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Abstract

We show for the first time that the induced parity-even Lorentz invariance violation can be unambiguously calculated in the physically justified
and minimally broken, dimensional regularization scheme, suitably tailored for a spontaneous Lorentz symmetry breaking in a field theory model.
The quantization of the Lorentz invariance violating quantum electrodynamics is critically examined and shown to be consistent either for a light-
like cosmic anisotropy axial-vector or for a time-like one, when in the presence of a bare photon mass.
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1. Introduction

The Lorentz and CPT invariance violation (LIV) in quantum
electrodynamics [1,2] has not yet been seen [3] but, in principle,
it might arise in several ways reviewed in [4,5]. In particular,
spontaneous symmetry breaking [6] may cause LIV after con-
densation of massless axion-like fields [7,8] and/or of certain
vector fields [9] (maybe, of gravitational origin [10]), as well as
short-distance space–time asymmetries may come from string
[11] and quantum gravity effects [12,13] and non-commutative
structure of the space–time [14]. Whereas the empirical para-
meterization of LIV does not represent a tedious and difficult
task [2,3], the consistent unraveling of its dynamical origin is
far more subtle and involved.

If LIV occurs spontaneously in QED, due to some vector-
like condensate, then the related low-energy effective action is
actually dominated by the classical gauge invariant Maxwell–
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Chern–Simons modified electrodynamics [1], with a Chern–
Simons (CS) fixed vector ημ. In addition, the low-energy ef-
fective action has to be indeed supplemented by a Lorentz-
invariant bare photon mass μγ and take into account the contri-
bution from the one-loop radiative corrections [15–17] induced
by the fermion sector, in which some constant axial-vector
bμ = 〈Bμ〉 = 〈∂μθ〉 does appear. The latter one might repre-
sent the vacuum expectation value of a vector field Bμ(x), such
as some torsion field of a cosmological nature, or of a gradi-
ent of some axion field or quintessence field θ(x), or anything
else. Whatever it is, it turns out to be responsible of the Lorentz
invariance violation and, correspondingly, this model will be
henceforth referred to as Lorentz invariant violating quantum
electrodynamics (LIVQED).

If LIV manifests itself as a fundamental phenomenon in the
large-scale universe, it is quite plausible that LIV is induced
universally by different species of fermion fields coupled to the
very same axial-vector bμ, albeit with different magnitudes de-
pending upon flavors. Then both LIV vectors become [15,16]
collinear, i.e., ημ = ζbμ. Meantime it has been found [7,18–20]
that a consistent quantization of photons just requires the CS
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vector to be space-like, whereas for the consistency of the
spinor free field theory a space-like axial-vector bμ is generally
not allowed but for the pure space-like case which, however, is
essentially ruled out by the experimental data [21].

In our Letter the quantization of the Lorentz invariance vi-
olating quantum electrodynamics is critically examined and
shown to be consistent either for a light-like cosmic anisotropy
axial-vector or for a time-like one, when in the presence of a
bare photon mass. To this purpose, we show for the first time
that the induced parity-even Lorentz invariance violation can be
unambiguously calculated in the physically justified and mini-
mally broken, dimensional regularization scheme, suitably tai-
lored for a spontaneous Lorentz symmetry breaking in a field
theory model.

Two main paths will be focused, along which the incom-
patibility in the LIV quantization of the photon and fermion
fields can be actually removed. A first road towards the quan-
tum intrinsic consistency of LIVQED is opened by the light-like
vector bμ. As well, the cure can be owed to a radiatively gen-
erated mass for the photon. The relevant LIVQED Lagrange
density in the photon sector reads

Lγ = −1

4

(
1 + ξ

b2

m2
e

)
FνλFνλ + ξ

bνb
ρ

2m2
e

F νλFρλ

(1)− 1

2
ζbνAλF̃

νλ + 1

2
m2

γ AνA
ν + B∂νA

ν,

with the photon mass assembling both a bare and an induced
one, m2

γ = μ2
γ + δm2

γ . As the gauge invariance is broken by
the photon mass, we have suitably introduced the Stückelberg’s
auxiliary field B(x), together with the usual dual field tensor
F̃ νλ ≡ (1/2)ενλρσ Fρσ and the electron mass me.

As it will be shown in next section, the induced photon mass
squared δm2

γ is of order αbνb
ν ≡ αb2, α = e2/4π being the

fine structure constant. The electric charge e is included also
into the induced dimensionless constants ξ ∼ α and ζ ∼ α and
the related LIV vertices are estimated to be indeed very small
[1,3]—see the discussion and concluding remarks in the last
section.

2. Induced coupling constants

Let us now evaluate the constants ξ and ζ as well as the
photon mass mγ when they are induced by fermions in an ax-
ial background of a cosmological origin. To this aim, one has
to compute the one-loop induced effective action from the clas-
sical spinor Lagrange density for a given fermion species f of
electric charge eqf : namely,

(2)Lf = ψ̄f

(
i/∂ − mf − b

μ
f γμγ5 + eqf /A

)
ψf ,

which leads to the Feynman’s propagators in the four-dimensiona
momentum space,

Sf (p) = i
(
γ νpν + mf + bν

f γνγ5
)

(3)

× p2 + b2
f − m2

f + 2(p · bf + mf bλ
f γλ)γ5

(p2 + b2
f − m2

f + iε)2 − 4[(p · bf )2 − m2
f b2

f ] .
The one-loop vacuum polarization tensor is formally deter-
mined to be

Πνσ
2 (k;bf ,mf )

(4)= −ie2q2
f

∫
d4p

(2π)4
tr
{
γ νSf (p)γ σ Sf (p − k)

}
.

The above formal expression for Πνσ
2 exhibits, by power

counting, ultraviolet divergencies. In the presence of LIV due to
the background axial-vectors b

μ
f , the physical cutoff in fermion

momenta does emerge as a result of fermion–antifermion pair
creation at very high energies. To this concern, it has been
proved [16] that the calculations with such a physical cutoff do
actually give the same results of a Lorentz invariance violating
dimensional regularization scheme (LIVDRS)
∫

d4p

(2π)4
−→ μ4−2ω

∫
d2ωp

(2π)2ω

suitably tailored in order to strictly preserve the residual
Lorentz symmetry. This LIVDRS coincides with the conven-
tional one, with ’t Hooft–Veltman–Breitenlohner–Maison al-
gebraic rules for gamma-matrices, when it is applied to the
integrand (4) with fermion propagators (3) having the spinor
matrices in the numerator. The general structure of the regular-
ized polarization tensor turns out to be

(5)regΠνσ
2 = regΠνσ

2,even + regΠνσ
2,odd.

The regular odd part has been unambiguously evaluated in [16]
with the help of LIVDRS and for small |bμ| � me reads

(6)regΠνσ
2,odd =

(
α

π

)
2iενσ

ρλk
λ
∑
f

q2
f b

ρ
f ,

so that we can eventually identify

(7)ζbμ = 2

(
α

π

)∑
f

q2
f b

μ
f .

In the case of a universal Lorentz symmetry breaking, that
means the very same axial-vector bμ for all fermion species,
one can derive

(8)ζ = 2q2
(

α

π

)
,

where
∑

f q2
f ≡ q2 is a sum over the normalized fermion elec-

tric charges, q2 = 3 · 3 · (1/9 + 4/9)+ 3 = 8 being the result for
three generations of quarks and leptons in the standard model.

With the help of the LIVDRS [16], the even part of the vac-
uum polarization tensor can be also found unambiguously. In
this work we focus our attention on the LIV deviations of free
photons on mass shell k2 ∼ 0. The latter ones are expected to
be really small �k2 � m2

e and therefore it makes sense to re-
tain only leading orders in k2 and bμ. Correspondingly this part
of the polarization tensor takes the form,

regΠνσ
2,even = (

k2gνσ − kνkσ
)
Πdiv

(9)+ 2α

3π

∑
q2
f

(
b2
f gνσ − m−2

f Sνσ
f

)
,

f
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in which we have set

Sνσ
f ≡ gνσ

[
(bf · k)2 − b2

f k2] − (bf · k)
(
bν
f kσ + bσ

f kν
)

(10)+ k2bν
f bσ

f + b2
f kνkσ .

Here the first term Πdiv is logarithmically divergent and does
renormalize the electric charges in a conventional way, whereas
the second term is finite and involves the sum over the charged
fermions of the standard model. Thus, for a universal bμ the
induced constants in the Lagrangian density are eventually de-
termined as follows:

(11)δm2
γ = − 2α

3π

∑
f

q2
f b2

f −→ −16α

3π
b2 for SM,

(12)ξ = 2α

3π

∑
f

q2
f

(
me

mf

)2

	 2α

3π
,

as the electron is the lightest charged particle.

3. LIV dispersion law

Let us now analyze the modified Maxwell’s equations(
1 + ξ

b2

m2
e

)
∂λF

λν − ξ

m2
e

(
bρbλ∂ρFλν − bνbλ∂ρFλρ

)

(13)+ m2
γ Aν − ζbλF̃

νλ = ∂νB,

(14)∂νA
ν = 0.

After contraction of Eq. (13) with ∂ν we find

(15)∂2B(x) = 0,

whence it follows that the auxiliary field is a decoupled mass-
less scalar field, which is not involved in dynamics.

After using Eq. (14) one can rewrite the field equations in
terms of the gauge potential, i.e.,(

1 + ξ
b2

m2
e

)
∂2Aν

− (
ξ/m2

e

)[
(b · ∂)2Aν − ∂ν(b · ∂)(b · A) + bν∂2(b · A)

]
(16)+ m2

γ Aν − ζ ενλρσ bλ∂ρAσ = 0.

After contraction of Eq. (16) with bν we get

(17)
(
∂2 + m2

γ

)
(b · A) = 0,

for the special component b ·A of the vector potential. Thus, for
this polarization, we actually find the ordinary dispersion law of
a real massive scalar field, whereas the two further components
with polarizations orthogonal to both kν and bν are affected by
the fermion induced LIV radiative corrections.

Going to the momentum representation, the equations of mo-
tion take the form

(18)Kνσ Aσ (k) = 0, kσ Aσ (k) = 0,

where we have set

Kνσ ≡ (
k2 − m2

γ

)
gνσ − kνkσ

(19)− ξ
(
D/m2

e

)
eνσ + iζ ενλρσ bλkρ.
In order to pick out the two independent field degrees of free-
dom, we have introduced the quantity

(20)D≡ (b · k)2 − b2k2

and the projector onto the two-dimensional hyperplane orthog-
onal to bν and kν ,

(21)eνσ ≡ gνσ − b · k
D

(
bνkσ + bσ kν

) + k2

D
bνbσ + b2

D
kνkσ .

One can always select two real orthonormal four-vectors corre-
sponding to the linear polarizations in such a way that

(22)eνσ = −
∑

a=1,2

e(a)
ν e(a)

σ , gνσ e(a)
ν e(b)

σ = −δab.

It is also convenient to define another couple of four-vectors, in
order to describe the left- and right-handed polarizations: in our
case, those generalize the circular polarizations of the conven-
tional QED. To this aim, let us first define

(23)ενσ ≡ D−1/2ενλρσ bλkρ.

Notice that we can always choose e(a)
λ to satisfy

(24)ενσ e(1)
σ = e(2)ν, ενσ e(2)

σ = −e(1)ν .

Let us now construct the two orthogonal projectors

(25)P (±)
νσ ≡ 1

2
(eνσ ± iενσ )

and set, e.g.,

(26)ε(L)
ν ≡ 1

2

(
e(1)
ν + ie(2)

ν

) = P (+)
νσ e(1)σ ,

(27)ε(R)
ν ≡ 1

2

(
e(1)
ν − ie(2)

ν

) = P (−)
νσ e(1)σ .

We remind that, actually, the left- and right-handed (or chiral)
polarizations only approximately [16] correspond to the circu-
lar ones of Maxwell QED. In the presence of the CS kinetic
term, the field strengths of electromagnetic waves are typically
not orthogonal to the wave vectors.

Once the physical meaning of polarizations has been suit-
ably focused, one can readily find the expression of the disper-
sion relations for the doubly transversal photon modes,

{
k2 − ξ

m2
e

[
(b · k)2 − b2k2] − m2

γ

}2

(28)− ζ 2[(b · k)2 − b2k2] = 0.

Evidently real solutions exist only iff

D= (b · k)2 − b2k2 � 0,

consistently with our previous notations. Notice that on the pho-
ton mass shell, deviations off the light-cone are of order |bν |2.
As a consequence, the on-shell momentum dependence of the
polarization tensor (5) is dominated by the lowest order k2 = 0,
whereas the higher orders in k2 do represent simultaneously
higher orders in bν , which are neglected in the present analysis.
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4. LIVQED consistency

It is worthwhile to recall that a time-like axial-vector bμ

is required for a consistent fermion quantization [16,19,20].
Nonetheless, one has to take into account that, on the one hand,
in the lack of a bare photon mass and/or a bare CS vector of dif-
ferent direction a time-like vector bμ just leads to a tachyonic
massive photon [18,19] and instability of the photodynamics,
that means imaginary energies for the soft photons. On the
other hand, a space-like vector bμ causes problems for fermion
quantization [16,20] and a fortiori for the very meaning of the
radiative corrections. There are two ways to avoid this obstruc-
tion.

(A) If we adopt classical photons in Lorentz invariant QED to
be massless μγ = 0 then, in such a situation, a fully in-
duced LIV appears to be flawless only for light-like axial-
vectors bμ. In particular, for a light-like universal axial-
vector bμ = (|
b|, 
b), we find the dispersion relations for
the LIV 1-particle states of a fermion species f that read

(29)p0+ + |
b| = ±
√

( 
p + 
b)2 + m2
f ,

(30)p0− − |
b| = ±
√

( 
p − 
b)2 + m2
f .

Now, it turns out that the requirement p2± > 0 for the LIV
free 1-particle spinor physical states just drives to the high
momenta cut-off | 
p| � m2

e/4|
b| which is well compatible
with the LIVDRS treatment of fermion loops.
Then one can use the induced values of the LIV parame-
ters (7), (12) in the case b2 = 0 and the dispersion law for
photons (28) is reduced to

(31)k2 − (
ξ/m2

e

)
(b · k)2 ± ζb · k = 0.

For photon momenta |
k| � |
b| one approximately finds the
relationship for positive energies (frequencies)

k0 	 |
k|(1 + δcθ ) ∓ ζ |
b| sin2 θ/2,

(32)cos θ ≡ 
b · 
k
|
b||
k| , δcθ ≡ 2ξ

m2
e

|
b|2 sin4 θ/2,

and a similar expression for negative energies (frequen-
cies). One can see clearly that LIV entails an increase
δcθ of the light velocity, which makes it different from
its decrement generated by quantum gravity in the lead-
ing order [12,13]. Both the variation in the light velocity
and the birefringence effect [1] caused by a phase shift
between left- and right-polarized photons—alternate signs
in (32)—depend upon the direction of the wave vector 
k.
Both effects do vanish in the direction collinear with 
b.
Thus the compilation of the UHECR data in search for de-
viations of the speed of light must take into account this
possible anisotropy of photon spectra.
This is also true for the compilation of the data on polar-
ization plane rotation for radio waves from remote galax-
ies. The earlier search for this effect [1,22,23] led to the
very stringent upper bound on values of |
b| < ×10−31 eV.
However, in addition to the previous remark on the photon
spectrum anisotropy, we would like to give more argu-
ments in favor of a less narrow room for the possibility of
LIV and CPT breaking in the universe. Indeed one must
also take into account the apparent time variation of an
anisotropic CS vector, when its origin derives from the
v.e.v. of a parity-odd quintessence field [24] very weakly
coupled to photons. That v.e.v. may well depend on time
and obtain a tiny but sizeable value in the later epoch of
the universe evolution [25], just like the cosmological con-
stant [26] might get. As well a non-vanishing CS vector
may be induced also by the non-vanishing v.e.v. of a dark
matter component if its coupling to gravity is CPT odd.
Eventually it means that, for large distances corresponding
to earlier epochs in the universe, one may not at all expe-
rience this kind of LIV and CPT breaking. Conversely, in
a later time such a CS term may gradually rise up. Then,
the earlier radio sources—galaxies and quasars with larger
Hubble parameters—may not give any observable signal
of birefringence, whereas the individual evidences from a
nearest radio source may be of a better confidence. So far
we cannot firmly predict on what is an actual age of such
CPT odd effects and therefore, to be conservative, one has
to rely upon the lab experiments and meantime pay atten-
tion to the data from quasars of the nearest universe. Thus
one may certainly trust to the estimations [3] performed
in the laboratory and the nearest universe observations. So
far the most conservative value of the LIV parameter from
[3,21] arises from hydrogen maser experiments: namely,
|
be| < 10−18 eV for electrons.

(B) Another way to implement the LIV, solely by fermion cou-
pling to an axial-vector background, is to start with the
Maxwell’s photodynamics supplemented by a bare and
Lorentz invariant photon mass μγ , so that

(33)m2
γ = − 2α

3π

∑
f

q2
f b2

f + μ2
γ .

Then, for a genuine time-like bμ = (
∑

f qf b0
f ,0,0,0) one

finds from Eq. (28) and the definition (6) the following dis-
persion laws: namely,

k2
0 =

(
1 + ξb2

0

m2
e

)(
|
k| ± 1

2
ζb0

)2

+ m2
γ

(34)− b2
0

{
1

4
ζ 2 + O

(
b0|
k|/m2

e

)}
.

Hence, if mγ � ζb0/2 = 8αb0/π , then the photon energy
keeps real for any wave vector 
k and LIVQED happens
to be consistent. Meantime the longitudinal photon po-
larization exhibits the entire mass mγ . Then the present
day very stringent experimental bound on the photon mass
[27], mγ < 6 × 10−17 eV, does produce the limit b0 <

3 × 10−15 eV.

To conclude we would like to make few more comments on
estimates for the LIV vector components.
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(1) There are no better bounds on bμ coming from the UHECR
data on the speed of light for photons. This is because
the increase of the speed of light depends quadratically on
components of bμ. Thus, for example, the data cited in [2,
3] do imply less severe bounds on |
b| or b0 than those ones
above mentioned.

(2) For the LIVQED examined in the present Letter, the typical
bounds on LIV and CPT breaking parameters in the context
of quantum gravity phenomenology are not good enough to
compete with the laboratory estimations. They are, in fact,
of a similar order of magnitude as other LIV effects in the
high energy astrophysics.

(3) An interesting bound on deviations of the speed of light is
given in [28] where, in the spirit of quantum gravity phe-
nomenology, space–time fluctuations are addressed to pro-
duce modifications of the speed of light and, as well, of the
photon dispersion relations exhibiting helicity dependent
effects. Using an interferometric technique, the authors of
Ref. [28] were able to estimate �c < 10−32. However this
estimation does not imply a better bound for a LIV vector
bμ, as it actually gives b0 < 10−12 eV, which is certainly in
agreement with the more stringent bounds discussed above.
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