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Abstract

An important problem that arises in different areas of science and engineering is that of computing the limits of sequences of
vectors {xn}, where xn ∈ CN with N very large. Such sequences arise, for example, in the solution of systems of linear or nonlinear
equations by fixed-point iterative methods, and limn→∞ xn are simply the required solutions. In most cases of interest, however,
these sequences converge to their limits extremely slowly. One practical way to make the sequences {xn} converge more quickly
is to apply to them vector extrapolation methods. In this work, we review two polynomial-type vector extrapolation methods that
have proved to be very efficient convergence accelerators; namely, the minimal polynomial extrapolation (MPE) and the reduced
rank extrapolation (RRE). We discuss the derivation of these methods, describe the most accurate and stable algorithms for their
implementation along with the effective modes of usage in solving systems of equations, nonlinear as well as linear, and present
their convergence and stability theory. We also discuss their close connection with the method of Arnoldi and with GMRES, two
well-known Krylov subspace methods for linear systems. We show that they can be used very effectively to obtain the dominant
eigenvectors of large sparse matrices when the corresponding eigenvalues are known, and provide the relevant theory as well. One
such problem is that of computing the PageRank of the Google matrix, which we discuss in detail. In addition, we show that a
recent extrapolation method of Kamvar et al. that was proposed for computing the PageRank is very closely related to MPE. We
present a generalization of the method of Kamvar et al. along with a very economical algorithm for this generalization. We also
provide the missing convergence theory for it.
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1. Introduction

An important problem that arises in different areas of science and engineering is that of computing the limits of
sequences of vectors {xn}, where xn ∈ CN with N very large. Vector sequences arise, for example, in the solution
of systems of linear or nonlinear equations by fixed-point iterative methods, and limn→∞ xn are simply the required
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solutions. One common source of such systems is the finite-difference or finite-element discretization of continuum
problems.

Let us consider the (linear or nonlinear) system of equations

ψ(x) = 0; ψ : CN
→ CN , (1.1)

whose solution we denote s. Then, starting with a suitable vector x0, an initial approximation to s, the sequence {xn}

can be generated by some fixed-point iterative method as in

xn+1 = F(xn), n = 0, 1, . . . ; F : CN
→ CN , (1.2)

where x − F(x) = 0 is a possibly “preconditioned” form of (1.1) hence has the same solution s (that is, ψ(s) = 0 and
also s = F(s)), and, in case of convergence, limn→∞ xn = s. One possible form of F(x) would be

F(x) = x + ωA(x)ψ(x),

where A(x) is a nonsingular N × N matrix and ω is a relaxation parameter.
In most cases of interest, however, the sequences {xn} converge to their limits extremely slowly; for example, when

they arise from the finite-difference or finite-element discretizations of continuum problems, their rates of convergence
deteriorate as the relevant mesh-sizes become smaller (hence N becomes larger). One practical way to accelerate their
convergence is to apply to them suitable vector extrapolation methods.

A detailed review of vector extrapolation methods, containing the developments up to the early 1980s can be found
in the work of Smith, Ford, and Sidi [1]. This work discusses (i) two polynomial-type methods, namely, the minimal
polynomial extrapolation (MPE) of Cabay and Jackson [2] and the reduced rank extrapolation (RRE) of Eddy [3]
and Mes̆ina [4], and (ii) three epsilon algorithms, namely, the scalar and vector epsilon algorithms of Wynn [5,6], and
the topological epsilon algorithm of Brezinski [7]. Numerical experience suggests that, when applied to very large
systems of equations, polynomial-type methods are in general more economical than the epsilon algorithms as far as
computation time and storage requirements are concerned.

In the first part of this work, we present an up-to-date review of MPE and RRE, the two polynomial-type methods.
This review contains the developments that have taken place in the study of MPE and RRE since the publication of [1].
We discuss the derivation of MPE and RRE, describe the most accurate and stable algorithms for their implementation
along with the effective modes of usage, and present their convergence and stability theory. We also discuss their
close connection with the method of Arnoldi [8] and with GMRES of Saad and Schultz [9], two well-known Krylov
subspace methods for solving linear systems.

When applied to the sequence of partial sums of a vector-valued power series of a vector-valued meromorphic
function, MPE serves as a tool for analytic continuation: it produces vector-valued rational approximations to the
function in question that approximate it even outside the circle of convergence of its power series. These rational
approximations are closely related to the Arnoldi method for eigenvalue approximations. This topic, which we do not
go into here, is discussed at length in Sidi [10,11].

Following the summary of MPE and RRE, we discuss their application to the solution of systems of equations, and
we describe a strategy that is known as cycling or restarting. We also describe some extensions of cycling that have
proved to be effective in that they reduce the time and/or storage overhead involved in the application of MPE and
RRE.

In the second part of this work, we consider the computation of an eigenvector of an arbitrary large and sparse
matrix, corresponding to its largest eigenvalue when this eigenvalue is known. In addition to being of importance
in its own right, this problem has attracted much attention recently because it also arises in the computation of the
PageRank of the Google Web matrix. We show that vector extrapolation methods, especially MPE and RRE, can
be used effectively in the solution of this problem and hence in PageRank computations. In addition, drawing on
some earlier results concerning Drazin-inverse solutions of consistent singular linear systems, we propose and justify
theoretically the use of standard Krylov subspace methods, such as the method of Arnoldi and GMRES, for solving
this problem. We present a polynomial preconditioner to improve the performance of these methods as well.

Turning next to the computation of the PageRank, we study an extrapolation method that was proposed recently by
Kamvar et al. [12] and denoted quadratic extrapolation there. We generalize this method, and prove that the resulting
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generalization is very closely related to MPE, and also state a convergence theorem for it. In addition, we provide an
algorithm that is twice as economical as that of [12] storagewise.

The contents of this part of the paper on computing eigenvectors in general and the PageRank in particular are new
and originally appeared in the author’s 2004 technical report [13].

Before we end this section, we would like to point out to a nice feature of vector extrapolation methods in general,
and MPE and RRE in particular: These methods can be defined and used in the setting of general infinite-dimensional
inner product spaces, as well as CN with finite N . The algorithms and the convergence theory remain the same for all
practical purposes.

Finally, we mention that MPE and RRE have been used as effective accelerators for solving large and sparse
nonlinear systems of equations that arise in diverse areas of sciences and engineering, such as computational fluid
dynamics, structures, materials, semiconductor research, computerized tomography, and computer vision, to name
a few. As we do not intend to give even a partial list of these applications here, we refer the reader to the relevant
literature for them.

Note that, throughout this work, ‖z‖ with z ∈ Cs will stand for the standard vector l2-norm of z, namely,
‖z‖ =

√
z∗z, and ‖A‖ with A ∈ Cs×s will stand for the matrix norm induced by this vector norm.

2. Theoretical preliminaries

In order to motivate the derivation of vector extrapolation methods, we first look at the problems for which they
were designed. Thus, we start by discussing the nature of the vectors xn that arise from the iterative method of (1.2),
the function F(x) there being nonlinear in general. Assuming that limn→∞ xn exists, hence xn ≈ s for all large n
(recall that s is the solution to the system ψ(x) = 0 and hence to the system x = F(x)), we expand F(xn) in (1.2)
about s, thus obtaining

xn+1 = F(s)+ F ′(s)(xn − s)+ O(‖xn − s‖2) as n → ∞. (2.1)

Here, F ′(s) is the N × N Jacobian matrix of the vector-valued function F(x), evaluated at x = s. It is known that
convergence will take place from any x0 sufficiently close to s provided ρ(F ′(s)) < 1, where ρ(A) stands for the
spectral radius of the (square) matrix A. The result in (2.1) can be also expressed as in

xn+1 = T xn + b + O(‖xn − s‖2) as n → ∞;

T = F ′(s), b = [I − F ′(s)]s, (2.2)

T being a constant matrix and b being a constant vector. In other words, we have

xn+1 ≈ T xn + b for all large n.

We have thus shown that the system x = F(x) “behaves” linearly when x is close to its solution s. This then suggests
that we should look at linear systems for deriving vector extrapolation methods. We aim at developing methods whose
only input is the vector sequence {xn} generated by a black box.

3. Derivation of MPE and RRE

The treatment we give in this section follows in part that of Smith, Ford, and Sidi [1]. (For a completely different
approach that goes through the transformation of Shanks [14], we refer the reader to the paper by Sidi, Ford, and
Smith [15].)

Consider the linear system

x = T x + b; b, x ∈ CN , T ∈ CN×N . (3.1)

Assume that (I − T ) is nonsingular, which means that 1 is not an eigenvalue of T . As a result, the system in (3.1) has
a unique solution that we denote by s. Let us choose an initial vector x0 ∈ CN , and generate the sequence {xn} via

xn+1 = T xn + b, n = 0, 1, . . . . (3.2)
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Let us also define

en = xn − s, un = 1xn, wn = 1un = 12xn, n = 0, 1, . . . . (3.3)

Here, 1zn = zn+1 − zn and 12zn = 1(1zn) = zn+2 − 2zn+1 + zn . It is easy to see that

en = T ne0, un = T nu0, wn = T nw0, n = 0, 1, . . . . (3.4)

In addition,

un = (T − I )en, n = 0, 1, . . . . (3.5)

Definition 3.1. Let y 6= 0 be a vector in CN . The monic polynomial P(λ) is said to be the minimal polynomial of T
with respect to y if P(T )y = 0 and P(λ) has smallest degree.

We then have the following known result:

Theorem 3.2. (i) The minimal polynomial of T with respect to the vector y exists, is unique, and divides the minimal
polynomial of T , which, in turn, divides the characteristic polynomial of T . (ii) If M(λ) is another monic polynomial
for which M(T )y = 0, then deg M > deg P and P(λ) divides M(λ).

Let P(λ) =
∑k

j=0 c jλ
j , ck = 1, be the minimal polynomial of T with respect to the vector e0 = x0 − s. (Also

notice that, by Theorem 3.2, k = deg P ≤ N .) Thus, P(T )e0 = 0, which, by (3.3) and (3.4), also means that

k∑
j=0

c j T
j (x0 − s) =

k∑
j=0

c j (x j − s) = 0. (3.6)

From this, we have

s =

k∑
j=0

c j x j

k∑
j=0

c j

. (3.7)

Note that division by
∑k

j=0 c j in (3.7) is allowed, because
∑k

j=0 c j = P(1) 6= 0 since (i) P(λ) divides the
characteristic polynomial of T , and (ii) 1 is not an eigenvalue of T .

We have thus shown that the solution s can be constructed from the k + 1 vectors of iteration x0, x1, . . . , xk ,
provided P(λ) is known. Now, being the minimal polynomial of T with respect to e0 = x0 − s, P(λ) depends on s,
as well as on x0. This may lead us to believe that, in order to know P(λ), we must know s. Fortunately, this is not the
case; as we show in the next theorem, P(λ) is also the minimal polynomial of T with respect to u0 = x1 − x0, and u0
is known.

Theorem 3.3. Let P(λ) and Q(λ) be the minimal polynomials of T with respect to e0 and u0, respectively. Then
P(λ) ≡ Q(λ).

Proof. By the fact that P(T )e0 = 0 and by (3.5), we have that

0 = (T − I )P(T )e0 = P(T )(T − I )e0 = P(T )u0.

Thus, by part (ii) of Theorem 3.2, we have that Q(λ) divides P(λ). Next, by the fact that Q(T )u0 = 0 and by (3.5),
we have

0 = Q(T )u0 = Q(T )(T − I )e0 = (T − I )Q(T )e0.

Now invoking the fact that (T − I ) is a nonsingular matrix because 1 is not an eigenvalue of T , this last relation is
equivalent to Q(T )e0 = 0, which, by part (ii) of Theorem 3.2, implies that P(λ) divides Q(λ). Since both P(λ) and
Q(λ) are monic, it is now clear that P(λ) ≡ Q(λ). �

The fact stated in Theorem 3.3 enables us to determine the coefficients of P(λ), namely, c0, c1, . . . , ck−1, again
from our knowledge of the x j . (Recall that P(λ) is monic, that is, ck = 1.) First, by (3.4), P(T )u0 = 0 can be
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re-expressed as in

k∑
j=0

c j T
j u0 =

k∑
j=0

c j u j = 0.

What we have here is a possibly overdetermined but consistent set of linear equations for the c j that is of the form

Uc = −uk; c = [c0, c1, . . . , ck−1]
T

∈ Ck, U =
[
u0 | u1 | · · · | uk−1

]
∈ CN×k . (3.8)

Note that the matrix U has full rank, that is, rank(U ) = k, because its columns, namely, the vectors u0, u1, . . . , uk−1,
are linearly independent by the fact that P(λ) =

∑k
j=0 c jλ

j is the minimal polynomial of T with respect to u0.
Hence, the linear system Uc = −uk has a unique solution given by

c = −U+uk, (3.9)

where U+ is the Moore–Penrose generalized inverse of U , which, in this case, is given by U+
= (U∗U )−1U∗. (Note

that this is in complete agreement with the fact that P(λ) is unique.) Clearly, this solution for c is also the solution we
would obtain by solving the linear system Uc = −uk by linear least-squares. It is these observations that will lead us
to the definition of MPE and, following that, to the definition of RRE.

By the developments above, it is clear that s can be constructed from the knowledge of the k + 2 vectors x j ,
j = 0, 1, . . . , k + 1, nothing else being needed. We have also shown that s is some sort of “weighted average” of the
vectors x0, x1, . . . , xk ; that is, it is of the form

s =

k∑
j=0

γ j x j ;

k∑
j=0

γ j = 1.

Here, of course,

γ j =
c j

k∑
i=0

ci

, j = 0, 1, . . . , k.

3.1. Definition of MPE

As is clear, the developments above leading to the solution s given in (3.7) are made possible by the fact that k is
the degree of the minimal polynomial of T with respect to u0. Normally, k would be very close to N , and this would
make the solution process prohibitively expensive. This raises the question as to what would happen if we took k to be
an arbitrary integer (and much smaller than N ). Obviously, the linear system Uc = −uk in (3.8) will be inconsistent,
hence will not have a solution in the ordinary sense. We can, however, define c as the least-squares solution of the
system Uc = −uk , leaving everything else unchanged. This results in the following definition:

Definition 3.4. Let {xn} be a given sequence in CN , and let the vectors un be as in (3.3). Choose k ≤ N arbitrarily
and define the matrix U via

U =
[
u0 | u1 | · · · | uk−1

]
∈ CN×k .

Let c be the least-squares solution to the linear system Uc = −uk ; this means that c is the solution to the problem

min
c0,c1,...,ck−1

∥∥∥∥∥k−1∑
j=0

c j u j + uk

∥∥∥∥∥ . (3.10)

Set ck = 1, and compute γ0, γ1, . . . , γk via

γ j =
c j

α
, j = 0, 1, . . . , k; α =

k∑
i=0

ci , (3.11)
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provided
∑k

i=0 ci 6= 0. Then, sMPE
k , the MPE approximation to limn→∞ xn = s, is given by

sMPE
k =

k∑
j=0

γ j x j . (3.12)

3.2. Definition of RRE

Going back to the situation in which k is the degree of the minimal polynomial of T with respect to u0, we first
observe that, by dividing the equations Uc = −uk in (3.8) by

∑k
i=0 ci , denoting γ j = c j/

∑k
i=0 ci , j = 0, 1, . . . , k,

and observing that
∑k

j=0 γ j = 1, we can rewrite (3.8) as in

U ′γ = 0 and
k∑

j=0

γ j = 1;

γ = [γ0, γ1, . . . , γk]
T

∈ Ck+1, U ′
= [u0 | u1 | · · · | uk] ∈ CN×(k+1). (3.13)

As before, a unique solution to this system for γ exists in case k is the degree of the minimal polynomial of T with
respect to u0. When k is an arbitrary integer smaller than this degree, there is no solution to the system U ′γ = 0 and∑k

j=0 γ j = 1 in the ordinary sense. We can, however, define γ to be the least-squares solution of the system U ′γ = 0

subject to the constraint
∑k

j=0 γ j = 1. This results in the following definition:

Definition 3.5. Let {xn} be a given sequence in CN , and let the vectors un be as in (3.3). Choose k ≤ N arbitrarily
and define the matrix U ′ via

U ′
= [u0 | u1 | · · · | uk] ∈ CN×(k+1).

Let γ be the least-squares solution to the linear system U ′γ = 0 subject to the constraint
∑k

j=0 γ j = 1; this means
that γ is the solution to the problem

min
γ0,γ1,...,γk

∥∥∥∥∥ k∑
j=0

γ j u j

∥∥∥∥∥ , subject to
k∑

j=0

γ j = 1. (3.14)

Then, sRRE
k , the RRE approximation to limn→∞ xn = s, is given by

sRRE
k =

k∑
j=0

γ j x j . (3.15)

Note that the way we have approached the definition of RRE here is not the only way possible, and it differs from
that of [1] and those of the original works [3,4]. (The approaches of [3,4] differ from each other greatly, and their
equivalence is established in [1].) Our approach here is the most direct, however. The definition of RRE here is also
that given in [4], and turns out to be very suitable for computational purposes. For a completely different approach,
see Sidi, Ford, and Smith [15].

For completeness, here we reproduce the definition of [3]:

sRRE
k = x0 +

k−1∑
i=0

ξi ui , (3.16)

where the ξi are determined from the least-squares solution of the linear system

W ξ = −u0, (3.17)

where

ξ = [ξ0, ξ1, . . . , ξk−1]
T

∈ Ck, W =
[
w0 | w1 | · · · | wk−1

]
∈ CN×k . (3.18)
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Here, the wi , just as the ui , are as defined in (3.3). Thus,

sRRE
k = x0 − U W +u0, (3.19)

with U = [u0 | u1 | · · · | uk−1] ∈ CN×k , as before.

4. Determinant representations

The least-squares solutions for the vectors c and γ in Definitions 3.4 and 3.5, respectively, give rise to normal
equations. Being linear systems, these normal equations can be manipulated suitably to enable us to express the MPE
and RRE approximations sMPE

k and sRRE
k as ratios of determinants.

Instead of applying MPE and RRE to the k +2 vectors x0, x1, . . . , xk+1, we now propose to apply them to the k +2
vectors xn, xn+1, . . . , xn+k+1 with some positive integer n. This usage of MPE and RRE has some very beneficial
effect, as we will discuss in the next sections. Let us denote the approximations obtained this way by sMPE

n,k and sRRE
n,k .

Thus, sMPE
0,k = sMPE

k and sRRE
0,k = sRRE

k .

The determinant representations for the approximations sMPE
n,k and sRRE

n,k given in the next theorem were presented
originally in Sidi [16].

Theorem 4.1. The approximations sMPE
n,k and sRRE

n,k have the following determinant representations:

sn,k =
D(xn, xn+1, . . . , xn+k)

D(1, 1, . . . , 1)
, (4.1)

where D(z0, z1, . . . , zk) is a (k + 1)× (k + 1) determinant defined as in

D(z0, z1, . . . , zk) =

∣∣∣∣∣∣∣∣∣∣

z0 z1 · · · zk
u0,0 u0,1 · · · u0,k
u1,0 u1,1 · · · u1,k
...

...
...

uk−1,0 uk−1,1 · · · uk−1,k

∣∣∣∣∣∣∣∣∣∣
, (4.2)

with ui, j being scalars defined as in

ui, j =

{
(un+i , un+ j ) = (1xn+i ,1xn+ j ) for MPE
(wn+i , un+ j ) = (12xn+i ,1xn+ j ) for RRE

. (4.3)

Here un and wn are as in (3.3) and (a, b) is simply the Euclidean inner product in CN , that is, (a, b) = a∗b.

Note that, in case the z j in D(z0, z1, . . . , zk) are vectors, this determinant is vector-valued and is defined to be∑k
j=0 M j z j , where M j is the cofactor of z j .
The determinant representations above have been used in obtaining the convergence and stability results of

Theorem 5.2 in the next section. They have also been used by Ford and Sidi [17] to obtain recursion relations among
the different sn,k . We skip these recursions here and refer the reader to [17].

5. Analytic properties of MPE and RRE

As can easily be seen from Definitions 3.4 and 3.5, the approximations produced by MPE and RRE are defined
exclusively in terms of the vectors x j , nothing else being required as input. Even though the derivation of the two
methods was based on the solution of linear systems, their definition is totally independent of the way in which
these vectors are generated. Thus, these methods can be used for (hopefully) accelerating the convergence of vector
sequences {xn}, whether these sequences are generated by linear systems or not. By the way they are derived, it is
reasonable to assume that MPE and RRE will be effective accelerators for vector sequences arising from fixed-point
iteration techniques on linear systems. Since nonlinear systems behave linearly close to their solutions, we can expect
MPE and RRE to be effective in accelerating the convergence of vector sequences {xn} generated by fixed-point
methods on nonlinear systems as well.
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Since the least-squares problem for the γ j always has a solution for RRE, we conclude that sRRE
k exists

unconditionally for all k. In case of MPE, even though there is always a solution for the c j , we cannot guarantee
that

∑k
i=0 ci 6= 0 always. This means that sMPE

k may not always exist. A sufficient condition for the existence of sMPE
k

is given in Theorem 5.2.
When applied to sequences {xn} generated by fixed-point iterative techniques for linear systems, MPE and RRE

become equivalent to some well-known Krylov subspace methods. This is the subject of the following theorem that
was proved in Sidi [18]:

Theorem 5.1. Consider the linear system in (3.1) and the vector sequence {xn} generated as in (3.2). Then, sMPE
k and

sRRE
k are the same vectors generated by k steps of the method of Arnoldi and k steps of GMRES, respectively, as the

latter two methods are applied to the system (I − T )x = b, starting with the vector x0.

The following theorem by Sidi [16] explains why MPE and RRE are true convergence acceleration methods. To
this effect, we apply these methods to the vectors xn, xn+1, . . . , xn+k+1 with n > 0, instead of applying them to the
vectors x0, x1, . . . , xk+1. In the preceding section, we denoted the approximations obtained in this way by sMPE

n,k and
sRRE

n,k , respectively. We then have the following result:

Theorem 5.2. Let the vector sequence {xn} be such that

xn = s +

p∑
i=1

viλ
n
i , (5.1)

where v1, v2, . . . , vp are linearly independent vectors, and λi are distinct nonzero scalars satisfying

λi 6= 1 for all i, (5.2)

and are ordered such that

|λ1| ≥ |λ2| ≥ · · · ≥ |λp|. (5.3)

Let us assume further that, for some integer k < p, there holds

|λk | > |λk+1|. (5.4)

Then, sRRE
n,k exists for all n and sMPE

n,k exists for all large n, and

sn,k − s =
[
Cn,k + o(1)

]
λn

k+1 as n → ∞,

= O(λn
k+1) as n → ∞, (5.5)

where sn,k stands for both sMPE
n,k and sRRE

n,k , and the vectors Cn,k are uniformly bounded in n, that is, supn ‖Cn,k‖ < ∞.

In addition, CMPE
n,k = CRRE

n,k , so that

sMPE
n,k − s ∼ sRRE

n,k − s as n → ∞.

Let us denote γ j in (3.12) and in (3.15) by γ (n,k)j . Then, limn→∞ γ
(n,k)
j all exist, and

lim
n→∞

k∑
j=0

γ
(n,k)
j λ j

=

k∏
i=1

λ− λi

1 − λi
. (5.6)

When k = p, we have the so-called finite termination property:

sn,p = s and
p∑

j=0

γ
(n,p)
j λ j

=

p∏
i=1

λ− λi

1 − λi
. (5.7)
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Remarks. 1. Since xn − s = O(λn
1) and sn,k − s = O(λn

k+1) as n → ∞, and |λ1| ≥ |λk | > |λk+1|, it is clear that
{sn,k}

∞

n=0 tends to s faster that does {xn} when {xn} converges. In case {xn} does not converge (which happens when
|λ1| ≥ 1), {sn,k}

∞

n=0 will converge if |λk+1| < 1, and it will diverge (but less slowly than {xn}) if |λk+1| ≥ 1. Thus,
MPE and RRE accelerate the convergence of sequences {xn} that satisfy the conditions of Theorem 5.2. Thus, in
order for MPE and RRE (and the epsilon algorithms mentioned in Section 1) to be effective, convergence of the
sequence {xn} is not necessary. (In case of divergence we call s the antilimit of {xn}.)

2. Vector sequences {xn} satisfying the conditions of Theorem 5.2 arise from the iterative technique of (3.2) when the
matrix T is diagonalizable and (I − T ) is nonsingular; in this case, all eigenvalues of the matrix T are different
from 1, the scalars λ1, . . . , λp are some or all of the distinct nonzero eigenvalues of T , and the vectors vi are
corresponding eigenvectors, that is, T vi = λivi , i = 1, . . . , p, and, of course, p ≤ N . Clearly, vi are linearly
independent. When T is not diagonalizable, the structure of xn becomes more complicated, and so do the results
of Theorem 5.2. This general case has been treated completely in Sidi and Bridger [19].

3. As we will see later in this work, when a diagonalizable matrix B has a largest eigenvalue equal to 1, the power
iterations with B satisfy (5.1) with s there being an eigenvector corresponding to this eigenvalue. This is precisely
the situation in case B is the Google matrix, and forms the basis for the eigenvalue methods for computing the
PageRank.

4. The result of Theorem 5.2 remains the same when MPE and RRE are applied to vector sequences {xn} in infinite-
dimensional inner product spaces such that

xn ∼ s +

∞∑
i=1

viλ
n
i as n → ∞,

where λi are distinct and nonzero, satisfy (5.2), and

|λ1| ≥ |λ2| ≥ · · · and lim
i→∞

λi = 0

instead of (5.3), and there can be only a finite number of λi having the same modulus.

Note that Theorem 5.2 does not cover the case |λk | = |λk+1|. By different techniques it can be shown that, when
|λk | = |λk+1|, the convergence result of Theorem 5.2 pertaining to sn,k , namely, sn,k − s = O(λn

k+1) as n → ∞,
remains essentially the same, provided the sequence {xn} results from the iterative scheme in (3.2). The relevant result
for this case is the subject of the next theorem that was proved originally in Sidi [20].

Theorem 5.3. Let the vector sequence {xn} be precisely as in Theorem 5.2 with the notation therein; assume only that

|λk | = |λk+1|,

instead of (5.4). Assume, in addition, that the xn have been obtained via xn+1 = T xn + b, n = 0, 1, . . . , where the
matrix I − T is nonsingular, and that s is the unique solution to the linear system (I − T )x = b. Then,

sn,k − s = O(λn
k+1) as n → ∞,

(i) for RRE unconditionally, and (ii) for MPE provided the eigenvalues of the matrix A = I − T lie strictly on one
side of a straight line through the origin in the complex plane, which happens when A + A∗ is positive definite, for
example.

So far, we have reviewed the convergence properties of the approximations sn,k for n → ∞ while k is being
held fixed. In practice, of course, n does not tend to infinity. In addition, to avoid excessive storage requirements that
may arise on computers on account of increasing k, MPE and RRE are applied in the so-called cycling mode (to be
discussed later in Section 7), where n and k can be moderately large but are both kept fixed.

The next result, due to Sidi and Shapira [21,22], provides error bounds on sRRE
n,k for the case in which both n and k

are being kept fixed. This theorem actually gives the justification for cycling with sn,k with even moderate positive n
rather than fixing n = 0.

Theorem 5.4. Let s be the solution to the linear system (I − T )x = b, where I − T is nonsingular. Assume that T is
diagonalizable, that is,

T = RΛR−1
; Λ = diag(µ1, µ2, . . . , µN ),
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and let the vector sequence {xn} be generated via xn+1 = T xn + b, n = 0, 1, . . . , precisely as in Theorem 5.2. Define
the residual vector associated with the vector x by r(x) = b − (I − T )x. Also let

Pk = {p(z) : p ∈ Πk, p(1) = 1} .

Then ∥∥∥r(sRRE
n,k )

∥∥∥ = min
p∈Pk

∥∥T n p(T )r(x0)
∥∥

≤
∥∥T n p(T )

∥∥ ‖r(x0)‖ for every p ∈ Pk,

≤ κ(R)Γ spect(T )
n,k ‖r(x0)‖ ,

where κ(R) = ‖R‖‖R−1
‖ stands for the condition number of R, spect(T ) stands for the spectrum of T , and, for any

set D in the complex plane,

Γ D
n,k = min

p∈Pk

max
z∈D

∣∣zn p(z)
∣∣ .

Remark. Theorem 5.4 was originally given in [21], where a similar statement can also be found for MPE. The
paper [22] actually treats (restarted) GMRES(k) with n initial iterations of Richardson type, which is denoted there
GMRES(n, k). Due to the fact that RRE and GMRES are equivalent in the sense described in Theorem 5.1, the results
of [22] can be expressed as in Theorem 5.4 and without any changes.

In [21], upper and lower bounds on Γ spect(T )
n,k that can be expressed analytically in terms of suitable sets of

orthogonal polynomials are given. It is also shown there that, for some special types of spectra, both of the bounds can
be expressed analytically in terms of the Jacobi polynomials P(α,β)k (z) and can easily be computed numerically. In
addition, these bounds are quite tight. (See the tables in [21,22].) Below, by [u, v] we mean the straight line segment
between the (complex) numbers u and v in the z-plane. The Jacobi polynomials P(α,β)k (z) are normalized such that

P(α,β)k (1) =

(
k+α

k

)
; see Abramowitz and Stegun [23], for example.

1. If spect(T ) is contained in [0, β] for some possibly complex β (1 is not in [0, β]), then

Γ spect(T )
n,k ≤

|β|
n∣∣∣P(0,2n)

k (2/β − 1)
∣∣∣ =

|β|
n+k∣∣∣∣∣ k∑

j=0

(
k
j

) (
2n+k

j

)
(1 − β) j

∣∣∣∣∣
.

This bound is a decreasing function of both n and k when β 6= 0 is real and β < 1. In particular, its decrease as a
function of k becomes faster with increasing n. Clearly, this bound decreases very quickly in case the spectrum of
T is real nonpositive, that is, β < 0.

2. If spect(T ) is contained in [−β, β] for some possibly complex β (1 is not in [−β, β]), then

Γ spect(T )
n,2ν ≤

|β|
n∣∣∣P(0,n)ν (2/β2 − 1)

∣∣∣ , Γ spect(T )
n,2ν+1 ≤

|β|
n+1∣∣∣P(0,n+1)

ν (2/β2 − 1)
∣∣∣ .

Both for even and odd values of k, these upper bounds can be unified to read

Γ spect(T )
n,k ≤

|β|
n+k∣∣∣∣∣ ν∑j=0

(
ν
j

) (
n+µ

j

)
(1 − β2) j

∣∣∣∣∣
,

where

ν =

⌊
k

2

⌋
, µ =

⌊
k + 1

2

⌋
.

This unified bound is a decreasing function of both n and k when β is real and |β| < 1. The same holds in case β
is purely imaginary and |β| < 1, which happens when T is a skew-hermitian matrix, for example. In this case, the
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upper bound on Γ spect(T )
n,k tends to zero as a function of k with increasing n at the best possible rate, because now

Γ spect(T )
n,k ≤

|β|
n+k

ν∑
j=0

(
ν
j

) (
n+µ

j

)
(1 + |β|2) j

.

When comparing two approximations sRRE
n,k and sRRE

n′,k , what seems to determine which one is better is the

corresponding upper bounds for Γ spect(T )
n,k and Γ spect(T )

n′,k . At least from the examples we have given here, it can be

concluded that sRRE
n,k is the better one if n > n′. In particular, sRRE

n,k is likely to be better than sRRE
0,k . We can make use

of this observation in applying RRE (and MPE as well) in the cycling mode; this will be discussed in Section 7.

6. Algorithms for MPE and RRE

The definitions of MPE and RRE given above can also be used to design algorithms (computational procedures)
for implementing MPE and RRE. The most immediate algorithms would be those that use the normal equations (i)
U∗Uc = −U∗uk in Definition 3.4 to determine the ci for MPE, and (ii) W ∗W ξ = −W ∗u0 in (3.17) to determine
the ξi for RRE. Since the matrices U and W become very ill-conditioned with increasing k, these algorithms are not
stable numerically, and they produce sn,k with reduced accuracy in floating-point arithmetic. Concerning the solution
of least-squares problems via normal equations, see Golub and Van Loan [24]. In this connection, we should also warn
the reader that the determinantal expressions given in Theorem 4.1 should not be used for this purpose as they come
directly from the normal equations.

Numerically fast and stable and storagewise economical algorithms have been given in Sidi [25], where a
fully documented FORTRAN 77 code can also be found. We now turn to a summary of these algorithms. One
important feature of these algorithms is that they both proceed through the solution of least-squares problems by
QR-factorization.

We switch to the computation of sMPE
n,k and sRRE

n,k with n ≥ 0. To discuss the algorithms conveniently, we introduce
the notation

U j =
[
un | un+1 | · · · | un+ j

]
, j = 0, 1, . . . .

Let us assume that U j has full rank, namely, rank(U j ) = j + 1. Then, it has a QR-factorization U j = Q j R j , where
Q j ∈ CN×( j+1) is unitary and R j ∈ C( j+1)×( j+1) is upper triangular with positive diagonal entries,

Q j =
[
q0 | q1 | · · · | q j

]
∈ CN×( j+1)

; Q∗

j Q j = I( j+1)×( j+1),

R j =


r00 r01 r02 · · · r0 j

r11 r12 · · · r1 j
r22 · · · r2 j

. . .
...

r j j

 ; ri i > 0 for all i.

Also, Q j is obtained from Q j−1 by appending one column (the vector q j ) to the end of the latter. Similarly, R j is
obtained from R j−1 by appending one row of zeros and one column ([r0 j , r1 j , . . . , r j j ]

T) to the end of the latter. The
details of the algorithms are summarized in Tables 1 and 2. Note that, in these algorithms, we need to store only the
vector xn and the matrix Qk , namely, the vectors q0, q1, . . . , qk . The rest can be overwritten. (Actually, qk need not
be computed as it is not needed for determining sn,k .)

The QR-factorization can be carried out inexpensively by applying the modified Gram–Schmidt process (MGS)
to the vectors un, un+1, . . . , un+ j ; see [25]. (For MGS and other orthogonalization processes, see Golub and
Van Loan [24].) For the sake of completeness, we reproduce here the steps of MGS. For simplicity of notation,
we replace the vectors un+i by ui .

MGS algorithm
Step 1. Compute r00 = (u0, u0)

1/2 and set q0 = u0/r00.



12 A. Sidi / Computers and Mathematics with Applications 56 (2008) 1–24

Table 1
Algorithm for MPE

Step 0. Input: The vectors xn , xn+1, . . . , xn+k+1.

Step 1. Compute ui = 1xi = xi+1 − xi , i = n, n + 1, . . . , n + k.
Set U j = [un | un+1 | · · · | un+ j ] ∈ CN×( j+1), j = 0, 1, . . . .
Compute the QR-factorization of Uk , namely, Uk = Qk Rk .
(Uk−1 = Qk−1 Rk−1 is contained in Uk = Qk Rk .)

Step 2. Solve the (upper triangular) linear system
Rk−1c = −ρk ; ρk = [r0k , r1k , . . . , rk−1,k ]

T, c = [c0, c1, . . . , ck−1]
T.

(Note that ρk = Q∗
k−1un+k .)

Set ck = 1 and compute α =
∑k

i=0 ci .

Set γi = ci /α, i = 0, 1, . . . , k.

Step 3. Compute ξ = [ξ0, ξ1, . . . , ξk−1]
T by

ξ0 = 1 − γ0; ξ j = ξ j−1 − γ j , j = 1, . . . , k − 1.
Compute sMPE

n,k via

sMPE
n,k = xn + Qk−1

(
Rk−1ξ

)
.

Table 2
Algorithm for RRE

Step 0. Input: The vectors xn , xn+1, . . . , xn+k+1.

Step 1. Compute ui = 1xi = xi+1 − xi , i = n, n + 1, . . . , n + k.
Set U j = [un | un+1 | · · · | un+ j ] ∈ CN×( j+1), j = 0, 1, . . . .
Compute the QR-factorization of Uk , namely, Uk = Qk Rk .
(Uk−1 = Qk−1 Rk−1 is contained in Uk = Qk Rk .)

Step 2. Solve the linear system
R∗

k Rkd = e; d = [d0, d1, . . . , dk ]
T,

e = [1, 1, . . . , 1]
T

∈ Ck+1.

(This amounts to solving two triangular (lower and upper) systems.)

Set λ =

(∑k
i=0 di

)−1
. (Note that λ is real and positive.)

Set γ = λd, that is, γi = λdi , i = 0, 1, . . . , k.

Step 3. Compute ξ = [ξ0, ξ1, . . . , ξk−1]
T by

ξ0 = 1 − γ0; ξ j = ξ j−1 − γ j , j = 1, . . . , k − 1.
Compute sRRE

n,k via

sRRE
n,k = xn + Qk−1

(
Rk−1ξ

)
.

Step 2. For k = 1, 2, . . ., do
Set u(0)k = uk
For j = 0 to k − 1 do

Compute r j,k = (q j , u( j)
k ) and u( j+1)

k = u( j)
k − r jkq j .

end for( j)
Compute rkk = (u(k)k , u(k)k )1/2 and qk = u(k)k /rkk .

end for(k)

Given the vectors xn+i , 0 ≤ i ≤ k + 1, and given that the QR-factorization is done with MGS, the operation count
for determining sn,k , whether for MPE or RRE, via our algorithms in Tables 1 and 2, is as follows: 1

2 (k
2

+ 5k + 2)
vector additions, 1

2 (k
2
+5k) scalar–vector multiplications, and 1

2 (k
2
+3k+2) inner products. All this amounts roughly

to 2k2 N floating-point operations.
The quality of sn,k can be ascertained by looking at the l2-norm of the vector Ukγ , which is available at no

additional cost through the algorithms in Tables 1 and 2:

‖Ukγ ‖ =

{
rkk |γk | for MPE,
√
λ for RRE.
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Here rkk is the (k + 1, k + 1) element of the matrix Rk , and λ is the (positive) scalar computed in Step 2 of the RRE
algorithm in Table 2. The justification of this is as follows: When the sequence {xn} is generated linearly as in (3.2),
we have that Ukγ = r(sn,k), where r(x) = T x + b − x is the residual vector associated with x ; hence Ukγ is indeed
the residual vector r(sn,k). When {xn} is generated nonlinearly as in (1.2), and sn,k is close to the solution s, we have
Ukγ ≈ r(sn,k), where now r(x) = F(x)− x is the residual vector associated with x .

Finally, note that the algorithms for MPE and RRE that we have summarized here allow us to compute all sn,k ,
k = 1, . . . , kmax, without having to orthogonalize the vectors un, un+1, . . . , un+k for each k from the beginning.

7. Efficient use of MPE and RRE in solving equation systems

As mentioned already in the preceding section, to determine sn,k , we need to store xn and vectors q0, q1, . . . , qk ,
namely the unitary matrix Qk . Using the same storage, we can obtain more accurate approximations to s by applying
MPE or RRE to the sequence {xrn}

∞

n=0 with some integer r > 1, instead of {xn}. To see that this is possible, let us
look at the sequence {xn} considered in (5.1) of Theorem 5.2. Because

xrn = s +

p∑
i=1

vi (λ
r
i )

n, n = 1, 2, . . . ,

in this case, instead of (5.5) and (5.6), we have

sn,k − s = O
(
|λk+1|

rn) as n → ∞, (7.1)

and

lim
n→∞

k∑
j=0

γ
(n,k)
j σ j

=

k∏
i=1

σ − σi

1 − σi
; σi = λr

i , i = 1, 2, . . . . (7.2)

It is clear from (7.1) that, when storage is a problem, we can reduce the storage requirements, and maintain a given
level of accuracy at the same time, by applying MPE or RRE to the sequence {xrm}

∞

m=0 with increasing r > 1.
We now give another justification of this strategy. From the analysis given in [16], it follows that the error sn,k − s

is proportional to
∏k

i=1(1 − λi )
−1 as n → ∞. This shows that the error will be large in case the largest λi (or some

of them) are close to 1 in the complex plane. In such a case, by (5.6), some of the γ (n,k)j will be quite large for large

n, despite that fact that
∑k

j=0 γ
(n,k)
j = 1. (Note also that

∑k
j=0 |γ

(n,k)
j | ≥ 1.) This implies that errors committed in

the computation of the vectors xi will be magnified in the computation of sn,k (via (3.12) and (3.15)), which means
that the computed sn,k will be quite different from the exact one. If we could do something to cause the largest λi to
separate from 1 as much as possible, this may help to solve both problems. One effective way of achieving this is by
applying MPE or RRE to the subsequence {xrm}

∞

m=0, which we already discussed in the preceding paragraph. Note
that, with r > 1, λr

i is farther from 1 in the complex plane than λi is.

7.1. Extrapolation with cycling

We now present a practical strategy for computing s, the solution to the (in general nonlinear) system

x − F(x) = 0,

that involves cycling (or restarting) that is motivated by Theorem 5.2 and justified by Theorem 5.4 and also by (7.1)
and (7.2). Here are the steps of this strategy:

C0. Choose integers n, k, and r , and an initial vector x0.
C1. Compute the vectors x1, x2, . . . , xr(n+k+1) (via xn+1 = F(xn), cf. (1.2)), and save

yn, yn+1, . . . , yn+k, yn+k+1; yi = xri , i = 0, 1, . . . .

C2. Apply MPE or RRE to the sequence {yi } precisely as in Table 1 or Table 2, with end result sn,k .
C3. If sn,k satisfies accuracy test, stop.

Otherwise, set x0 = sn,k , and go to Step C1.
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We will call each application of Steps C1–C3 a cycle. We will also denote the sn,k that is computed in the i th cycle
s(i)n,k .

A discussion of the error in this mode of usage – in case of linear F(x), i.e., when F(x) = T x+b as in (3.1) – that is
based on Theorem 5.4 is given in [21,22]. Note that, in this mode, the integer n, just as k, is kept fixed (in Theorem 5.2,
we let n tend to infinity), and the analysis of [21,22] takes this into account and derives upper bounds on the error of
sn,k . As we saw following Theorem 5.4, these upper bounds are expressible in terms of Jacobi polynomials for certain
types of spectra of the matrix T , and they turn out to be quite tight. They also indicate that, with even moderate n, sn,k
may be a very good approximations to s with small k, hence small storage, and few iterations. Another advantage of
applying MPE and RRE in this mode (that is, with n > 0) is that it prevents stagnation in the cases where GMRES
stagnates. (See the numerical examples in [22].)

Combining cycling with Theorem 5.4, in the notation of Theorem 5.4, we can now state the following result
concerning the approximation s(i)n,k that is computed at the i th cycle above.

Theorem 7.1. Let s be the solution to the linear system (I − T )x = b, where I − T is nonsingular. Let the vector
sequence {xn} be generated via xn+1 = F(xn) = T xn + b, n = 0, 1, . . . , precisely as in Theorem 5.2. Define the
residual vector associated with the vector x by r(x) = b−(I −T )x. Let xinit be the vector x0 in Step C0 of the cycling
procedure above, and denote

ωn,k,r = min
p∈Pk

∥∥T rn p(T r )
∥∥ ; Pk = {p(z) : p ∈ Πk, p(1) = 1} .

Then, under RRE, s(i)n,k satisfies∥∥∥r(s(i)n,k)

∥∥∥ ≤ ωi
n,k,r‖r(xinit)‖.

If T is diagonalizable, that is,

T = RΛR−1
; Λ = diag(µ1, µ2, . . . , µN ),

then

ωn,k,r ≤ κ(R)Γ spect(T r )

n,k ,

with

κ(R) = ‖R‖‖R−1
‖ and Γ spect(T r )

n,k = min
p∈Pk

max
z∈spect(T )

∣∣zrn p(zr )
∣∣ .

Note. The results we have given above concern the application of MPE and RRE to vector sequences arising
from fixed-point iteration of linear systems. As far as nonlinear systems are concerned, little is known about the
convergence of these methods. There have been several attempts at studying the convergence of vector extrapolation
methods in general as these are applied to nonlinear systems in the cycling mode. The earliest studies due to Brezinski
[26,27], Gekeler [28], and Skelboe [29] have been reviewed in [1]. It follows heuristically from the study in [29],
for example, that if MPE and RRE are applied using the cycling strategy above, with n = 0 and r = 1 in Step C0,
and with k = ki at the i th cycle in Step C1, where ki is precisely the degree of the minimal polynomial of the matrix
F ′(s), the Jacobian matrix of F(x) at x = s, with respect to s(i−1)

0,ki−1
−s, the sequence {s(i)0,ki

}
∞

i=0 converges quadratically.

(Here, we let s(0)0,k0
be the vector x0 in Step C0.) A precise study of the topological epsilon algorithm, one of the epsilon

algorithms, in the cycling mode has been given by Le Ferrand [30].

7.2. Cycling with “frozen” γi

When storage is a problem and the unitary matrix Qk−1 in Step 2 of the MPE and RRE algorithms given in Tables 1
and 2 needs to be saved in secondary storage, the cost of cycling as described here may increase timewise on account
of input–output when working with the secondary storage. We can reduce this cost substantially as follows: Perform
Steps C1–C3 in the cycling mode m times (m is a small integer like 1 or 2), and save the γi that are computed (in Step
2 of the MPE and RRE algorithms in Tables 1 and 2) at the mth cycle. In subsequent cycles, perform Step C2 using
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these (frozen) γi and set sn,k =
∑k

i=0 γi yn+i , instead of computing sn,k by MPE and RRE as described in Tables 1
and 2. This strategy enables the introduction of the vectors y j one-by-one without having to save them. In addition, it
also avoids the computational (timewise) overhead of MPE and RRE on account of the QR-factorization of the matrix
Uk . The idea behind this is that the γi , from one application of Step C2 to the next, do not change very much. This is
so because the γ (n,k)i ≡ γi associated with sn,k obtained by MPE and RRE are such that limn→∞ γ

(n,k)
i all exist and

satisfy (7.2). We have verified the validity of this shortcut with several numerical examples involving both linear and
nonlinear systems with very good results.

8. Computation of dominant eigenvectors by MPE and RRE

One problem that can be treated efficiently by MPE and RRE is that of computing an eigenvector corresponding
to the largest eigenvalue of an arbitrary large sparse matrix A ∈ CN×N when this eigenvalue is known. This problem
has become of interest recently in connection with the computation of the PageRank of the Google Web matrix.

Because our approach relies on power iterations with the matrix A, we first summarize the properties of power
iterations. This will set the stage for later developments, and fix some of the notation as well.

For simplicity of presentation, we assume again that A is diagonalizable. Choosing an arbitrary initial vector
x0 ∈ CN , we compute the vectors x1, x2, . . ., via

xn+1 = Axn, n = 0, 1, . . . . (8.1)

Then xn can be shown to have the spectral decomposition

xn =

q∑
i=1

wiµ
n
i , n = 1, 2, . . . . (8.2)

Here, (i) µi are some or all of the distinct nonzero eigenvalues of A, (ii) for each i , wi is an eigenvector corresponding
to µi , whether µi is simple or multiple; that is, Awi = µiwi , i = 1, . . . , q, and, of course, (iii) q ≤ N . Thus, the wi
in the summation in (8.2) are linearly independent vectors, and each of the vectors wiµ

n
i in (8.2) is nonzero. Whether

a distinct nonzero eigenvalue of A appears in the spectral decomposition of xn depends, of course, on the spectral
decomposition of the initial vector x0. It does only if at least one of its corresponding eigenvectors is present in the
spectral decomposition of x0. We also order the µi in (8.2) as follows:

|µ1| ≥ |µ2| ≥ · · · ≥ |µq |. (8.3)

We assume that µ1 is the unique largest eigenvalue (that is, |µ1| > |µ2|), and that it is known. We are interested in
determining the corresponding eigenvector w1.

Let us define B ≡ µ−1
1 A, and do power iterations starting with the vector x0 as in (8.1), but with the matrix A there

replaced by B; that is,

xn+1 = Bxn, n = 1, 2, . . . . (8.4)

Then (8.2) becomes

xn = w1 +

p∑
i=1

viλ
n
i , n = 1, 2, . . . , (8.5)

where

p = q − 1; λi = µi+1/µ1 and vi = wi+1, i = 1, 2, . . . , p, (8.6)

with µi and wi precisely as in (8.2). Also, with the µi ordered as in (8.3), we have

1 > |λ1| ≥ |λ2| ≥ · · · ≥ |λp|. (8.7)

Thus, limn→∞ xn = w1, and the rate of convergence is given by xn − w1 = O(|λ1|
n) as n → ∞. Of course, when

|λ1| is close to one, the convergence of {xn}
∞

m=0 will be slow.
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By Theorem 5.2, the expansion in (8.5), however, immediately suggests that the convergence of {xn}
∞

n=0 can be
accelerated by applying to it appropriate vector extrapolation methods, such as MPE and RRE. We thus have the
following theorem:

Theorem 8.1. With xn as in (8.4)–(8.7), let sn,k stand for either sMPE
n,k or sRRE

n,k . Then, also provided that

|λk | > |λk+1| for some k < p, (8.8)

there holds

sn,k − w1 = O
(
|λk+1|

n) as n → ∞. (8.9)

Clearly, the performance of MPE and RRE on the present problem can be improved by using the cycling strategies
described in Section 7.

Remarks. 1. The convergence result given in (8.8) and (8.9) remains virtually the same even when the matrix A is
not diagonalizable, provided the largest eigenvalue µ1 has only associated eigenvectors but no principal vectors.
The precise convergence result for this general case that has been given in [19] is however more involved.

2. Note that, in the problems we are treating here, limn→∞ xn exists and is equal to w1 since |λ1| < 1, and we
have stated Theorem 5.2 to suit these problems. However, as already stated in Remark 1 following Theorem 5.2,
Theorem 5.2 remains valid also when limn→∞ xn does not exist (which happens in case |λ1| ≥ 1). In this case,
limn→∞ sn,k exists and equals w1, provided |λk+1| < 1. This observation becomes useful when the matrix A has
several known distinct largest eigenvalues having the same modulus, that is, when (8.3) assumes the form

|µ1| = · · · = |µm | > |µm+1| ≥ · · · ≥ |µq |,

µ1, . . . , µm being known. To approximate wi for each i ∈ {1, . . . ,m}, we apply MPE or RRE to the sequence {xn}

obtained via the power iterations xn+1 = Bi xn , n = 0, 1, . . . , where Bi = µ−1
i A. In this case, xn satisfies

xn = wi +

p∑
j=1

v jλ
n
j , n = 1, 2, . . . ,

where

(λ j , v j ) =

{(
µ j/µi , w j

)
j = 1, . . . , i − 1,(

µ j+1/µi , w j+1
)

j = i, . . . , p; p = q − 1.

Note that now

1 = |λ1| = · · · = |λm−1| > |λm | ≥ · · · ≥ |λp|.

As a result, the sequence {xn} is bounded, but limn→∞ xn does not exist. Nevertheless, we can approximate wi by
applying MPE or RRE with k ≥ m − 1 since |λm−1| > |λm |. For example, limn→∞ sn,m−1 = wi ; we actually have

sn,m−1 − wi = O
(
|λm |

n) as n → ∞.

9. Application of Krylov subspace methods to consistent singular linear systems

Suppose the vector sequence {ym}
∞

m=0 is generated via the iterative process ym+1 = Mym + b, m = 0, 1, . . . ,
where M is a square matrix and (I − M) is nonsingular. As mentioned in Theorem 5.1, the vectors s0,k produced by
the vector extrapolation methods MPE and RRE, as they are being applied to the vector sequence {ym}, are those that
are generated by, respectively, the method of Arnoldi [8] and GMRES of Saad and Schultz [9] for linear systems, as
these are being applied to the solution of the linear system (I − M)y = b, with initial vector y0.

In another paper by Sidi [31], it is shown that this applies also when the matrix (I − M) is singular, which happens
when 1 is an eigenvalue of M , provided the system (I − M)y = b is consistent. It also follows from [31] that, when
the eigenvalue 1 of M is not defective, that is, it has only corresponding eigenvectors but no principal vectors, then
the vectors s0,k obtained from these methods approximate y′

0 + (I − M)#b, where y′

0 is that part of y0 that lies in the
null space of (I − M) and (I − M)# is the group inverse of (I − M). Thus, if b = 0, then we obtain approximations
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to y′

0 only. For group inverses, and other generalized inverses too, see Ben-Israel and Greville [32] and Campbell and
Meyer [33].

Let us now go back to the matrix B considered in Section 8 in (8.4)–(8.7) and Theorem 8.1. Then, the matrix Br ,
just as B, has 1 as its largest eigenvalue. In addition, this eigenvalue is nondefective. Hence (I − Br )x = 0, being
a homogeneous singular system, is also consistent. Therefore, the vectors s0,k obtained by applying MPE or RRE to
the sequence {xrm}

∞

m=0, are the same as those that are obtained by applying, respectively, the method of Arnoldi or
GMRES to the system (I − Br )x = 0, with initial vector x0. That is, M = Br , b = 0, y0 = x0, and y′

0 = w1 in the
preceding paragraph.

Also note that the system (I − Br )x = 0 can be obtained by preconditioning the matrix (I − B) with the
(nonsingular) matrix K = I + B + B2

+· · ·+ Br−1, since K B = I − Br . Thus, what we have here is (polynomially)
preconditioned Krylov subspace methods applied to the solution of (I − B)x = 0.

We note that Golub and Greif [34,35] apply the Arnoldi method and Arnoldi-type methods that involve the singular
value decomposition to the consistent singular system (B − I )x = 0 to compute the PageRank. It seems likely that
the polynomial preconditioner we have proposed here may help accelerate the convergence further.

10. Application of MPE and RRE to PageRank computation

It is known that the Google Web matrix has 1 as its (unique) largest eigenvalue and that the corresponding
eigenvector has positive components. The PageRank, which serves as a measure of the relative importance of Web
pages, is this eigenvector, normalized such that the sum of its components is 1. In this case, power iterations with the
Google matrix converge to the PageRank. Here are some of the details:

We start by recalling that a real N × N matrix A is column-stochastic if it is nonnegative and the sum of the
elements in each of its columns is 1. Thus, A is column-stochastic if

ai j ≥ 0 for all i and j;
N∑

i=1

ai j = 1, j = 1, . . . , N .

Therefore, if A is column-stochastic, then ρ(A) = 1, and A has µ1 = ρ(A) = 1 as its eigenvalue, the corresponding
left eigenvector being e = [1, 1, . . . , 1]

T. (As usual, ρ(A) stands for the spectral radius of A.) It is known that A has a
nonnegative right eigenvector w1 that corresponds to the eigenvalue µ1. If A is also irreducible, then this eigenvector
is positive. These results are well known in the theory of nonnegative matrices. See, for example, the book by Berman
and Plemmons [36, Chapter 2].

The matrix A used in the Google PageRank computations is of the form A = cP + (1 − c)E , where P and E are
very large column-stochastic matrices and 0 < c < 1; therefore, A is also column-stochastic. In addition, E is of the
form E = ueT, where e = [1, 1, . . . , 1]

T as before, and u is a nonnegative vector such that eTu = 1. Interestingly,
whether u is positive or nonnegative, µ1 = 1 is always simple, and this result follows from the paper [37], where it
is proved that the second eigenvalue µ2 of A satisfies |µ2| ≤ c < 1. Thus, even if P has a multiple eigenvalue equal
to 1, A has a simple eigenvalue equal to 1. Yet, in two other papers [38,39] by Langville and Meyer, the following is
proved concerning the eigenvalues of A: If 1, µ′

2, µ
′

3, . . . , µ
′

N are the eigenvalues of P , then the eigenvalues of A are
1, cµ′

2, cµ′

3, . . . , cµ′

N . For another short proof of this result, see Eldén [40].
In summary, the largest eigenvalue of the Google matrix A is µ1 = 1 and this eigenvalue is simple and the

corresponding (right) eigenvector w1 is positive. (Thus, our matrix A is simply the matrix B of Section 8.) The
PageRank is simply w1, normalized such that the sum of its components is 1.

Now, the matrix P is very sparse, the number of nonzero elements in each of its rows being O(1). This means that
the cost of computing a matrix-vector product Pw is O(N ) arithmetic operations. The cost of computing the product
Ew is also the same because Ew = (uTw)e. As a result, the cost of computing the matrix-vector product Aw is O(N )
arithmetic operations. From this, we see that the matrix A, despite the fact that it is not a sparse matrix, is behaving
like one in the computation of Aw. Thus, methods that are based on power iterations can be most useful in PageRank
computations.

Because storage is a crucial problem in PageRank computations, we must strive to use methods that give accurate
results quickly and require little storage. These aims can be realized by applying MPE and RRE in the cycling mode
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to the sequence of power iterations {xm}, xm+1 = Axm , m = 0, 1, . . . , precisely as in Section 7.1, by tuning the
integer parameters n, k, and r appropriately. One other strategy can be to apply MPE and RRE in the cycling mode
with frozen γi , as explained in Section 7.2. This way we need to save only one vector and do not have the overhead
involved in implementing MPE and RRE through the full algorithms in Tables 1 and 2.

Note that, when the initial vector x0 is chosen to be positive and satisfies eTx0 = 1, all the power iterations xm ,
m = 1, 2, . . . , are also positive and satisfy eTxm = 1, because A is column-stochastic. This implies that the vector
limm→∞ xm = w1 is exactly the PageRank. Since

∑k
i=0 γi = 1 in both MPE and RRE, sn,k is also positive and

satisfies eTsn,k = 1 for both MPE and RRE. In other words, MPE and RRE converge to w1, the PageRank vector.

Numerical example

We have applied MPE and RRE to Web matrices of different sizes, small and large, and observed the same pattern
of behavior in all cases. To end this section, we report the application of MPE and RRE to the computation of the
PageRank associated with a matrix P ′ that results from a link graph containing N = 281 903 nodes, with roughly 2.3
million links. The link graph was generated from a crawl of the stanford.edu domain created in September 2002
by the Stanford WebBase project. (See [41].)

The matrix P ′ has all its nonzero columns summing to unity. It is first modified by replacing its zero columns
by the vector 1

N e, the resulting matrix P being column-stochastic. The matrix A = cP + (1 − c)E is formed with
E =

1
N eeT.

In our numerical computations, we took several values of c ∈ (0, 1). Here we report those results obtained
with c = 0.95 and c = 0.99. We have applied MPE and RRE to the power iterations {xm}, where xm+1 = Axm ,
m = 0, 1, . . . , starting with the vector x0 =

1
N e. We have employed the cycling strategy precisely as described in

Section 7.1, with (n, k, r) = (0, 10, 1), (0, 10, 3), (10, 10, 1), (10, 10, 3). The results of our computations are shown
in Figs. 1 and 2. Note that the norms of residuals associated with MPE and RRE shown in these figures are those
of x0, x1, . . . , x(n+k+1)r−1 (x(n+k+1)r not included) and of sn,k (instead of x(n+k+1)r ), for each cycle. The residual
associated with a vector x is defined to be the vector r(x) = Ax − x .

The graphs in these figures confirm first that, in the cycling mode, MPE and RRE do accelerate the convergence of
power iterations, in the sense that when they employ a given number of power iterations, they achieve higher accuracy
than the iteration vectors they employ. They also confirm that with the same n, k, and r , MPE and RRE produce very
similar results, as expected by Theorem 5.2.

Next, the graphs show that MPE and RRE, with the same k and r , have achieved the same accuracy both with
n = 0 and with n = 10, using about the same number of power iterations. However, the number of cycles with n = 10
is much smaller than (about half) that with n = 0, hence take a smaller amount of computing time when the time
overhead of cycling is taken into account. Similarly, with the same k and n, MPE and RRE have achieved the same
accuracy both with r = 1 and with r = 3, again using about the same number of power iterations. Now the results
with r = 3 are obtained in a smaller number of cycles (about one-third of that necessary with r = 1), hence take
a smaller amount of computing time. Both of these observations confirm our statements of Section 7 concerning the
strategy of cycling.

11. Generalization of the method of Kamvar et al. and connection with MPE

In their paper [12] on the computation of the PageRank, Kamvar et al. have developed an extrapolation method,
which they call quadratic extrapolation. This method accelerates the convergence of the sequence {xm} generated as
in (8.4) to a scalar multiple of the vector w1 in (8.5).

With a proper change of notation and indexing, quadratic extrapolation is the k = 2 case of the general method we
propose next. Here are the steps of this method:

• Input: The vectors xn, xn+1, . . . , xn+k+1.
• Let yi = xn+i+1 − xn , i = 0, 1, . . . , k, and solve the minimization problem

min
d0,d1,...,dk−1

∥∥∥∥∥ k∑
i=0

di yi

∥∥∥∥∥ , subject to dk = 1. (11.1)
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Fig. 1. Application of MPE, RRE, and the power method to the Google matrix of dimension N = 281, 903 of Section 10 with c = 0.95.

• Compute ĉ0, ĉ1, . . . , ĉk via

ĉi =

k∑
j=i

d j , i = 0, 1, . . . , k. (Thus, ĉk = dk = 1.) (11.2)

• Set

ŝn,k =

k∑
i=0

ĉi xn+i+1. (11.3)

A numerically stable and storagewise economical implementation can be designed along the lines of MPE and
RRE given in Tables 1 and 2. Here are the steps of this implementation:

S1. Form the QR-factorization of the matrices Y j = [y0 | y1 | · · · | y j ], namely, Y j = Q̂ j R̂ j , for example, by MGS.
Thus,

Q̂ j = [̂q0 | q̂1 | · · · | q̂ j ] ∈ CN×( j+1)
; Q̂∗

j Q̂ j = I( j+1)×( j+1),
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Fig. 2. Application of MPE, RRE, and the power method to the Google matrix of dimension N = 281, 903 of Section 10 with c = 0.99.

and

R̂ j =


r̂00 r̂01 · · · r̂0 j

r̂11 · · · r̂1 j
. . .

...

r̂ j j

 ∈ C( j+1)×( j+1)
; r̂i i > 0 for all i.

Then solve the linear system

R̂k−1d = −ρ̂k;

where

ρ̂k = [̂r0k, r̂1k, . . . , r̂k−1,k]
T, d = [d0, d1, . . . , dk−1]

T.

(Note that ρ̂k = Q̂∗

k−1 yk .)

S2. Set dk = 1 and compute ĉ = [̂c0, ĉ1, . . . , ĉk]
T by (11.2).

S3. Set

ŝn,k =

(
k∑

i=0

ĉi

)
xn + Q̂k

(
R̂k ĉ

)
.
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Steps S1 and S2 in this algorithm essentially generalize those given in [12]. Step S3 (that is new) is the result of
the following observation and of the fact that Yk = Q̂k R̂k :

ŝn,k =

(
k∑

i=0

ĉi

)
xn +

k∑
i=0

ĉi yi

=

(
k∑

i=0

ĉi

)
xn + Yk ĉ.

Thus, on account of Step 3 in the new algorithm, we need to store only the vector xn and the matrix Q̂k , namely, the
vectors q̂0, q̂1, . . . , q̂k , a total of k + 2 vectors in CN . This should be compared with the algorithm of [12], in which
both xn+1, . . . , xn+k+1 and q̂0, q̂1, . . . , q̂k , a total of 2k + 2 vectors in CN , need to be saved.

The following theorem shows that this method and MPE are different and yet almost identical.

Theorem 11.1. When the vector sequence {xm} is obtained through power iterations with the matrix B via xm+1 =

Bxm,m = 0, 1, . . . , the ŝn,k and sMPE
n,k are related in the sense that

ŝn,k = α
(

BsMPE
n,k

)
; α =

k∑
i=0

ci as in Table 1. (11.4)

Proof. Noting that

yi =

i∑
j=0

un+ j , i = 0, 1, . . . ; ui = 1xi , i = 0, 1, . . . ,

and recalling (11.2), we can express the vector
∑k

i=0 di yi as in

k∑
i=0

di yi =

k∑
i=0

ĉi un+i .

Since d0, d1, . . . , dk−1 determine ĉ0, ĉ1, . . . , ĉk−1 uniquely, and vice versa, this means that the minimization problem
in (11.1) is equivalent to

min
ĉ0 ,̂c1,...,̂ck−1

∥∥∥∥∥ k∑
i=0

ĉi un+i

∥∥∥∥∥ , subject to ĉk = 1. (11.5)

Comparing (11.5) with (3.10), we realize that ĉi = ci , i = 0, 1, . . . , k. Substituting this in (11.3), we obtain
ŝn,k =

∑k
i=0 ci xn+i+1. Recalling the fact that xm+1 = Bxm , we finally have

ŝn,k = B

(
k∑

i=0

ci xn+i

)
.

The result now follows by the fact that sMPE
n,k = α−1∑k

i=0 ci xn+i with α as in (3.11). �

Remark. With the ĉ j computed as above, if we modify the definition of ŝn,k in (11.3) slightly so that ŝn,k is now
given by

ŝn,k =

k∑
i=0

ĉi xn+i ,

then we would have precisely ŝn,k = αsMPE
n,k .

In view of the result of Theorem 11.1, we can use Theorem 5.2, which concerns the approximations sn,k produced
by MPE and RRE, to state the following convergence theorem for ŝn,k .
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Theorem 11.2. Let the vectors xm satisfy the conditions of Theorem 8.1. Then

‖α−1̂sn,k − w1‖ ≤ ‖B‖‖sMPE
n,k − w1‖, (11.6)

and

α−1̂sn,k = w1 + O(|λk+1|
n) as n → ∞. (11.7)

Proof. By Theorem 11.1 and by the fact that Bw1 = w1, we have

ŝn,k = αB
(

sMPE
n,k − w1

)
+ αBw1 = αB

(
sMPE

n,k − w1

)
+ αw1,

from which

α−1̂sn,k − w1 = B
(

sMPE
n,k − w1

)
.

Now apply Theorem 5.2 to sMPE
n,k . �

Note that, if we use the vector l1-norm in Theorem 11.2, then we have ‖B‖ = 1 because B is column-stochastic.
Hence (11.6) becomes

‖α−1̂sn,k − w1‖ ≤ ‖sMPE
n,k − w1‖.

In a subsequent work [41], Kamvar, Haveliwala, and Golub have observed that, when using quadratic extrapolation,
many web pages converge quickly, while relatively few pages take much longer time to converge. Furthermore,
the pages that converge slowly are generally those pages with high PageRank. Taking this into account, Kamvar,
Haveliwala, and Golub have proposed an adaptive method, in which the effective Google matrix is much smaller after
many of the pages have converged; as a result, in subsequent applications of quadratic extrapolation, the computing
time is reduced considerably. Needless to say, this adaptive method can be used just as effectively with MPE and RRE
and all other extrapolation methods.

Remark. Recently, the PageRank computation has been also treated in a paper by Brezinski and Redivo Zaglia
[42, Section 6]. Just as our present work and its predecessor [13], [42] too is concerned with computing the PageRank
via vector extrapolation methods. In particular, in subsection 6.1 of their paper, Brezinski and Redivo Zaglia make an
attempt at generalizing the method of Kamvar et al., their end result being the vector r(k,n)c in Theorem 6.1. In Theorem
6.2 of [42], a determinant representation of r(k,n)c that is expressed in terms of the power iterations r(n)c = Acr(n−1)

c

is given. (Note that our matrix B and vectors xn are, respectively, the matrix Ac and the vectors r(n)c in [42].) A close
examination of this determinant representation and its comparison with our determinant representation of sMPE

n,k given
in (4.1)–(4.3), namely,

sMPE
n,k =

∣∣∣∣∣∣∣∣∣∣

xn xn+1 · · · xn+k
(1xn,1xn) (1xn,1xn+1) · · · (1xn,1xn+k)

(1xn+1,1xn) (1xn+1,1xn+1) · · · (1xn+1,1xn+k)
...

...
...

(1xn+k−1,1xn) (1xn+k−1,1xn+1) · · · (1xn+k−1,1xn+k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
(1xn,1xn) (1xn,1xn+1) · · · (1xn,1xn+k)

(1xn+1,1xn) (1xn+1,1xn+1) · · · (1xn+1,1xn+k)
...

...
...

(1xn+k−1,1xn) (1xn+k−1,1xn+1) · · · (1xn+k−1,1xn+k)

∣∣∣∣∣∣∣∣∣∣

,

reveal that the numerator determinant of r(k,n)c is, in our notation, identical to the numerator determinant of sMPE
n,k−1.

That is, r(k,n)c is nothing but a constant multiple of sMPE
n,k−1. The approximations to the PageRank obtained by proper

(and essential) normalization of the vectors sMPE
n,k−1 and r(k,n)c are thus identical. Hence, unlike our method in this

section, the method of [42] does not generalize quadratic extrapolation.
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12. Concluding remarks

In this work, we gave a survey of MPE and RRE, two most effective and widely used vector extrapolation methods.
We discussed their derivation, convergence properties, stable and economical algorithms for their implementation, and
effective strategies for their use in different situations. We also showed that they can be used in computing eigenvectors
corresponding to dominant eigenvalues when these eigenvalues are known. As an application of this, we discussed
the use of MPE and RRE in computing the Google PageRank. We also gave a true generalization of the quadratic
extrapolation method of Kamvar et al. for PageRank computation, and developed an algorithm for this generalization
that is stable and has minimal storage requirements. We showed that this method is very closely related to MPE, and
proved its convergence, and provided its precise rate of convergence at the same time. Finally, we showed that standard
Krylov subspace methods such as the method of Arnoldi and GMRES can also be used to compute the PageRank, and
we provided a polynomial preconditioner for them as well.
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[8] W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951) 17–29.
[9] Y. Saad, M.H. Schultz, GMRES: A generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Statist.

Comput. 7 (1986) 856–869.
[10] A. Sidi, Rational approximations from power series of vector-valued meromorphic functions, J. Approx. Theory 77 (1994) 89–111.
[11] A. Sidi, Application of vector-valued rational approximation to the matrix eigenvalue problem and connections with Krylov subspace methods,

SIAM J. Matrix Anal. Appl. 16 (1995) 1341–1369.
[12] S.D. Kamvar, T.H. Haveliwala, C.D. Manning, G.H. Golub, Extrapolation methods for accelerating PageRank computations, in: Proceedings

of the Twelfth International World Wide Web Conference, ACM, 2003, pp. 261–270.
[13] A. Sidi, Approximation of largest eigenpairs of matrices and applications to PageRank computation, Technical Report CS-2004-16, Computer

Science Dept., Technion–Israel Institute of Technology, 2004.
[14] D. Shanks, Nonlinear transformations of divergent and slowly convergent sequences, J. Math. Phys. 34 (1955) 1–42.
[15] A. Sidi, W.F. Ford, D.A. Smith, Acceleration of convergence of vector sequences, SIAM J. Numer. Anal. 23 (1986) 178–196 (Originally

appeared as NASA TP-2193, 1983).
[16] A. Sidi, Convergence and stability properties of minimal polynomial and reduced rank extrapolation algorithms, SIAM J. Numer. Anal. 23

(1986) 197–209 (Originally appeared as NASA TM-83443, 1983).
[17] W.F. Ford, A. Sidi, Recursive algorithms for vector extrapolation methods, Appl. Numer. Math. 4 (1988) 477–489.
[18] A. Sidi, Extrapolation vs. projection methods for linear systems of equations, J. Comput. Appl. Math. 22 (1988) 71–88.
[19] A. Sidi, J. Bridger, Convergence and stability analyses for some vector extrapolation methods in the presence of defective iteration matrices,

J. Comput. Appl. Math. 22 (1988) 35–61.
[20] A. Sidi, Convergence of intermediate rows of minimal polynomial and reduced rank extrapolation tables, Numer. Algorithms 6 (1994)

229–244.
[21] A. Sidi, Y. Shapira, Upper bounds for convergence rates of vector extrapolation methods on linear systems with initial iterations,

Technical Report 701, Computer Science Department, Technion–Israel Institute of Technology, 1991. Appeared also as NASA Technical
Memorandum 105608, ICOMP-92-09, 1992. The report can be downloaded from the URL: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.
gov/19920024498 1992024498.pdf.

[22] A. Sidi, Y. Shapira, Upper bounds for convergence rates of acceleration methods with initial iterations, Numer. Algorithms 18 (1998) 113–132.
[23] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, in: Nat. Bur. Standards

Appl. Math. Series, vol. 55, US Government Printing Office, Washington, DC, 1964.

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920024498_1992024498.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920024498_1992024498.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920024498_1992024498.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920024498_1992024498.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920024498_1992024498.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920024498_1992024498.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920024498_1992024498.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920024498_1992024498.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920024498_1992024498.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920024498_1992024498.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920024498_1992024498.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920024498_1992024498.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920024498_1992024498.pdf


24 A. Sidi / Computers and Mathematics with Applications 56 (2008) 1–24

[24] G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, London, 1996.
[25] A. Sidi, Efficient implementation of minimal polynomial and reduced rank extrapolation methods, J. Comput. Appl. Math. 36 (1991) 305–337

(Originally appeared as NASA TM-103240 ICOMP-90-20).
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