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Abstract

Lightweight metallic sandwich plates comprising periodic truss cores and solid facesheets are optimally designed against
minimum weights. Constitutive models of the truss core are developed using homogenization techniques which, together
with effective single-layer sandwich approaches, form the basis of a two-dimensional (2D) single-layer sandwich model.
The 2D model is employed to simulate the mechanical behaviors of truss-cored sandwich panels having a variety of core
topologies. The types of loading considered include bending, transverse shear and in-plane compression. The validities of
the 2D model predictions are checked against direct FE simulations on three-dimensional (3D) truss core sandwich struc-
tures. Optimizations using the 2D sandwich model are subsequently performed to determine the minimum weights of truss-
cored sandwiches subjected to various failure constraints: overall and local buckling, yielding and facesheet wrinkling. The
performances of the optimized truss core sandwiches with 4-rod unit cell and solid truss members and pyramidal unit cell
with hollow truss members are compared with benchmark lightweight structures such as honeycomb-cored sandwiches,
tetrahedral core sandwiches and hat-stiffened single layer plates.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Highly porous, periodic metallic lattice materials at length scales of 0.1–10 mm have emerged recently with
novel manufacturing techniques (Gustafsson, 2000; Evan et al., 2001; Wadley et al., 2003). Typical topologies
of lattice materials that have been studied both experimentally and theoretically are depicted in Fig. 1
(Kooistra et al., 2004). These lattice materials are basically sandwich systems consisting of a three-dimensional
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(3D) network of fully triangulated solid (or hollow) rods. Potential applications include blast resistant struc-
tures (Hutchinson and Xue, 2005), multifunctional materials (e.g., simultaneously load bearing and active
cooling; see Kim et al., 2004; Tian et al., 2004), and replacement for the structurally efficient but expensive
honeycombs (Evan et al., 2001; Wicks and Hutchinson, 2001, 2003; Wallach and Gibson, 2001).

The minimum weight design of sandwich panels comprised of tetrahedral truss cores faced with either tri-
angulated or solid sheets was first studied by Wicks and Hutchinson (2001, 2003). Optimal designs for both
compression panels and panels subjected to combined loads of bending and transverse shear were obtained.
Compared with hat-stiffened plates that are generally regarded as one of the most weight efficient construc-
tions for compression panels (Budiansky, 1999; Tian and Lu, 2005), it was established that the optimized truss
core sandwich plates offer greater weight savings and design advantages. Compared with sandwiches with hex-
agonal honeycomb cores, which have long been considered as the most structurally efficient systems under
bending and transverse shear loads, the optimized truss core sandwich plates are found to be equally effective
(Wicks and Hutchinson, 2001, 2003).

Wallach and Gibson (2001) used the unit cell approach to calculate the elastic moduli, uniaxial compressive
strength and shear strength of sandwich structures having pyramidal truss cores; the predictions agree well
with experimental measurements. Deshpande and Fleck (2001) studied the minimum weight of sandwich
beams with tetrahedral truss cores subjected to 3-point bending. Collapse equations for face yielding, face
wrinkling and core shear of the sandwich were established, and a graphical method based on collapse mech-
anism map was used for optimization. It was found that the resulting minimum weight design is about 30%
greater than the global minimum obtained by Wicks and Hutchinson (2001). Liu and Lu (2004) explored the
multi-objective and multi-loading design optimization of sandwich plates comprised of either tetrahedral or
plagihedral pyramidal truss cores and solid facesheets. The plagihedral pyramidal unit cell was first introduced
for lattice materials in this study.

Previous researches on truss core sandwiches focused mainly on several standard cell topologies: tetrahe-
dral (Wicks and Hutchinson, 2001; Deshpande and Fleck, 2001), pyramidal (Wallach and Gibson, 2001), plag-
ihedral pyramidal (Liu and Lu, 2004), Kagomé (Hyun et al., 2003), and octet truss (Deshpande et al., 2001).
The possibility of achieving more competitive yet relatively simple unit cell topologies for truss core sandwich

Fig. 1. Typical lattice truss topologies: (a) octet truss, (b) tetrahedral lattice truss, (c) lattice block, (d) pyramidal lattice truss and (e) 3D
kagome.
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constructions is examined in the present study. To this end, a computationally efficient model is employed: the
truss core is firstly homogenized into a homogeneous medium, which is subsequently used to construct an
effective single-layer sandwich model (Allen, 1969; Hohe and Librescu, 2004; Kollar and Springer, 2003).
The predictions of the model are validated against FE results obtained directly with 3D truss-cored sandwich
plates. For comparison, it is noticed that the simplified computational method used by Wicks and Hutchinson
(2001) is most suitable for optimization of simple truss core configurations and simple structures (e.g., a wide
sandwich plate with tetrahedral cores under 3-point bending) whereas the discrete 3D computational model of
Liu and Lu (2004) can be too complicated and time consuming for optimization calculations.

2. Formulation of truss core homogenization

Straalen (2000) presented a comprehensive overview of theoretical developments for sandwich panels,
which can be classified as the classical theories, the superposition approaches and the higher-order theories.
Two-dimensional finite element computational models for sandwich panels and shells were critically reviewed
by Noor et al. (1996), and can be classified as the global approximation models, discrete three layer models
and the predicator–corrector approaches. Computationally efficient models for sandwiches are typically based
on the equivalent replacement of the core with a homogeneous continuum. The reliability of continuum mod-
eling is critically dependent on the accuracy of the effective core properties. For frequently used 2D cellular
materials such as honeycombs, the homogenization techniques (e.g., the strain energy based approaches
and the mathematical homogenization based on a two-scale expansion of the displacement field) were
reviewed by Hohe and Becker (2002). Ziegler et al. (2004) proposed a continuum plate model for lattice block
materials by using the FE formulation for a thick plate. The agreement between predictions obtained with the
continuum plate model and those with the discrete FE model is in general good for bending, in-plane behavior
and dynamic modal analysis. However, for the coupled behavior of the sandwich under combined bending
and in-plane forces, the agreement is not as good.

The key problem facing truss core homogenization is the establishment of a suitable mechanical model for
the 3D network of rods within the core. For octet trusses, due to the large aspect ratio of rod length to rod
radius, the rods may be assumed to be pin-jointed at the nodes (Deshpande et al., 2001). Consequently, the
contribution to the overall stiffness from bending of the rods can be neglected, in comparison with the con-
tribution by rod stretching/compression. For octet truss materials or octet truss sandwiches with triangulated
facesheets, this assumption has been verified by FE calculations (Deshpande and Fleck, 2001). For truss core
sandwiches with solid facesheets, however, the constraints imposed on the rod deformation may no longer be
negligible. Consequently, in the present study, the rods in the truss core are modeled using Euler–Bernoulli
beams, with clamped support at both ends. Furthermore, the following assumptions are made:

(1) There is no intersection amongst truss members within the truss core, which implies that the present
approach is applicable to tetrahedral and pyramidal cores but not to Kagom„ cores (Fig. 1).

(2) The displacements of truss members are small, i.e., small strains and small rotations are in place.
(3) The truss members are solid/hollow cylinders with circular/tube cross-sections, and are made of the same

base material.
(4) The influence of edge effect is negligible.
(5) The facesheets are rigid in comparison with the relatively compliant truss core.
(6) No truss core members are present in the facesheet planes.

2.1. Homogenization

A truss material may be analyzed at two different scales: (a) at the macroscale, it is treated as a homoge-
neous solid; (b) at the microscopic scale, discrete truss structures are considered. The derivation of the micro–
macro relations for a heterogeneous medium relies on the analysis of its representative volume element (RVE,
or unit cell in this paper). For periodic media such as the lattice structures, the smallest periodic unit is com-
monly taken as the unit cell.
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Following the modern notations of continuum mechanics, at the microscale, let r denote the stress tensor
and e denote the strain tensor and, at the macroscale, let R denote the macroscopic stress tensor and E denote
the macroscopic strain tensor. Here and throughout the rest of this paper, tensorial variables are represented
by bold symbols. The homogenized micro–macro relationship can then be described as

E ¼ heiX �
1

X

Z
X

edX; ð1Þ

R ¼ hriX �
1

X

Z
X

rdX; ð2Þ

where X represents the current volume of unit cell and h•iX denotes volume averaging. For statically admis-
sible stress field r and kinematically admissible strain field e, the macrohomogeneity equality of Hill (1963)
dictates that:

R � E ¼ hr � eiX ¼
1

X

Z
X

r � edX; ð3Þ

where R • EX is the macroscopic strain energy density and
R

X r � edX is the total strain energy density of the
admissible microscopic fields. Hill’s relation implies that the volume averaged strain energy density of an inho-
mogeneous material can be obtained by multiplying the separate volume averages of microscopic stresses and
strains.

2.2. Small strain kinematics

Mohr (2005) studied the mechanical behaviors of ideal truss lattice materials controlled by the so-called
direct action mechanism at the microscale. A general micromechanics-based finite-strain constitutive model
was presented, but only the stretching and compression of individual truss members were considered. In this
paper, we go further and present the homogenized results using a beam model. It is assumed that the rods in
unit cell are embedded in an infinitely soft matrix (Suquet, 1987). For small strain deformations, the deforma-
tion of the unit cell is also small, i.e., the deformation of the facesheets has negligible influence on the geometry
of the unit cell.

Consider the deformation from time 0 to T of a unit cell comprising a single rod, as schematically shown in
Fig. 2. The displacement of a material point initially located at position X in the reference configuration to
position x in the current configuration is formally described by the point-to-point mapping x = u(X, t), where

Fig. 2. Kinematics of a unit cell (RVE) comprising a single rod embedded in an infinite soft matrix.
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t 2 [0, T] represents time. The deformation gradient F = F(X) is defined by the gradient of this transformation
as

F ¼ ru: ð4Þ

Therefore, the linear transformation can be formulated as

dx ¼ FdX; det F > 0: ð5Þ

The displacement field u can be defined as

uðX; tÞ ¼ uðX; tÞ � X: ð6Þ

It follows from (4) that the displacement gradient is given by

ru ¼ F� I; ruij � 0 ði; j ¼ 1; 2; 3Þ; ð7Þ

where small displacements have been assumed.
The homogeneity of the displacement field implies that the deformation gradient is uniform within the unit

cell. The macroscopic Green strain tensor E can be defined with respect to the reference configuration, as (Lai
et al., 1993)

E ¼ 1
2
ðC� IÞ; ð8Þ

where C is the Cauchy–Green tensor:

C ¼ FTF; ð9Þ

and the superscript ‘T’ denotes transposition. Using Eq. (7), we have

E ¼ 1
2
ðruþ IÞTðruþ IÞ � I
h i

� ru ¼ symru ¼ 1
2
ðruT þruÞ: ð10Þ

As shown in Fig. 2, a truss member initially aligned with the unit vector n0 is rotated into the current direc-
tion n. For small deformations, the distance L between the ends of the rod is approximately equal to the length
of the rod after deformation (Fig. 2), i.e.,

Ln ¼ Fln0; ð11Þ
D ¼ Dn1 ¼ Ln� ln0 ¼ ðF� IÞln0; ð12Þ

where l is the initial length of the rod and D is the displacement of the end point of the rod (Fig. 2). From Eqs.
(7) and (10), we have:

D ¼ lEn0; ð13Þ
where

E ¼
E11 E12 E13

E22 E23

sym: E33

264
375; ð14Þ

n0 ¼ n01; n02; n03ð ÞT: ð15Þ

With m, s, r denoting separately the unit vectors aligned with the axes of coordinates �x, �y, �z in the reference
configuration (Fig. 2) and D1, D2, D2 denoting the projections of D, we have:

D ¼ Dn1 ¼ D1m;D2s;D3rð ÞT: ð16Þ
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2.3. Homogenized macroscopic equivalent properties

For a unit cell containing N Euler–Bernoulli beam members, the strain energy density may be defined as

U � ¼ 1

X

XN

i¼1

1

2
~uðiÞT eKðiÞ~uðiÞ; ð17Þ

where ~uðiÞ is the nodal displacement vector for the ith beam characterized by the end nodes f and s, as shown
Fig. 3:

~uðiÞ ¼ wf; vf;wf; hfx; hfy ; hfz;ws; vs;ws; hsx; hsy ; hsz

� �ðiÞT
: ð18Þ

From Fig. 2 as well as Eq. (16), one can write:

~uðiÞ ¼ D1;D2;D3; 0; 0; 0; 0; 0; 0; 0; 0; 0½ �ðiÞT: ð19Þ

In Eq. (17), eKðiÞ is the global stiffness matrix that satisfies the transformation between local and global coor-
dinates, as shown in Fig. 3:

eKðiÞ ¼ TT eKeðiÞT; ð20Þ

eKðiÞ ¼
k11 k12 k13 k14 k15 k16 	 	 	

k22 k23 k24 k25 k26 	 	 	
k33 k34 k35 k36 	 	 	

k44 k45 k46 	 	 	
sym: k55 k56 	 	 	

k66 	 	 	
	 	 	

2666666666664

3777777777775

ðiÞ

; ð21Þ

where T is the transformation matrix and eKeðiÞ is the elementary stiffness matrix of the ith beam. For Euler–
Bernoulli beams:

Fig. 3. Displacements and rotations at nodes f and s of ith beam member in local coordinates (x,y,z). Transformation from local
coordinates to global coordinates ð�x;�y;�zÞ is defined by transformation matrix T.
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eKeðiÞ ¼
eK1

eK2

sym: eK3

" #eðiÞ

; ð22Þ

eK1 ¼

EA
l

0 0 0 0 0

0
12EIz

l3
0 0 0

6EIz

l2

0 0
12EIy

l3
0
�6EIy

l2
0

0 0 0
GIx

l
0 0

0 0
�6EIy

l2
0

4EIy

l
0

0
6EIz

l2
0 0 0

4EIz

l

266666666666666666664

377777777777777777775

; ð23Þ

eK2 ¼

�EA
l

0 0 0 0 0

0 � 12EIz

l3
0 0 0

6EIz

l2

0 0 � 12EIy

l3
0

�6EIy

l2
0

0 0 0 �GIx

l
0 0

0 0
6EIy

l2
0

2EIy

l
0

0 � 6EIz

l2
0 0 0

2EIz

l

266666666666666666664

377777777777777777775

; ð24Þ

eK3 ¼

EA
l

0 0 0 0 0

0
12EIz

l3
0 0 0 � 6EIz

l2

0 0
12EIy

l3
0

6EIy

l2
0

0 0 0
GIx

l
0 0

0 0
6EIy

l2
0

4EIy

l
0

0 � 6EIz

l2
0 0 0

4EIz

l

266666666666666666664

377777777777777777775

; ð25Þ

where E and G are the Young’s and shear moduli of the isotropic base material, l is the length of the ith beam
member having cross-sectional area A, and Ix, Iy, Iz are the moments of inertia of the ith beam.

Let the macroscopic strain vector of the unit cell be defined as

N ¼ N11;N22;N33;N23;N13;N12½ �T ¼ E11;E22;E33; 2E23; 2E13; 2E12½ �T: ð26Þ

Then the effective stiffness of the unit cell can be calculated as

CH
ijkl ¼

o2U �

oNij oNkl
; ð27Þ
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where the superscript ‘H’ denotes the homogenized effective stiffness. In compact form, we have:

CH
11 ¼

1

X

XN

i¼1

lðiÞ2nðiÞ201 kðiÞ11 ; CH
12 ¼

1

X

XN

i¼1

lðiÞ2nðiÞ02nðiÞ01kðiÞ12 ; ð28Þ

CH
13 ¼

1

X

XN

i¼1

lðiÞ2nðiÞ03nðiÞ01kðiÞ13 ; CH
14 ¼

1

2X

XN

i¼1

lðiÞ2nðiÞ01 nðiÞ03kðiÞ12 þ nðiÞ02kðiÞ13

� �
; ð29Þ

CH
15 ¼

1

2X

XN

i¼1

lðiÞ2nðiÞ01 nðiÞ03kðiÞ11 þ nðiÞ01kðiÞ13

� �
; CH

16 ¼
1

2X

XN

i¼1

lðiÞ2nðiÞ01 nðiÞ02kðiÞ11 þ nðiÞ01kðiÞ12

� �
; ð30Þ

CH
22 ¼

1

X

XN

i¼1

lðiÞ2nðiÞ202 kðiÞ22 ; CH
23 ¼

1

X

XN

i¼1

lðiÞ2nðiÞ03nðiÞ02kðiÞ23 ; ð31Þ

CH
24 ¼

1

2X

XN

i¼1

lðiÞ2nðiÞ02 nðiÞ02kðiÞ23 þ nðiÞ03kðiÞ22

� �
; CH

25 ¼
1

2X

XN

i¼1

lðiÞ2nðiÞ02 nðiÞ03kðiÞ12 þ nðiÞ01kðiÞ23

� �
;

CH
26 ¼

1

2X

XN

i¼1

lðiÞ2nðiÞ02 nðiÞ02kðiÞ12 þ nðiÞ01kðiÞ22

� �
; CH

33 ¼
1

X

XN

i¼1

lðiÞ2nðiÞ203 kðiÞ33 ; ð32Þ

CH
34 ¼

1

2X

XN

i¼1

lðiÞ2nðiÞ03 nðiÞ03kðiÞ23 þ nðiÞ02kðiÞ33

� �
; ð33Þ

CH
44 ¼

1

4X

XN

i¼1

lðiÞ2 nðiÞ203 kðiÞ22 þ 2nðiÞ02nðiÞ03kðiÞ23 þ nðiÞ202 kðiÞ33

� �
; ð34Þ

CH
45 ¼ CH

54 ¼
1

4X

XN

i¼1

lðiÞ2 nðiÞ203 kðiÞ12 þ nðiÞ02nðiÞ03kðiÞ13 þ nðiÞ03nðiÞ01kðiÞ23 þ nðiÞ02nðiÞ01kðiÞ33

� �
; ð35Þ

CH
55 ¼

1

4X

XN

i¼1

lðiÞ2 nðiÞ203 kðiÞ11 þ 2nðiÞ01nðiÞ03kðiÞ13 þ nðiÞ201 kðiÞ33

� �
: ð36Þ

The homogenized effective stiffness of a truss core material can be obtained for Timoshenko beam members
by replacing the elementary stiffness matrix formulation of Euler–Bernoulli beam by Timoshenko beam for-
mulation in Eqs. (22)–(25). For simplicity, only results for Euler–Bernoulli beams will be presented below.

3. Analysis of truss-cored sandwich panels

3.1. Theoretical development

The structural modeling of sandwich plates and shells, as reviewed by Hohe and Librescu (2004), can be
divided into two categories: multilayer theories and effective single-layer models. Multilayer theories deal with
the principal layers of the sandwich structures separately and impose appropriate continuity constraints at the
interfaces to satisfy the necessary compatibility of the mechanical fields with respect to the adjacent layers.
Effective single-layer models use one single displacement expansion through the entire thickness of the multi-
layer structures. Even though multilayer theories can provide more accurate predictions on the behaviors of
sandwich structures, they are more difficult to be implemented for a large number of independent field vari-
ables are involved. In comparison, effective single-layer models in general involve fewer field variables but have
more accuracy losses in predictions. Therefore, lots of work have been devoted to improve the accuracy based
on first order shear deformable deformation theories (FOSDT) or more higher order shear deformation the-
ories (see, e.g., Altenbach, 2000; Vinson, 2005).

Since the purpose of the present study is to explore the optimal design of truss-cored sandwich panels, it is
beyond the scope of this paper to compare the predictabilities of different theories. For simplicity, an effective
single-layer model (2D sandwich model) is employed (Kollar and Springer, 2003). The effectiveness of this
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model is demonstrated with the numerical examples presented in Section 5, where 2D sandwich models are
compared with discrete 3D (non-homogenized) sandwich models (see Fig. 1).

The following fundamental assumptions are used for the 2D sandwich model:

– The upper and lower faces have equal transverse deflections, implying zero transverse flexibility of the core;
– The distribution of longitudinal displacement across the height of the core is linear.

The behavior of a thin plate undergoing small deformations may be analyzed by the Kirchhoff hypothesis:
the normals remain straight and perpendicular to the deformed reference plane. For a sandwich plate, the first
assumption is reasonable. The second may no longer be valid, however, because the normals do not necessar-
ily remain perpendicular to the reference plane. Based on these considerations, the stain-displacement relation-
ships in the coordinates �x, �y, �z (Fig. 4) may be written as

e�x ¼
ou
o�x
¼ ou0

o�x
� �zj�x; ð37Þ

e�y ¼
ov
o�y
¼ ov0

o�y
� �zj�y ; ð38Þ

c�x�y ¼
ou
o�y
þ ov

o�x
¼ ou0

o�y
þ ov0

o�x
þ �zj�x�y ; ð39Þ

c�x�z ¼
ow0

o�x
� v�x�z; c�y�z ¼

ow0

o�y
� v�y�z; ð40Þ

j�x ¼
ov�x�z

o�x
; j�y ¼

ov�y�z

o�y
; j�x�y ¼ �

ov�x�z

o�y
�

ov�y�z

o�x
; ð41Þ

e0
�x ¼

ou0

o�x
; e0

�y ¼
ou0

o�y
; c0

�x�y ¼
ou0

o�y
þ ov0

o�x
; ð42Þ

where the superscript ‘0’ denotes quantities associated with the reference plane; e�x, e�y and c�x�y are the membrane
strains; c�x�z, c�y�z are the transverse shear strains; v�x�z, v�y�z are the rotations of the normal in the �x–�z and �y–�z planes;

Fig. 4. Sandwich plate with identical top and bottom facesheets: (a) geometry; (b) forces and moments at reference plane.
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u, v, w are the displacements in the �x, �y, �z directions; and j�x, j�y , j�x�y are the curvatures of the reference plane in
the absence of shear deformation. Therefore, as shown in Fig. 4, the in-plane forces N, the moments M and the
transverse shear forces V can be written as (Kollar and Springer, 2003)

N�x

N�y

N�x�y

8><>:
9>=>; ¼ A

e0
�x

e0
�y

c0
�x�y

8><>:
9>=>;þ B

j�x

j�y

j�x�y

8><>:
9>=>;; ð43Þ

M�x

M�y

M�x�y

8><>:
9>=>; ¼ B

e0
�x

e0
�y

c0
�x�y

8><>:
9>=>;þD

j�x

j�y

j�x�y

8><>:
9>=>;; ð44Þ

V �x

V �y

� �
¼ eS c�x�z

c�y�z

( )
; ð45Þ

where A, B and D are the in-plane stiffness matrices of the sandwich, and eS is its shear stiffness matrix.
To evaluate the above stiffness matrices, the following considerations are in general necessary: (a) The

assumption of weak core and strong core sandwich structures should be justified. For the former the core is
capable of carrying transverse shear loading only, whereas for the latter the core can carry both in-plane
and out-of-plane forces. (b) Thin facesheets should be distinguished from thick facesheets. In the former case,
the facesheets are treated as membranes (with negligible bending and transverse shear deformations), whereas
those in the latter can carry both in-plane and out-of-plane forces. Detailed examination of these scenarios will
be left for future studies; here, for simplicity, the same assumptions used by Wicks and Hutchinson (2001) are
made, namely, the stiffness matrices are evaluated by assuming that the in-plane stiffnesses of the core and the
out-of-plane stiffnesses of the facesheets are both negligible.

Under these assumptions, the A, B and D stiffness matrices of the sandwich plate are governed solely by the
stiffnesses of the faces. Especially, when the top and bottom faces are identical and their layup is symmetrical
with respect to the midplane of each face, we have:

A ¼ 2A�; B ¼ 0; D ¼ 1
2
d2A� þ 2D�; ð46Þ

where A* and D* are evaluated in a coordinate system whose origin is located at the reference plane of each
face, d = hc + tf is the distance between the midplanes of faces, hc is the thickness of sandwich core and hf is the
thickness of face (Fig. 4). Furthermore, to evaluate the shear stiffness matrix eS, it is assumed that the faces are
thin and hence its shear deformation is negligible. Thus, the relationship between the average shear deforma-
tion of the sandwich plate and the deformation of the core is given by

cc
�x�z ¼

d
hc

c�x�z; cc
�y�z ¼

d
hc

c�y�z; ð47Þ

from which the shear stiffness matrix eS can be written as

eS ¼ d2

hc

XN

i¼1

eSi ¼ d2

hc

CH
55 CH

45

CH
45 CH

44

" #
; ð48Þ

where CH
ab (a,b = 4,5) are the homogenized moduli of the core material given in Eqs. (34)–(36), and N is the

total number of truss members in the unit cell.

3.2. Finite element implementation

To check the validity of effective single-layer sandwich models with homogenized cores, finite element (FE)
analysis was performed on a benchmark problem (see Section 5.1), using single-layer sandwich models based
FE model (2D model) and discrete 3D sandwich models based FE model (3D model), respectively. The multi-
layered 8-node isoparametric shell elements (Shell 91) in ANSYS code (ANSYS, 2003) is selected for single-
layer sandwich FE models, which was developed based on the works of Ahmad et al. (1970) and Cook (1981).
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Manet (1998) used three kinds of FE models in ANSYS, including Shell 91, to calculate the behavior of sand-
wich structures. The results showed Shell 91 had good performance in numerical simulations.

In 3D sandwich FE model, truss core sandwiches are modeled by the assembly of 4-node quadrilateral shell
elements (Shell 63) for facesheets and 2-node Euler–Bernoulli beam elements (Beam44) or 2-node Timoshenko
beam elements (Beam188) for rods in truss core.

4. Optimization of truss-cored sandwiches

The design optimization of a periodic truss-cored sandwich system aims to find the optimal unit cell topol-
ogy with minimum system weight when subjected to loading. Three different kinds of design variables are opti-
mized: topological, shaping and sizing variables. The topological variables determine the optimum number of
truss elements in a unit cell. For the cubic unit cell configuration as shown in Fig. 5, the shaping variables are
the total thickness h of the sandwich (for thin facesheets, h � hc), the width D of the unit cell (identical width in
the two transverse directions assumed in this paper), and the coordinates ð�x; �y;�zÞ of the top and bottom ends
of the truss elements in the unit cell. The sizing variables are the facesheet thickness tf (identical thickness of
top and bottom facesheets assumed), the rod radius Rc for solid truss members or the outer rod radius Rc and
inner radius rc for hollow truss members. All the truss members are assumed to have the same values of the
sizing variables.

Design optimizations of truss-cored sandwiches are investigated below using the sandwich model described
in Sections 2 and 3. Truss-cored sandwich plates subjected to bending and transverse shear loads and sub-
jected to in-plane compression loading are optimized separately. In addition to solid truss systems, based
on the feasibility of fabricating truss systems with hollow truss members, as discussed in Wadley et al.
(2003), the pyramidal truss core sandwich plates with hollow truss members (Fig. 5(b)) are optimized.

4.1. Design optimization of sandwich plates subjected to bending and transverse shear

The design optimization of a truss-cored sandwich plate under three-point loading, with force per unit
length, 2P, at the center, as shown in Fig. 6(a), was investigated by Wicks and Hutchinson (2001). Each half
of the plate carries a uniform transverse shear load per length, V = P, and a maximum moment per length,
M = PL1, at the center, where L1 is half-length of the plate, L1 = M/V. The truss core had a tetrahedral unit
cell with solid truss members, as shown in Fig. 6(b). The four failure modes considered were: face yielding, face
buckling, core member yielding, and core member buckling. The maximum stresses in the facesheets and the
maximum truss member forces were obtained analytically using the method of sections. In Section 5.2, the
analytical results of Wicks and Hutchinson (2001) will be compared with those obtained using the proposed
2D sandwich model as well as the discrete 3D model.

In Wicks and Hutchinson (2001), only sizing design variables were considered. Here, based on the proposed
2D computational model, both sizing and shaping design variables are included in the design optimization.
For a sandwich plate under 3-point bending (Fig. 6(a)) and the corresponding cubic unit cell with solid truss
members or pyramidal unit cell with hollow truss members (Fig. 5), the dimensionless design variables are:

~X ¼ X 1;X 2;X 3;X 4;X5;X6;X 7½ �T ¼ tf

L1

;
Rc

L1

;
hc

L1

;
D
L1

;
�x

L1

;
�y

L1

;
rc

L1

� 	T

; ð49Þ

X5=X 4 6 1; X6=X 4 6 1;

X5 ¼ X L
51;X

u
51


 �
; . . . ; X L

5a;X
u
5a


 �
; . . . ; X L

5N ;X
u
5N


 �� �T
;

X6 ¼ X L
61;X

u
61


 �
; . . . ; X L

6a;X
u
6a


 �
; . . . ; X L

6N ;X
u
6N


 �� �T
; ð50Þ

where L1 is the half length of the plate, subscript a denotes the ath truss member, and superscripts (‘u’, ‘L’)
denote the end point of the truss intersecting on the upper and lower facesheet, respectively. Since the unit cell
shape is fixed as pyramid, X5 and X6 are not active for pyramidal unit cell with hollow truss members.

For a sandwich plate under 3-point bending (Fig. 6(a)), with tf/hc� 1 assumed, the maximum stress in
facesheets and the maximum axial compression forces of truss members can be obtained using the 2D sand-
wich model, as
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rf ¼
M

tf hc

¼ V 2

EM

� 
E

X 1X 3

; ð51Þ

F a ¼
pX 2

2L2
1E X u

5a � X L
5a


 �
X 3V

X u
5a � X L

5a


 �2 þ X u
6a � X L

6a


 �2 þ X 2
3

h ieS 11

ðcubic unit cell with solid truss membersÞ; ð52Þ

F a ¼
pEVL2

1ðX 2
2 � X 2

7ÞX 3X 4

2X 2
3 þ X 2

4

� �eS 11

ðpyramidal unit cell with hollow truss membersÞ: ð53Þ

The transverse shear stiffness eS 11 appearing in (52) and (53) can be formulated from Eqs. (34)–(36) and (48) as

eS 11 ¼ EL1X 2
3

XN

a¼1

pX 2
2 X u

5a � X L
5a


 �2

X u
5a � X L

5a


 �2 þ X u
6a � X L

6a


 �2 þ X 2
3

h i3=2

X 2
4

ðcubic unit cell with solid truss membersÞ;

ð54Þ

eS 11 ¼
8:88EL1X 2

3 X 2
2 � X 2

7


 �
X 2

4 þ 2X 2
3


 �3=2
ðpyramidal unit cell with hollow truss membersÞ: ð55Þ

Fig. 6. Geometry of a tetrahedral truss-cored sandwich plate under three-point loading, investigated by Wicks and Hutchinson (2001) (a)
a plate under three-point loading and (b) a tetrahedral unit cell with solid truss members.

Fig. 5. Geometry of typical cubic unit cells: (a) a 4-rod unit cell, (b) a pyramidal unit cell, (c) a plagihedral pyramidal unit cell.
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Since the nodal shear forces and moments of truss members can be ignored (see Examples 2 and 3 of Section
5), only axial forces need to be considered in the design. The optimization problem for minimum weight design
of the sandwich plate can be formulated as

min W =qL1 ð56Þ
subjected to the constraints:

V 2

EM

� 
1

X 1X 3

6
rY

E
; ðfacesheet yieldingÞ; ð57Þ

V 2

EM

� 
1

X 1X 3

6
p2

12ð1� v2Þ
X 1

X 4

� 2

ðfacesheet bucklingÞ ð58Þ

for cubic unit cell with solid truss members; and

E X u
5a � X L

5a


 �
X 3V

X u
5a � X L

5a


 �2 þ X u
6a � X L

6a


 �2 þ X 2
3

h ieS 11

6 rY ðsolid truss member yieldingÞ; ð59Þ

E X u
5a � X L

5a


 �
X 3V

X u
5a � X L

5a


 �2 þ X u
6a � X L

6a


 �2 þ X 2
3

h ieS 11

6
kp2EX 2

2L2
1

4l2
a

ðsolid truss member bucklingÞ ð60Þ

for pyramidal unit cell with hollow truss members:

V 2

EM

� 
X 3X 4 X 2

4 þ 2X 2
3


 �1=2

8:88X 2
3 X 2

2 � X 2
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 � 6 rY

E
ðhollow truss member yieldingÞ; ð61Þ

V 2
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X 3X 4 X 2
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3
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 !
p2ðX 2 �X 7Þ2
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4=2þX 2

3


 �
ðhollow truss member local bucklingÞ:

ð63Þ
Here, W is the weight per unit area of the panel, a = (1, . . . ,N), la is the length of the ath truss member, and (E,
v, rY, q) are the Young’s modulus, Poisson’s ratio, yielding strength and mass density of the base material. If
the facesheets and truss members are made of the same material, the dimensionless panel weight becomes:

W
qL1

¼ ðcX 3 þ 2X 1Þ; ð64Þ

where c is the total volume fraction ratio of the truss members, given by

c ¼
XN

a¼1

pX 2
2 X u

5a � X L
5a


 �2 þ X u
6a � X L

6a


 �2 þ X 2
3

h i1
2

X 3X 2
4

ð65Þ

for cubic unit cell with solid truss members, and

c ¼
2p 2X 2

4 þ 4X 2
3


 �1=2
X 2

2 � X 2
7


 �
X 2

4X 3

ð66Þ

for pyramidal unit cell with hollow truss members.
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For facesheet buckling as represented by (58), the assumption of Wicks and Hutchinson (2001) is adopted:
facesheet buckles between two neighboring truss member intersections if all truss members in a unit cell meet
at the same node on the facesheet. If all truss members in a unit cell do not meet at the same node on a face-
sheet, Eq. (58) is expected to underestimate the maximum moment at buckling. Furthermore, the rotation
restraining effect of truss core on the facesheets at the points of attachment is neglected, which also leads
to the underestimation of the maximum moment.

For core member buckling, the factor k in (60) and (62) is adjusted to model different end conditions. The
choice k = 1 and k = 4 corresponds to simply-supported and fully clamed conditions respectively, which may
underestimate (k = 1) or overestimate (k = 4) the maximum allowable shear force associated with the buckling
of a truss element. Following Wicks and Hutchinson (2001), k = 1 is selected for the present investigation.

4.1.1. Optimization results
The optimization problem is solved using a sequential linear programming algorithm embedded in a com-

mercially available optimization solution engine iSIGHT (iSIGHTTM), with the main programs coded in
Matlab (MatlabTM). The material parameters are fixed at rY/E = 0.007 and v = 1/3, same as Budiansky
(1999) and Wicks and Hutchinson (2001).

For solid truss systems, six different unit cell (RVE) topologies are investigated: plagihedral pyramidal unit
cell, 4-rod unit cell, 5-rod unit cell, 6-rod unit cell, 7-rod unit cell, and 8-rod unit cell. Whilst the four rods in
the plagihedral pyramidal unit cell meet at one common node on the top facesheet, as shown in Fig. 5(c), the
rods in the other topologies do not necessarily meet at one common node. The metallic truss core sandwiches
having these unit cell topologies are generally manufacturable. For the same sandwich geometry analyzed
here, Wicks and Hutchinson (2001) gave minimum weight designs for the case of tetrahedral (3-rod) unit cell
with solid truss members.

Fig. 7 plots the minimum sandwich weight W/qL1 as a function of the normalized loading factor V/(EM)1/2

over the range that the sandwich can be considered as thin plate. Of all the topologies considered for solid truss
systems, the optimal topology is the 4-rod unit that has the least number of rods. However, the results of Fig. 7
reveal that the optimal design is not very sensitive to the topological design variables, as the sandwiches con-
structed using different cell topologies have similar weights. The corresponding values of the sizing and shap-
ing design variables for the 4-rod unit cell, which is the optimal topology, are plotted in Figs. 8 and 9 as
functions of V/(EM)1/2. The active constraints over the entire range plotted are face yielding, face buckling
and core buckling. As shown in Fig. 8, with the bottom ends of the rods fixed at the four bottom corners
of the unit cell, the shaping design variables (i.e., coordinates of the top ends) do not vary significantly over

Fig. 7. Normalized weight of optimally designed truss-cored sandwich with solid truss members under 3-point bending plotted as a
function of dimensionless load parameter. Two-dimensional homogenized sandwich model is used, with material properties fixed at E/
rY = 0.007, v = 1/3 and rod buckling parameter at k = 1.
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the loading range. Consequently, for obvious manufacturing reasons, these shaping design variables may be
fixed at their average values.

In Fig. 10, the dimensionless weights of fully optimized truss core sandwich plates having the cubic 4-rod
unit cell with solid truss members (k = 1) and pyramidal unit cell with hollow truss members (k = 1) are com-
pared with the results given by Wicks and Hutchinson (2001) for a fully optimized truss core sandwich plate of
tetrahedral unit cell and solid truss members (k = 1) and a fully optimized honeycomb sandwich plate. Here,
all the plates are made with the same base material, with rY/E = 0.007 and v = 1/3. Notice that truss-cored
sandwiches with hollow core members outperform sandwiches made with solid truss members. For more heav-
ily loaded plates, the pyramidal truss-cored sandwiches with hollow core members can even outperform the
honeycomb-cored sandwiches, the latter generally regarded as the most structurally efficient designs under
bending and/or shear loadings. The corresponding values of the sizing design variables for the pyramidal unit
cell with hollow core members are plotted in Fig. 11 as functions of V/(EM)1/2. The local buckling for hollow
truss members is never active over the entire range of load parameter considered; the active constraints are
face yielding, face buckling and core buckling.

As also shown in Fig. 10, although slightly heavier, sandwiches made with the 4-rod unit cell with solid
truss members have similar weight advantages as the tetrahedral truss-cored sandwiches with solid truss mem-
bers and the honeycomb-cored sandwiches. In the next section, it will be demonstrated that, under in-plane

Fig. 8. Sizing design variables for optimized truss core sandwich having 4-rod unit cell and solid truss members (E/rY = 0.007, v = 1/3,
k = 1).
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compression loadings, the proposed new sandwich plates with 4-rod unit cell and solid truss members have
weight advantages over tetrahedral truss-cored sandwiches and hat-stiffened panels, the latter regarded as
one of the most efficient structures for this application (Budiansky, 1999; Tian and Lu, 2005).

4.2. Design optimization for compression panels

Wicks and Hutchinson (2001) optimized tetrahedral truss-cored sandwich plates as compression panels. A
simply supported wide plate under elastic buckling load was investigated, with four types of failure mode con-
sidered: overall buckling, facesheet yielding, facesheet bucking and localized kinking. It was found that the
most frequently occurring failure modes for both heavily loaded panels and lightly loaded panels were overall
buckling and local buckling.

Fig. 10. Comparison of minimum weights of optimally designed sandwich plates having 4-rod unit cells with solid truss members (k = 1),
pyramidal cored sandwich plates with hollow truss members (k = 1), tetrahedral cored sandwich plates with solid truss members (k = 1),
and sandwich plates with honeycomb cores (hc/L1 = 0.1), with material properties fixed at E/rY = 0.007 and v = 1/3. The data partly come
from Wicks and Hutchinson (2001).

Fig. 9. Normalized shaping design variables for optimized truss core sandwich having 4-rod unit cell and solid truss members (E/
rY = 0.007, v = 1/3, k = 1), where X4 = D/L1, X u

5a ¼ �xu
a=L1, X u

6a ¼ �yu
a=L1, X L

5a ¼ �xL
a =L1, X L

6a ¼ �yL
a =L1, subscript a denotes the ath truss

member, superscript u denotes the end of rod intersected on the top facesheet, superscript L denotes the end intersected on the bottom
facesheet. The bottom ends of the four rods are fixed at four corners of the unit cell, namely, X L

51 ¼ 0, X L
61 ¼ 0, X L

52 ¼ 0, X L
62 ¼ X 4,

X L
53 ¼ X 4, X L

63 ¼ X 4, X L
54 ¼ X 4, X L

64 ¼ 0.
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The optimization problem for a tetrahedral truss-cored sandwich compression panel can be formulated as
(Wicks and Hutchinson, 2001)

min W ð67Þ

subjected to the constraints

P 6 P cr ðoverall bucklingÞ; ð68Þ
P 6 2rYtf ðfacesheet yieldingÞ; ð69Þ
P 6 P fcr ðfacesheet bucklingÞ; ð70Þ
P 6 eS11 ðlocalized kinkingÞ; ð71Þ

where Pcr is the critical buckling load of the sandwich plate, given by (Kollar and Springer, 2003)

P cr ¼
p2D11

L2

� 
1þ p2D11

L2eS 11

� �1

; ð72Þ

Fig. 11. Sizing design variables for the optimized pyramidal truss core sandwich with hollow truss members (E/rY = 0.007, v = 1/3,
k = 1).
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Pfcr is the critical load for facesheet buckling:

P fcr ¼
49

216

p2

ð1� v2Þ
Et3

f

l2
a � h2

c


 � ; ð73Þ

and

eS 11 ¼
62800R2

cEh2
c 374989l2

a þ 11h2
c


 �
51963l3

a 249989l2
a þ 11h2

c


 � � 1:8129
R2

cEh2
c

l3
a

ð74Þ

In (72), L is the length of the compression panel, and D11 is the component of D in Eq. (46):

D11 ¼ 1
2
Etfðhc þ tfÞ2 ffi 1

2
Etfh

2
c : ð75Þ

Design optimizations for truss-core compression panels with cell topologies other than tetrahedral can be
carried out using the same procedures as outlined above. In Wicks and Hutchinson (2001), only sizing design
variables were analyzed. Based on the present 2D sandwich models, both sizing and shaping design variables
can be considered simultaneously. In terms of dimensionless design variables and with L1 replaced with L in
Eq. (49), Eqs. (68)–(71) can be rewritten as

1

2
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� 
E
rY

� 
X�1

1 6 1 ðfacesheet yieldingÞ; ð76Þ
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� 
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1 X 2
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For cubic unit cell with solid truss members:
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For pyramidal unit cell with hollow truss members:
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6 1 ðlocalized kinkingÞ: ð81Þ

The prescribed dimensionless loading parameter is P/EL, and the material properties are fixed such that rY/
E = 0.007 and v = 1/3.

For the same unit cell topologies with solid truss members considered in Section 4.1, the minimum weights
of truss core sandwiches are presented in Fig. 12. Again, the range of load parameter has been chosen to be
consistent with the conditions that the panel is relatively thin. The results of Fig. 11 show that, for the con-
struction of sandwich compression panels, unit cells with 4–8 rods not necessarily joining at a common node
are superior to the plagihedral pyramidal unit cell, and the difference between a panel made with the 4-rod cell
and that with a cell containing more than 4 rods is negligibly small. Therefore, only results concerning 4-rod
unit cell truss core sandwich panels will be presented hereafter.

For compression panels, hat-stiffened plates have traditionally been regarded as one of the most efficient
constructions (Budiansky, 1999; Tian and Lu, 2005). Recently, however, Wicks and Hutchinson (2001) dem-
onstrated that sandwich panels with tetrahedral core and solid truss members outperform hat-stiffened single
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layer plates. It would therefore be interesting to see how the 4-rod unit cell truss core sandwiches with solid
truss members and pyramidal truss-cored sandwiches with hollow truss members compete with the above two
types of benchmark compression panel. Such a comparison is presented in Fig. 13, and it is seen that although
the performances of these panels are very close, the 4-rod unit cell truss core sandwiches with solid truss mem-
bers indeed have weight advantages over even the tetrahedral-cored sandwiches. On the other hand, even
though a pyramidal truss-cored sandwich with hollow truss members has superior performances when sub-
jected to bending and transverse shear, as shown in Fig. 10, its performances under axial compression are
not as good as other compression panels plotted in Fig. 13. Therefore, it can be deduced that pyramidal
truss-cored sandwiches with either hollow or solid truss members are not the best choice for compression
panels.

For the optimized 4-rod unit cell truss core sandwich with solid truss members, Fig. 14 plots the variations
of its size variables with the loading parameter P/EL. It is noticed that hc/L approaches 1/10 at the upper end

Fig. 12. Normalized weight plotted as a function of dimensionless load parameter for optimally designed truss-cored sandwich panels with
solid truss members under axial compression (E/rY = 0.007, v = 1/3). Two-dimensional homogenized sandwich model is used with the
method of finite element for the prediction.

Fig. 13. Comparisons of minimum weights of various optimally designed truss core sandwich panels and hat-stiffened single layer plate
under end compression (E/rY = 0.007, v = 1/3).
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of the loading parameter range, i.e., when the panel is heavily loaded. The local kinking mode is never active
over the entire range of load parameter considered. The more lightly loaded panels buckle at the design load
simultaneously in the overall and localized modes, but are stressed below face yielding. The normalized core
height hc/L is significantly larger than the normalized unit cell width D/L for the more lightly loaded panels,
which aims to resist against buckling deformation. In comparison, the more heavily loaded compression pan-
els have three of the constraints active: overall buckling, facesheet buckling and facesheet yielding.

For the 4-rod truss core compression panels with solid truss members shown in Fig. 13, the shape design
variables (namely, the coordinates of the top ends of the 4 rods in the unit cell) are plotted in Fig. 15; during
the calculations, the bottom ends of the rods are fixed at the four bottom corners of the unit cell. Similar to the

Fig. 14. Sizing design variables for the optimized 4-rod cell truss core sandwich compression panels with solid core members (E/
rY = 0.007, v = 1/3).

Fig. 15. Shaping design variables for the optimized 4-rod cell truss core sandwich compression panels with solid core members (E/
rY = 0.007, v = 1/3), where X4 = D/L1, X u

5a ¼ �xu
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6a ¼ �yL
a =L1, subscript a denotes the ath truss member,

superscript u denotes the end of rod intersected on the top facesheet, superscript L denotes the end intersected on the bottom facesheet.
The bottom ends of the four rods are fixed at four corners of the unit cell, namely, X L

51 ¼ 0, X L
61 ¼ 0, X L

52 ¼ 0, X L
62 ¼ X 4, X L

53 ¼ X 4,
X L
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case when the sandwich is subjected to a combination of bending and transverse shear loads, these shape vari-
ables do not vary vigorously as the compression load is increased. Consequently, in the next section, a com-
pression panel having averaged shaping variables will be chosen for one of the four numerical examples
studied.

5. Comparison between predictions with 2D and 3D sandwich models

In this section, the predictions using the homogenized 2D computational models are checked against those
obtained using the 3D models. Four different sandwich panels with different unit cell topologies are separately
studied: (a) plagihedral pyramidal; (b) tetrahedral; (c) pyramidal; (d) 4-rod. For the pyramidal core panel, the
truss members are hollow, whereas those in the rest of the panels are solid.

5.1. Plagihedral pyramidal core sandwich subjected to bending and transverse shear

Truss core sandwich panels having plagihedral pyramidal cores as shown in Fig. 5(c) are analyzed using the
method of finite elements with both 2D sandwich model and 3D direct computational model. In the 3D model,
the facesheets and the truss core are simulated with shell elements (Shell63, Q4, in the notation of the com-
mercially available FE code ANSYS 7.0) and 3D beam elements (Beam44, representing the Euler–Bernoulli
beam), respectively. In the homogenized sandwich model (2D model), the core is assigned with the stiffness
CH given in Eqs. (28)–(36) and simulated with the element Shell91 (Q8), which has an optional switch for
sandwich structures analyses.

The truss core and the solid facesheets are both made of steel, with Young’s modulus E = 206 GPa, Pois-
son’s ratio v = 0.3, yield strength rY = 355 MPa, and mass density q = 7850 kg/m3. The following geometric
variables are selected: core height hc = 0.04 m; cross-sectional area of each cylindrical rod A = 1.25 · 10�5 m2;
facesheet thickness tf = 0.00333 m; the width D of unit cell varies from 0.01 m to 0.0333 m; the length and
width of the panel are both fixed at 0.5 m. As shown in Fig. 16, the panel is clamped at two edges and sub-
jected to two different static loading cases: Case 1 represents an out-of-plane uniform loading of P =
10,000 KN/m2 on the upper facesheet, which aims to compare the bending and transverse shear behavior
of 2D and 3D sandwich models (Fig. 16(a) and (c)); Case 2 represents an in-plane compression load of
P1 = 800 KN/m acting on the upper facesheet only, which aims to compare the coupled behavior of bending,
transverse shear and in-plane compression for the two models (Fig. 16(b) and (d)).

Fig. 17 plots the total amount of strain energy stored in the sandwich panel as a function of unit cell width
D for both loading cases; the corresponding maximum nodal displacements are presented in Fig. 18 for Case 1
(Fig. 16(a) and (c)) and in Fig. 19 for Case 2 (Fig. 16(b) and (d)). These results show that the coupled behavior
of in-plane compression and out-of-plane bending predicted with the 2D homogenization model agrees well
with those predicted using the direct 3D computational model, although the 2D model is a slightly stiffer than
the 3D model. However, the agreement between 2D and 3D model predictions for out-of-plane behavior
(loading Case 1) is not as good as that for the coupled behavior, which can be attributed to two important
issues:

1. The current 2D homogenized model is based on the effective single-layer sandwich approaches, which con-
siders the in-plane deformations of the facesheets but ignores their out-of-plane deformations.

2. To ensure the same shear resultants between facesheets and truss core, closed form solutions should be for-
mulated (Frostig, 2003).

These issues will be addressed in a separate study (Liu et al., in preparation).

5.2. Tetrahedral core sandwich under bending and transverse shear

The design optimization of a wide tetrahedral-cored sandwich plate under three-point loading, with force
per unit length, 2P, at the center, as shown in Fig. 6(a), was investigated by Wicks and Hutchinson (2001).
Each half of the plate carries a uniform transverse shear load per length, V = P, and a maximum moment
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per length, M = PL1, at the center, where L1 is half-length of the plate, L1 = M/V. The geometry of the unit
cell is as shown in Fig. 6(b), which was made with solid truss members. The maximum stress rf in the face-
sheets and the maximum axial force Fc in the truss members were obtained from elementary equilibrium con-
siderations, neglecting the small contribution from transverse shear stresses within the facesheets:

rf ¼
M

tf hc

; F c ¼
ffiffiffi
3
p

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
a � h2

c

q
la

hc

; ð82Þ

where M and V denote the maximum moment and shear force per unit length, and la is the length of truss
members. Obviously, the optimization models and optimized results are governed by Eq. (82). In this section,

Fig. 16. Plagihedral pyramidal core sandwich: (a) 3D model for loading Case 1; (b) 3D model for loading Case 2; (c) 2D model for loading
Case 1; (d) 2D model for loading Case 2. The geometry of the plagihedral pyramidal unit cell is shown as Fig. 5(c).
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this problem, as mentioned above, is analyzed using the method of finite elements with both 2D sandwich
model and 3D direct computational model.

For a 3-rod unit cell truss core sandwich plate, using the proposed 2D sandwich model and assuming tf/
hc� 1, the same expression for rf as in Eq. (82) can be obtained. The nodal displacements and rotations
of truss members can be solved from Eqs. (13), (16), (19), (45) and (48). Hence, the maximum nodal forces
and moments of truss members can be solved from the corresponding equilibrium equations, as [see Fig. 3
for the definition of local coordinates (x,y,z) for a truss member]:

F x ¼ 1:7320
l2
a � h2

c


 �1=2
Vla

hc

; F y ¼ 2:6
VR2

c 2h2
c � l2

a


 �
lah2

c

F z ¼ 0; Mx ¼ 0; My ¼ 0; Mz ¼ 1:3
VR2

c 2h2
c � l2

a


 �
h2

c

:

ð83Þ

Fig. 18. Maximum node deflection of plagihedral pyramidal core sandwich panel plotted as a function of unit cell width D for loading
Case 1. The maximum node deflection occurs at corner C in the �z-direction as shown in Fig. 16.

Fig. 17. Total strain energy in plagihedral pyramidal core sandwich panel plotted as a function of unit cell width D.
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Simulations with 3D finite element models are subsequently performed, with respect to three groups of load-
ing parameters and geometry parameters, and the results are compared with those obtained from Eq. (83). The
facesheets and the truss core are simulated separately with shell elements and 3D beam elements (Beam188 of
ANSYS is selected, representing the Timoshenko beam, which can provide more accurate solutions for nodal
forces and moments than the Euler–Bernoulli beam). The truss core and the solid facesheets are made of high
strength aluminum with E = 70 GPa, v = 1/3, rY = 490 MPa and mass density q = 2700 kg/m3. The three
groups of loading and geometrical parameters given in Table 1 are chosen from the normalized design param-
eters for optimized truss plates as shown in Figs. 7 and 8 of Wicks and Hutchinson (2001), which represent the
lightly loaded plate, moderately loaded plate and heavily loaded plate, respectively. In Table 2, the results
obtained by Eq. (83) and the 3D sandwich model are compared.

As shown in Table 2, the overall agreement between the 2D and 3D sandwich model predictions on max-
imum nodal forces and moments of truss members is good. In comparison, in Eq. (82), obtained by Wicks and
Hutchinson (2001) using the elementary method of sections, only the maximum axial forces of truss members

Fig. 19. Maximum node deflection of plagihedral pyramidal core sandwich panel plotted as a function of unit cell width D for loading
Case 2. The maximum node displacement occurs at corner C both in the �y-direction and �z-direction as shown in Fig. 16.

Table 1
Three groups of loading and geometrical parameters for tetrahedral truss core sandwich plates with solid truss members subjected to
bending and transverse shear, chosen from Figs. 7 and 8 of Wicks and Hutchinson (2001), with E = 70 GPa, v = 1/3 and rY = 490 MPa

Case V/(EM)1/2 V (KN/m) hc (mm) la (mm) Rc (mm) tf (mm)

1 0.0005 13.1 24.38 28.12 0.75 0.75
2 0.0012 75.6 56.25 61.88 2.25 2.1
3 0.0018 170.1 82.5 90 3.75 3.15

Table 2
Maximum nodal forces and moments of truss members for tetrahedral truss core sandwich plates with solid truss members subjected to
bending and transverse shear

Case Fx (N) Fy (N) Fz (N) Mx (N m) My (N m) Mz (N m)

1 366:70

354:16

0:46

0:429

0

0:392

0

0:00302

0

0:0004

0:0064

0:0042

2
3714:8

3686:6

42:7

41:17

0

1:98

0

0:00916

0

0:0286

0:04

0:00413

3
11560

10336

56

57:23

0

1:489

0

0:144

0

0:02

0:3

0:137

The numerators and denominators refer to the results obtained with 2D and 3D models, respectively.
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are available. Therefore, the 2D sandwich model appears to have the advantages in cases where the nodal
shear forces and moments of truss members are not negligible. However, for all three cases considered in
Tables 1 and 2, the axial force Fx dominates over other nodal forces and moments. Therefore, for thin plates,
it is justifiable to assume that all truss members only carry axial forces, as assumed in the design optimization
studies of Section 4, and in Wicks and Hutchinson (2001), Mohr (2005) and many others.

5.3. Pyramidal core sandwich with hollow truss members under bending and transverse shear

The third example is for a pyramidal core sandwich plate with hollow truss members under three-point
loading, with force per unit length, 2P, at the center, as shown in Fig. 6(a). The unit cell configuration is
as shown in Fig. 5(b), with rY/E = 0.007, v = 1/3. Using the proposed 2D sandwich model and assuming
tf/hc� 1, the maximum stress rf in the facesheets and the maximum axial forces of truss members can be
solved as [see Fig. 3 for the definition of local coordinates (x,y,z) for a truss member]:

rf ¼
M

tfhc

; F x ¼
0:3536d d2 þ 2h2

c


 �1=2
V

hc

: ð84Þ

Simulations with 3D finite element models are subsequently performed, using three groups of loading
parameters and geometry parameters (Table 3). These parameters are chosen from the normalized design
parameters for optimized truss plates as shown in Fig. 11 which represent the lightly loaded plate, moderately
loaded plate and heavily loaded plate, respectively. Table 4 presents the results obtained by 2D and 3D sand-
wich models for the same FE constructions and base material properties mentioned in Section 5.2. The overall
agreement between the 2D and 3D sandwich model predictions on maximum nodal forces and moments of
truss members is good.

As shown in Table 4, for all the three cases considered, the axial force Fx dominates over other nodal forces
and moments. Therefore, for thin plates with hollow truss members, it is reasonable to assume that all truss
members only carry axial forces, as assumed in the design optimization studies of Section 4.

5.4. Truss core sandwich with 4-rod unit cell as compression panel

The fourth example is a 4-rod unit cell sandwich plate subjected to in-plane compression. The unit cell con-
figuration is firstly optimized using the same method as described in Section 4, with rY/E = 0.007, v = 1/3, and

Table 4
Maximum nodal forces and moments of truss members for pyramidal truss core sandwich plates with hollow truss members subjected to
bending and transverse shear

Case Fx (N) Fy (N) Fz (N) Mx (N m) My (N m) Mz (N m)

1 114:15

94:16

2:02

0:239

2:18

5:14

0

0:0039

0:0119

0:00031

0:00111

0:00142

2
847:71

731:24

27:5

1:4

30:24

24

0

0:00416

0:956

0:46

0:87

0:19

3
3610:87

3489:78

66

37:28

82:2

64:89

0

1:18

3:3

0:028

2:65

0:637

The numerators and denominators refer to the results obtained with 2D and 3D models, respectively.

Table 3
Three groups of loading and geometrical parameters for pyramidal truss core sandwich plates with hollow truss members subjected to
bending and transverse shear, chosen from Fig. 11, with E = 70 GPa, v = 1/3 and rY = 490 MPa

Case V/(EM)1/2 V (KN/m) hc (mm) D (mm) Rc (mm) tf (mm) rc (mm)

1 0.0005 13.1 53.4 17 2.1 1.5 2.01
2 0.0012 75.6 61.35 21.75 3.44 1.9 3.36
3 0.0018 170.1 75 39.75 4.28 3.47 3.98
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shape design variables fixed at the average values of Fig. 15. The morphology of the optimized unit cell is
shown as the insert in Fig. 20, where the minimum weights of the 4-rod unit cell plates are compared with
those of hat-stiffened plates and tetrahedral core sandwiches. The sizing design variables for the minimum
weight design are similar to those plotted in Fig. 14.

To verify the results of Fig. 20, a 3D finite element model is analyzed to determine the failure modes and the
corresponding maximum allowable compression load. Three groups of loading and geometrical parameters,
corresponding to a lightly loaded panel, a moderately loaded panel and a heavily loaded panel, respectively,
are selected from Fig. 14 (L = 1 m assumed) and are summarized in Table 5. The 3D finite element model con-
struction and the base material properties are the same as in Section 5.2.

It is seen from Table 5 that there is close agreement between the results obtained with the 2D sandwich
model and those with the 3D sandwich model, except for Case 1 where the load applied on the panel is rel-
atively small. For more lightly loaded panels, the failure mode is face wrinkling, whereas for more heavily
loaded panels, the failure mode is face yielding. For moderately loaded panels, both face wrinkling and face
yielding are active. Since face wrinkling is sensitive to how and where the compression loads and constraints
are imposed in the 3D finite element model, the maximum allowable compression load for a lightly loaded
panel obtained by the 3D model (PFEM in Table 5) is less than that predicted by the 2D model; see Case 1
in Table 5.

6. Concluding remarks

The minimum weight design of sandwich plates comprised of truss cores faced with solid sheets of the same
material has been investigated for various prescribed combinations of bending, shear and compression.

Fig. 20. Minimum weights of optimally designed compression panels: 4-rod cell truss core sandwich, tetrahedral core sandwich (Wicks
and Hutchinson, 2001), and hat-stiffened single layer plate, all with (E/rY = 0.007, v = 1/3).

Table 5
Maximum allowable compression load and corresponding failure modes for 4-rod truss core sandwich panels

Case P/EL1 P (KN/m) hc (mm) D (mm) Rc (mm) tf (mm) PFEM (KN/m) Failure mode

1 1.6 · 10�5 1120 72.5 16 0.4 1.3 986 Facesheet wrinkling
2 3.6 · 10�5 2520 81 29.6 0.7 2.57 2520 Facesheet wrinkling,

facesheet yielding
3 6.4 · 10�5 4480 92 53 1.1 4.6 4480 Facesheet yielding

The loading and geometrical parameters are chosen from Fig. 14, with E = 70 GPa, v = 1/3 and rY = 490 MPa and L = 1 m.

7916 T. Liu et al. / International Journal of Solids and Structures 43 (2006) 7891–7918



A homogenization approach is adopted, with the periodic 3D truss cores replaced with 2D effective solid
cores. The truss members are modeled using Euler–Bernoulli beams, with clamped ends assumed. The optimi-
zation is subjected to the constraints that no failure mechanism is active, including overall buckling, facesheet
buckling/wrinkling, facesheet yielding, core member yielding and buckling.

Close agreement between the predictions obtained with the 2D model and those from 3D direct finite ele-
ment simulations is observed, suggesting that the computationally advantageous 2D sandwich model is suit-
able for practical designs. It is found that the proposed simple 4-rod unit cell with solid truss members and
pyramidal unit cell with hollow truss members compete well with the best cell topologies: honeycombs, tetra-
hedral cell and hat-stiffeners. Furthermore, it is found that, if the sandwiches can be considered as thin plates
(and they usually do), the deformation of the truss members are dominated by axial forces and hence can be
faithfully modeled with one-dimensional bars having pin-jointed ends.
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