relapse-free survival 79.6 % CI95% [72.1-85.2] and colostomy-free survival 81.2% CI95% [74.0-86.6].

Conclusion: IMRT is emerging as a standard therapy for anal cancer. A dosimetric analysis will be done to complete this study.

Poster: RTT track: Other topics for RTTs

PO-1015
Virtual training in patient information sessions prior to external beam radiotherapy
A. Stewart-Lord1, M. Brown1
1London South Bank University, School of Health and Social Care, London, United Kingdom
2Barking- Havering & Redbridge University Hospitals NHS Trust, Cancer & Clinical Support Division, London, United Kingdom

Purpose or Objective: The aim of the study was to explore the prostate patients’ perceptions of Virtual Environment for Radiotherapy Training (VERT) as an information giving resource prior to radiotherapy delivery.

The objectives were:
• To determine the level of knowledge of those patients who attended (VERT) for a pre-treatment talk
• To explore patients perceptions who utilised (VERT) as an information giving resource prior to radiotherapy treatment
• To identify the benefits and limitations of using VERT as pre-treatment information giving resource

Material and Methods: A survey design was utilised to address the aims and objective of the study. The study was conducted over 2 phases: Phase 1 - participants were invited to attend a (VERT)patient information session four weeks prior to their planning CT scan. Phase 2 - patients were asked to complete a questionnaire two weeks after start of radiotherapy treatment. The questionnaire was designed to collect data on the prostate cancer patient’s knowledge attitudes and beliefs regarding pre-treatment information provided prior to their radiotherapy treatment. A total population sample was used for this study. All patients being referred for radical radiotherapy to the prostate were invited to participate, over a five month data collection period (March - August 2015). A total of n=40 patients were included in the sample

Results: Statistical package SPSS (Version 21) was used for data analysis. Descriptive statistics and frequency tables were the first steps in the data analysis. Thereafter, Chi-squared tests were used to analyse the data further. Open ended questions were analysed thematically.

Results are currently being analysed however preliminary results are very positive, a summary of the preliminary results are outlined below (the final presentation will include frequency tables):
• Most patients found the (VERT) session to be very helpful
• Most patients stated that the session helped them to understand the importance of following bowel and bladder instructions prior to treatment and enhanced their knowledge about radiotherapy side effects
• The sessions were highly recommended for other patients and future recommendations included family members and carers to be included.
• Most patients were comfortable being part of a group during the presentation.
• Patients believed the sessions reduced their anxiety and stress about their upcoming treatment.

Conclusion: Patient perceptions on the use of (VERT) as information giving tool prior to radiotherapy treatment were very positive. The sessions enable patients to understand the potential impact of treatment volumes of the internal organ shape and localisation differed from that originally planned, enabling them to comply with radiotherapy treatment instructions.

PO-1016
Radiotherapy students’ perceptions of skills training simulation using a bariatric suit
R.N.M. Khine1, D. Flinton1, P. Cherry1, R. Thorne1
1City University London, Radiography, London, United Kingdom

Purpose or Objective: Aim: The question posed is “Can simulation training improve/enhance student knowledge and skills in dealing with bariatric patients?”
Context: Accurate patient positioning, immobilisation and the delivery of precisely targeted radiation treatment are key stages in the radiotherapy process and bariatric patients present a unique challenge in achieving these stages. Radiotherapy for obese patients is a major challenge, both for the patient and the radiographer. There are practical limitations of radiation therapy equipment such as treatment couch weight limits and computed tomography (CT) scan aperture limits. Daily setup potentially is difficult. In addition, it also impacts on the safe manual handling on both staff and this group of patients.

Material and Methods: As part of their professional practice clinical skills sessions, the Year one undergraduate radiotherapy students (n=32) took part in a simulation session involving a bariatric suit. During each session, the radiotherapy lecturer wore the bariatric suit whilst the students working in pairs were required to position the lecturer (acting as the patient) on the couch. After each simulation session, students were asked to complete a 10 point Likert scale questionnaire which permitted them to rate their experience of using the bariatric suit. A response rate of 100% was achieved. They were asked to consider the following 3 areas:
• Whether it aided their learning in positioning patients
• Whether it increased their awareness to deal with different patient groups
• Whether it increased their knowledge on the importance of accuracy and precision

In addition, they were asked to write a short reflection to identify what they learnt from the session.

Results: Students gave favourable feedback in all 3 areas investigated with a mean score above 4.5 (range -5 to +5) in all areas. The written reflective feedback supported the above quantitative scores by acknowledging the benefits of simulated training.

Conclusion: The feedback from the students suggests that simulation training using a bariatric suit has had a positive impact on their learning. In addition, the sessions have assisted them in appreciating aspects as such as accuracy, precision, communication and manual handling issues. Most significantly students have acknowledged that the sessions have prepared them for their clinical placements.

PO-1017
Survey of image-guided radiation therapy use in Australia
V. Batumalai1,2, L. Holloway1,3,4, S. Kumar1,2, K. Dundas1, M. Jameson1,4, S. Vinod1,2, G. Delaney1,2
1Liverpool Cancer Therapy & Ingham Institute, Radiation Oncology, NSW, Australia
2South Western Clinical School, University of New South Wales, NSW, Australia
3Institute of Medical Physics, University of Sydney, NSW, Australia
4Centre for Medical Radiation Physics, University of Wollongong, NSW, Australia

Purpose or Objective: Image-guided radiation therapy (IGRT) utilises various imaging modalities for target and organs at risk delineation, tumour localisation, and patient setup. Although there is considerable development in IGRT technologies in Australia, little is known about their current clinical applications. The aim of this survey was to evaluate imaging technologies currently in use for planning and delivery of radiotherapy (RT) in Australia.