 p3
, (46)

so the actual integral to estimate is:

I =
∫

L−1

d3 p k3

|k + p|3 p3
. (47)

This integral is logarithmically divergent at the zeros in the denominator, but there is a cutoff at k = L−1. The subscript L−1 indicates
that the integrand is set equal to zero in a sphere of radius L−1 around each singularity, and the discussion makes sense only for
L−1 	 k 	 kmax . If we consider the infrared divergences, that means p 	 k, we may write:

I =
k∫

−1

d3 p

p3
∼ 4π ln(kL). (48)
L



126 C.A. Valenzuela-Toledo, Y. Rodríguez / Physics Letters B 685 (2010) 120–127
To calculate the contribution coming from the other singularity we can make the substitution q = k + p. After evaluating this latter
integral, we find that the contribution is again 4π ln(kL). The integral in Eq. (47) may be finally estimated by adding the contributions of
the two singularities, that means:

I =
∫

d3 p k3

|k + p|3 p3
= 8π ln(kL). (49)

More details to evaluate these integrals may be found in Refs. [67,69,74].
The technique to evaluate this kind of integrals when considering vector fields is the same, although the procedure is algebraically

more tedious. Nevertheless, one can finally arrive to the same conclusion. A more detailed discussion about this issue will be found in a
forthcoming publication [75].
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[30] K. Dimopoulos, M. Karčiauskas, D.H. Lyth, Y. Rodríguez, JCAP 0905 (2009) 013.
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