
Journal of Pure and Applied Algebra 143 (1999) 155–203
www.elsevier.com/locate/jpaa

Linearly distributive functors

J.R.B. Cockett a;1, R.A.G. Seely, b;∗;2
aDepartment of Computer Science, University of Calgary, 2500 University Drive, Calgary,

Alta, Canada T2N 1N4
bDepartment of Mathematics, McGill University, 805 Sherbrooke St., Montr�eal, Que,

Canada H3A 2K6

Presented to Michael Barr to mark the occasion of his 60th birthday

Abstract

This paper introduces a notion of “linear functor” between linearly distributive categories that
is general enough to account for common structure in linear logic, such as the exponentials
( ! , ? ), and the additives (product, coproduct), and yet when interpreted in the doctrine of
∗-autonomous categories, gives the familiar notion of monoidal functor. We show that there is a
bi-adjunction between the 2-categories of linearly distributive categories and linear functors, and
of ∗-autonomous categories and monoidal functors, given by the construction of the “nucleus”
of a linearly distributive category. We develop a calculus of proof nets for linear functors, and
show how linearity accounts for the essential coherence structure of the exponentials and the
additives. c© 1999 Elsevier Science B.V. All rights reversed.

MSC: 03F07; 03B60; 18D10; 18D25

0. Introduction

What is the “appropriate” notion of a functor between linearly (formerly “weakly”)
distributive categories? In [5] we were content to think of the functors between linearly
distributive categories as being those which preserved all the structure on the nose.
However, this very restrictive notion does not allow the expression of common linear

∗ Corresponding author.
1 Research partially supported by NSERC, Canada.
2 Research partially supported by Le Fonds FCAR, Qu�ebec, and NSERC, Canada. Diagrams in this paper
were produced with the help of the TEXcad drawing program of G. Horn and the diagram macros of
F. Borceux.

0022-4049/99/$ - see front matter c© 1999 Elsevier Science B.V. All rights reserved.
PII: S0022 -4049(98)00110 -8

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82281996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


156 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

structure such as the exponentials and the additives. The purpose of this paper is to
present, as a basis for expressing linear structure, a broader class of functors: the “linear
functors” and their natural transformations.
Of course, one ought not to expect that all structure of interest in linear logic is

described by linear functors. For example, in light linear logic [8] the traditional ex-
ponential operators are no longer monoidal functors, as pointed out in [8, 12], and so
do not form a linear functor. Also, in full intuistionistic linear logic [11] the internal
hom is not a linear functor. Nonetheless, it should be clear from this paper that the
notion of a linear functor is a useful organizational device which does explain basic
features of linear logic.
The notion of a linearly distributive category with the exponentials was explored

in [3]. In this paper we show that most of the coherence diagrams of [3] are a con-
sequence of demanding that the obvious functorial structure for exponentials be linear,
i.e. constructed from linear functors and linear transformations. That the formulation
of the exponentials should have such a simple genus is not only satisfying but is also
a strong con�rmation that the ideas underlying [3] were correct.
In contrast to the situation for the exponentials, where a formulation already existed,

we started this paper with little idea of what extra conditions might be required for
the correct notion of additives (products and coproducts) in a linearly distributive set-
ting. (Note that in a ∗-autonomous setting there is little to worry about: the duality
guarantees that if there are products, then there are also coproducts, and vice versa,
and further, the closed structure guarantees the obvious distributivity for these.) In
keeping with the thesis that linearity ought to guide one in adding structure to lin-
early distributive categories, we let the obvious linear functorial structure suggest the
axiomatization. The result, which we discuss in the last section of the paper, is that
this turns out to be equivalent to the much simpler structure of appropriately distribu-
tive products and coproducts. However, the linear structure is not without purpose:
we shall develop a general circuit calculus for linear functors, using “functor boxes”.
Although we do not discuss proof circuits for the additives in the present paper, it
will be clear that the induced calculus in the case of the additives is equivalent to
the additive proof boxes Girard used in his original description of proof nets for the
additives.
Besides allowing the expression of the above structure, a desiderata for these

linear functors is that, when specialized to the ∗-autonomous case, they become an
almost transparently simple notion. This in fact is the case: a linear functor between
∗-autonomous categories is simply a monoidal functor: the additional linear structure is
then forced by the setting. This allows one to rediscover linear functors by backward
engineering the full structure implied by a monoidal functor between ∗-autonomous
categories.
Let X and Y be categories with involutions (for example ∗-autonomous). Then any

covariant functor F :X→Y induces a “complement” functor

F =(F(( )⊥))⊥ :X→Y



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 157

and any natural transformation �A :F(A)→G(A) induces a natural “complement” trans-
formation

�A= �⊥A⊥ : (G(A
⊥))⊥ → (F(A⊥))⊥:

Thus, the morphisms between ∗-autonomous categories are actually pairs of functors
related by the complementation induced by the involution. But that is not all: if we
demand that the �rst functor of the pair, say, is monoidal with respect to the tensor
then, this will mean that the second functor is forced to be comonoidal with respect
to the cotensor (or “par”). Furthermore, some peculiar transformations are introduced:

� :F(A⊕B)→F(A)⊕F(B)
and by complementation

� :F(A)⊗F(B)→ F(A⊗B):
Essentially these are, respectively, a relative costrength and strength as described in [3].
Our discussion of linear functors between linearly distributive categories can be viewed
as an abstraction of these ideas.
The relationship between ∗-autonomous categories and linearly distributive categories

may be viewed as an abstraction of the relationship between Boolean algebras and dis-
tributive lattices. Just as any distributive lattice has a largest sublattice which is Boolean
(obtained by considering the complemented elements) so a linearly distributive cate-
gory has a largest full subcategory which is ∗-autonomous (also consisting of com-
plemented objects). This is called the “nucleus” of the linearly distributive category.
The extraction of the nucleus is actually 2-functorial with respect to linear functors
and transformations. In fact, the inclusion of the full sub2-category of ∗-autonomous
categories into the 2-category of linearly distributive categories with linear functors and
transformations has a right bi-adjoint given by formation of the nucleus.
The ideas behind the formation of the nucleus are of some independent interest and

have a considerable history. We include, therefore, a relatively self-contained appendix
which describes the generalization of the work of Rowe [14] and Higgs and Rowe [9]
(which was done in the setting of monoidal closed categories) to linearly distributive
categories. We also show that nuclear maps are preserved by linear functors.
The paper will have this structure: �rst we shall give the formal de�nition of a

linearly distributive (or simply “linear”) functor of linearly distributive categories, to-
gether with the corresponding notion of linear transformation, so that the resulting
structure is a 2-category LDC. Next we introduce a calculus of “functor boxes” which
will allow us to use proof circuits to analyze the structure of linear (and monoidal)
functors. Using this calculus of proof circuits, we show that any monoidal functor
between ∗-autonomous categories induces a linear functor. This holds in the noncom-
mutative case as well, provided the functor is “well-behaved” with respect to the two
negations present in that context. This means that there is an inclusion of the 2-category
∗-AUT, of ∗-autonomous categories and monoidal functors and transformations, into



158 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

LDC. To construct a right bi-adjoint to this, we give the de�nition of nuclearity for
linearly distributive categories and show that linear functors preserve the nucleus, that
the nucleus is ∗-autonomous (modulo some use of the axiom of choice), and that this
gives the bi-adjunction discussed above.
Next we shall illustrate the conceptual advantage of this de�nition by showing that !

and ? may be described by saying that there is a linear cotriple on a linearly distributive
category X whose free coalgebras are comonoids. Finally, we shall apply these ideas
to the matter of adding additive structure: requiring a linearly distributive category to
have “products” (in the sense of an appropriate adjoint linear functor to the diagonal)
will automatically endow the category with cartesian products and coproducts, which
satisfy the obvious distributivity laws with respect to tensor and par.
A word about terminology and notation. The reader will have already noticed that

we have adopted the term “linearly distributive category” for what previously we have
called “weakly distributive category”, continuing the practice begun in [7]. This we
view as a minor matter. More controversial perhaps is our insistence upon the use of
⊕ for “par” and + for the coproduct “sum”. As category theorists we are unrepentant
upon this point, and there the matter must rest.

1. Linear functors

For the full de�nition of a linearly distributive category, we refer the reader to [4–6]
(where the term “weakly distributive category” is used). Briey, a linearly distributive
category is a category with two tensors ⊗ ; ⊕ and two strength natural transforma-
tions, making each strong (and costrong) with respect to the other. These two strength
transformations shall be denoted by

�LL :A⊗ (B⊕C)→ (A⊗B)⊕C;
�RR : (B⊕C)⊗A→ B⊕ (C ⊗A):

A symmetric linearly distributive category is a linearly distributive category both of
whose tensors are symmetric. In this case there are these additional induced strength
transformations:

�LR :A⊗ (B⊕C)→ B⊕ (A⊗C);
�RL : (B⊕C)⊗A→ (B⊗A)⊕C:

This data must satisfy standard coherence conditions, discussed in [5], which we shall
not repeat here.
Also, recall that for a functor F to be monoidal there must be natural transformations

m⊗ :F(A)⊗F(B)→ F(A⊗B) and m> :> → F(>) satisfying the equations
u⊗ =m> ⊗ 1;m⊗;F(u⊗)

:>⊗F(A)→F(A) (1)



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 159

a⊗; 1⊗m⊗;m⊗ =m⊗ ⊗ 1;m⊗;F(a⊗)

:(F(A)⊗F(B))⊗F(C)→F(A⊗ (B⊗C)) (2)

(and in the symmetric case, the next equation as well)

m⊗;F(c⊗)= c⊗;m⊗ : F(A)⊗F(B)→F(B⊗A): (3)

For a functor G to be comonoidal, there must be natural transformations n⊕ :G(A⊕B)
→G(A)⊕G(B) and n⊥ :G(⊥)→⊥ satisfying equations dual to those above.
Next we introduce a notion of functor between linearly distributive categories; these

ought to be called “linearly distributive functors”, but we have preferred the shorter
“linear functor”.

De�nition 1. Given linearly distributive categories X, Y, a linear functor F :X→Y
consists of:
(i) a pair of functors F⊗; F⊕ :X→Y so that F⊗ is monoidal with respect to ⊗ , and

F⊕ is comonoidal with respect to ⊕ ,
(ii) natural transformations (called “linear strengths”)

�R⊗ :F⊗(A⊕B)→F⊕(A)⊕F⊗(B);

�L⊗ :F⊗(A⊕B)→F⊗(A)⊕F⊕(B);

�R⊕ :F⊗(A)⊗F⊕(B)→F⊕(A⊗B);

�L⊕ :F⊕(A)⊗F⊗(B)→F⊕(A⊗B):
satisfying the following coherence conditions. (These are listed in groups given by the
evident dualities. In each group we illustrate one with a commutative diagram; only
the equations corresponding to these diagrams are numbered.)

F⊗(⊥⊕A)
F⊗(uL⊕)−−−−−−−−−−−−→ F⊗(A)

�R⊗

y

x
uL⊕

F⊕(⊥)⊕F⊗(A)
n⊥ ⊕ 1−−−−−−−−−→ ⊥⊕F⊗(A)

�R⊗ ; n⊥ ⊕ 1; uL⊕=F⊗(uL⊕);
�L⊗; 1⊕ n⊥; uR⊕ =F⊗(uR⊕);
uL⊗

−1
;m> ⊗ 1; �R⊕ =F⊕(uL⊗

−1
);

uR⊗
−1
; 1⊗m>; �L⊕=F⊕(u

R
⊗
−1
):

(4)



160 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

F⊗(a⊕); �R⊗ ; 1⊗ �R⊗ = �R⊗ ; n⊕ ⊕ 1; a⊕;

F⊗(a⊕); �L⊗; 1⊕ n⊕= �L⊗; �L⊗ ⊕ 1; a⊕;

m⊗ ⊗ 1; �R⊕ ;F⊕(a⊗)= a⊗; 1⊗ �R⊕ ; �R⊕ ;

�L⊕ ⊗ 1; �L⊕;F⊕(a⊗)= a⊗; 1⊗m⊗; �L⊕

(5)

F⊗(a⊕); �R⊗ ; 1⊗ �L⊗= �L⊗; �R⊗ ⊕ 1; a⊕;

�R⊕ ⊗ 1; �L⊕;F⊕(a⊗)= a⊗; 1⊗ �L⊕; �R⊕ ;
(6)



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 161

1⊗ �R⊗ ; �LL ; �R⊕ ⊕ 1=m⊗;F⊗(�LL); �
R
⊗ ;

�L⊗ ⊗ 1; �RR ; 1⊕ �L⊕=m⊗;F⊗(�RR); �
L
⊗;

1⊗ �L⊗; �LL ; �L⊕ ⊕ 1= �L⊕;F⊕(�LL); n⊕;

�R⊗ ⊗ 1; �RR ; 1⊕ �R⊕ = �R⊕ ;F⊕(�RR); n⊕;

(7)

1⊗ �L⊗; �LL ;m⊗ ⊕ 1=m⊗;F⊗(�LL); �
L
⊗;

�R⊗ ⊗ 1; �RR ; 1⊕m⊗=m⊗;F⊗(�RR); �
R
⊗ ;

1⊗ n⊕; �LL ; �R⊕ ⊕ 1= �R⊕ ;F⊕(�LL); n⊕;

n⊕ ⊗ 1; �RR ; 1⊕ �L⊕= �L⊕;F⊕(�RR); n⊕:

(8)

Remark 2. In the commutative case, it is possible to drop the requirement that the �L’s
exist, de�ning them via the symmetry of the tensor and par. Equivalently, we could



162 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

keep the presentation above and add the extra diagrams that express such de�nition,
namely �R⊗ ; c⊗=F⊗(c⊗); �

L
⊗, and its dual.

Next, we address the question of the appropriate notion of natural transformation.
Following the ideas outlined in the Introduction, we are led to the following de�nition.
Recall that for a natural transformation � to be monoidal, the following equations must
be satis�ed.

m⊗; �= �⊗ �;m⊗ :F(A)⊗F(B)→G(A⊗B); (9)

m⊗; �=m⊗ :>→G(>): (10)

A comonoidal natural transformation must satisfy the dual conditions.

De�nition 3. Given F;G :X → Y, linear functors between linearly distributive cate-
gories, a linear transformation � :F → G consists of a pair of natural transformations:
a monoidal transformation �⊗ :F⊗ → G⊗ and a comonoidal transformation �⊕ :G⊕ →
F⊕. These must satisfy the following coherence conditions:

�⊗; �R⊗ ; �⊕ ⊕ 1= �R⊗ ; 1⊕ �⊗;
�⊗; �L⊗; 1⊕ �⊕= �L⊗; �⊗ ⊕ 1;
1⊗ �⊗; �L⊕; �⊕= �⊕ ⊗ 1; �L⊕;
�⊗ ⊗ 1; �R⊕ ; �⊕=1⊗ �⊕; �R⊕ :

Proposition 4. Linearly distributive categories, linear functors, and linear transfor-
mations form a 2-category, which we shall denote LDC. If we restrict to sym-
metric linearly distributive categories, we obtain a 2-category denoted SLDC. These
2-categories are closed under products.

Proof. Identity maps are the standard identity functors and transformations. (These are
obviously linear.) Linear functors compose in the obvious way: (F ;G)⊗=F⊗;G⊗ and
(F ;G)⊕=F⊕;G⊕. The strength F ;G�R⊗ is de�ned as F ;G�R⊗ =G⊗(F�R⊗);

G�R⊗ ; the other
linear strengths are de�ned similarly. (Here F�R⊗ indicates the � for the functor F , and
so forth.)



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 163

For transformations, we have two types of composition. If F;G;H :X→Y, � :F → G
and � :G → H , then (�; �)⊗= �⊗; �⊗ and (�; �)⊕= �⊕; �⊕. If F;G :X→ Y, H;K :Y→
Z, � :F → G, and � :H → K , then (�; �)⊗= �⊗;K(�⊗) and (�; �)⊕=K(�⊕); �⊕. (We
have used the same symbol for both vertical and horizontal composition of transfor-
mations – the context ought to make clear which is intended at any time.) Note that
naturality implies that �⊗;K⊗(�⊗)=H⊗(�⊗); �⊗, (and similarly for the ⊕ case), so
this gives an alternate de�nition; this also guarantees the validity of the interchange
law.

H⊗(F⊗(A))
�⊗−−−−−→ K⊗(F⊗(A))

H⊗(�⊗)

y

y
K⊗(�⊗)

H⊗(G⊗(A))
�⊗−−−−−→ K⊗(G⊗(A))

Now there are several coherence conditions to check here. Three of the diagrams needed
for F ;G are given in Fig. 1; we omit two as they are very similar to other diagrams.
The diagrams for vertical and horizontal composition of transformations are given in
Fig. 2. The cells marked (lin) commute by the corresponding coherence condition on
F;G; �; �; : : :, as appropriate. The cells marked (nat) commute by naturality. Note that in
these �gures, we have abbreviated the functors and transformations using the notation
F⊗=F , F⊕= F̂ , and so forth, in order to save space. Using appropriate duality, this
completes the proof that these form 2-categories. As for closure under products, that
is quite trivial (the monoidal and comonoidal components are constructed pointwise),
and shall be left to the reader.

2. Circuits for linear functors

In [4] we developed a calculus of graph rewrites for proof nets (“circuits”) for
linearly distributive categories; in the present note we shall extend that system to be
able to handle functors as well. We shall be most interested in linear functors, but on
the way we shall see how ordinary functors and how monoidal (and dually comonoidal)
functors may be dealt with as well.
This treatment of functors is very closely related to the calculus we developed in [3]

to handle ! and ? , and in a sense was almost implicit in that paper. There are some
di�erences, and it may be instructive to imagine treating ! and ? in the present manner,
taking functor boxes as primitive instead of the traditional storage boxes used in that
paper.
To begin with, we suppose F :X→Y is a functor between linearly distributive cat-

egories. To be able to handle this with proof nets, we suppose that there is a “box-
construction” on the nets for Y which takes a subnet f in X and produces a component



164 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

Fig. 1. Coherence for F ;G.

for Y. This component is represented as box which contains the net f. Sequentializa-
tion proceeds by �rst checking that f sequentializes and then treating the boxed f as a
component in the larger net. These functor boxes are represented graphically as shown
in Fig. 3 on the left. Note that the box bears a label with the name of the functor.



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 165

Fig. 2. Coherence for �; � – vertical and horizontal.

These functor boxes have one input and one output; if the net f has more, then ap-
propriate use of tensor and par links must be made before the functor box is applied.
(We shall relax this condition soon in discussing monoidal and linear functors.) The
half oval through which the wire leaves the box is called the “principle port”; its role
will become clear later. Notice also the typing changes the box imposes on a wire as
it passes into or out of a box.
There are two obvious rewrites: an “expansion” which takes an identity wire of type

F(A) and replaces it with an identity wire of type A which is then “boxed”, and a



166 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

Fig. 3. Functor boxes

“reduction” which “merges” two functor boxes one of which directly “feeds” into the
next. As we shall see a generalization of this soon, we shall leave the picture to the
reader.
If we suppose that the functor F is monoidal, then we can get a more interesting

situation, for then we may relax the supposition that the boxed subgraph is “one-in-
one-out” to allow multi-maps, or subgraphs that have many input wires (but still just
one output wire). Then the box rule looks like the circuit in Fig. 3 on the right, (where
we take three as a generic number of inputs for simplicity).
One might expect that we would have to add components representing the two

natural transformations m⊗; m> that are necessary for F to be monoidal. However,
it is an easy exercise to show that these can be induced by the formation rule for mono-
idal functor boxes: m⊗ is the case where f is the (⊗ I) node (two inputs, A; B and
one output A⊗B), and m> is the case where f is the (> I) node (no inputs and one
output >).
The necessary reduction rewrite is shown in Fig. 4 (we refer to this saying one box

“eats” the other).
In addition, we have the “expansion” rule mentioned before, and in the symmetric

case we also need a rewrite that allows a “twist” to be brought outside a box. These
are shown in Fig. 5.
For a functor F to be monoidal, recall there must be natural transformations

m⊗ :F(A) ⊗ F(B)→F(A ⊗ B) and m> :>→F(>) satisfying certain equations (as in
Remark 2). We have already indicated what the nets are for m⊗; m>. It is fairly straight-
forward to show that the equations are consequences of the net rewrites given above,
and that the rewrites correspond to commutative diagrams, if F is monoidal. For exam-
ple, in Fig. 6 we show that Eq. (2) for monoidal functors, dealing with “reassociation”,
is true for any F whose functor boxes satisfy the circuit rewrites we have given so
far. The others are similar. So this circuit syntax is indeed sound and complete for
monoidal functors. For comonoidal functors, we just use a dual syntax, with the cor-
responding rewrites. Note then that for comonoidal functors, the principle port will be
at the top of the box (this is the role of the principle port, to distinguish monoidal
functors from comonoidal ones).



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 167

Fig. 4. Box-eats-box rule.

Fig. 5. Expansion and twist rules.

Finally, we extend the syntax of functor boxes to linear functors; in this case we
�nd that all that is necessary is to generalize the preceding to allow the boxed subnet
to have arbitrarily many inputs and outputs. So for the monoidal component F⊗ of a
linear functor F , the functor boxes will have the formation rule shown in Fig. 7, and
the comonoidal component will have the dual rule ( just turn the page upside down).
Please note the typing of this formation rule carefully: at the top of the box, the functor
applied is the functor F⊗ associated with the box, but at the bottom, only the wire that
leaves through the principal port gets an F⊗ attached to it, the other wires get the
comonoidal F⊕ attached to them. (The dual situation applies for the F⊕ boxes.) This
is the role of the principal port in our notation (and is similar to the notation used



168 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

Fig. 6. Functor boxes are monoidal – Eq. (2).

Fig. 7. Linear functor box.

in [3]). There may be only one principal port, though there may be arbitrarily many
other (“auxiliary”) ports.
As suggested, it is then quite easy to represent the �R⊗ map as a boxed (⊕ E) node

– the right output wire of the node passes through the principal port. The three other
linear strengths are given similarly: �L⊗ is the (⊕E) node boxed with a F⊗ box, the
left output wire passing through the principal port. The two �⊕ maps are given by
the (⊗ I) node boxed by the F⊕ box, with either the right or the left input ports being
the principal port, as appropriate.
Associated with these box formation rules are several rewrites. The expansion rewrite

remains as before, but the reduction rewrite must be generalized to account for the more
general f; this is done in the obvious fashion. Similarly, in the symmetric case we



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 169

generalize the rewrites that move a “twist” outside a box; in fact, in the symmetric
case it is convenient to regard the order of inputs=outputs as irrelevant (as we did
in [4]), so that these rewrites are in fact equalities of circuits. In addition, we must
account for the interaction between F⊗ and F⊕ boxes, which gives a series of rewrites
that allow one box to “eat” another whenever a non-principal wire of one type of box
becomes the principal wire of the dual type. We give an example of this in Table 1,
along with the other rules mentioned in this paragraph. The reader may generate the
dual rules. Note that in this table we have illustrated circuits with crossings of wires;
in the noncommutative case, such crossings must not occur, so some wires must be
absent from these rewrites. The rewrites dealing with pulling a “twist” out of a box
are only relevant in the symmetric case of course. We have illustrated one, where the
“twisted” wires are inputs; it is also possible that the “twisted” wires are outputs, and
one may (or may not) be the wire through the principle port.
To verify the soundness and completeness of these rules, we must verify that any

F =(F⊗; F⊕) which allows such a calculus is indeed a linear functor, and conversely,
that any linear functor allows such rewrites. The former is fairly straightforward, in-
volving the reduction of a number of circuits, similar to the rewrites in Fig. 6 for
monoidal functors. As for the latter, we must verify �rst the existence of maps cor-
responding to the box formation rules, and secondly, the commutativity of diagrams
corresponding to the circuit rewrites. To illustrate the �rst, suppose for example that
f : (A ⊗ B) ⊗ C→ (X ⊕ Y ) ⊕ Z , then we can derive the “boxed” map as follows.

(F⊗(A) ⊗ F⊗(B)) ⊗ F⊗(C)
m⊗ 1;m−−−−−→ F⊗((A ⊗ B) ⊗ C)
F⊗(f )−−−−−→ F⊗((X ⊕ Y ) ⊕ Z)
� L⊗−−−−−→ F⊗(X ⊕ Y ) ⊕ F⊕(Z)

� R⊗ ⊕ 1

−−−−−→ (F⊕(X ) ⊕ F⊗(Y )) ⊕ F⊕(Z):

The reader can see how using m and n ( just as we did at the start of the derivation
above) this may be extended to accommodate any number of auxiliary ports.
As an illustration of a commutative diagram corresponding to one of the rewrites,

consider the rewrite where a monoidal box eats a comonoidal one, when an auxiliary
wire of the former becomes the principal wire of the latter. To be speci�c, suppose each
box has two input and two output wires, corresponding to maps f :B ⊗ C→D ⊕ Z
and g :A ⊗ D→X ⊕ Y . The circuit consisting of the two boxes cut together is the
left-lower path in the diagram in Fig. 8, and the circuit obtained when the boxes
merge is the top-right path. The commutativity is shown by the decomposition. The
other rewrites are treated similarly.

Next we consider linear transformations. Given � :F→G :X→Y, for an object A
of X there is a morphism �A :F(A)→G(A), which would be represented as a
node in a circuit. We shall use the notation at left, which suppresses reference

to the object A. To guarantee this is a natural transformation we need some rewrites,
which we shall leave to the reader, as our �rst step will be to generalize them to the



170 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

Table 1
Some reduction and expansion rewrites for functor boxes



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 171

Fig. 8. Validity of one of the box rewrite rules.

case when � is monoidal, and then linear. In fact, it is su�cient to give the rewrites
for linear transformations, since restricting them to the monoidal syntax will give the
appropriate rewrites for that case, and indeed, restricting to the “one-in-one-out” general
case will give the rewrites for naturality. So let us suppose �=(�⊗; �⊕) is a linear
transformation; then the rewrite of Fig. 9 is an equivalence, as is the dual one for �⊕,
(and of course variants with other numbers of auxiliary ports). We shall leave to the
reader the simple exercise of verifying that this characterizes linear transformations.
We can now use this graphical representation to show that a monoidal functor

between ∗-autonomous categories induces a linear functor between those categories,
and similarly that a monoidal transformation between monoidal functors induces a
linear transformation between the induced linear functors. In short, the inclusion of
∗-autonomous categories into the category of linearly distributive categories extends to
an inclusion of 2-categories.
Suppose X;Y are symmetric ∗-autonomous categories, F :X→Y a monoidal func-

tor. Then F induces a linear functor in the manner described in the introduction:
F⊗=F; F⊕=(F(( )⊥))⊥.
In the noncommutative case, where there are two negations de�ned in X;Y, we

can de�ne F⊕ if F satis�es, in addition, that ⊥(F(A⊥))= (F(⊥A))⊥, in which case
F⊕(A) is this common value. We can relax this condition somewhat, only requiring
a natural isomorphism instead of equality, at the extra expense of explicitly keeping



172 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

Fig. 9. Rewrite rule for linear transformations.

track of this isomorphism. For the moment, however, we shall not make this additional
generalization in order to keep things simple.
We have to de�ne �R⊗ :F⊗(A ⊕ B)→F⊕(A) ⊕ F⊗(B), which in this case becomes

�R⊗ :F(A ⊕ B)
u L⊗−−−−−→ > ⊗ F(A ⊕ B)
� ⊗ 1−−−−−→ (F(⊥A)⊥ ⊕ F(⊥A)) ⊗ F(A ⊕ B)
�RR−−−−−→ F(⊥A)⊥ ⊕ (F(⊥A)) ⊗ F(A ⊕ B))

1 ⊕ m⊗−−−−−→ F(⊥A)⊥ ⊕ F(⊥A ⊗ (A ⊕ B))
1 ⊕ F(� LL )−−−−−→ F(⊥A)⊥ ⊕ F((⊥A ⊗ A) ⊕ B)

1 ⊕ F( ⊕ 1)−−−−−−→ F(⊥A)⊥ ⊕ F(⊥ ⊕ B)
1 ⊕ u L⊕−−−−−→ F(⊥A)⊥ ⊕ F(B):

The other linear strengths are similarly de�ned.
Next, if we are given a monoidal natural transformation � between monoidal func-

tors F;G between ∗-autonomous categories, we can de�ne a linear transformation
�=(�⊗; �⊕), where �⊗= � and (�⊕)A=(�⊥A)⊥ : (G(⊥A))⊥ → (F(⊥A))⊥.

Proposition 5. Given a monoidal functor F and a monoidal natural transformation �
as above; the induced pair F⊗; F⊕ of functors de�nes a linear functor; and the induced
pair �⊗; �⊕ of transformations de�nes a linear transformation.

Proof. All that must be done is to show that the required commutativity conditions
are met. There are essentially six diagrams (�ve for functors, one for transformations)
that we must verify, using only the monoidal forms of the functor boxes. First, we
give the reduced forms of several key maps below. As in the Introduction, we shall



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 173

use the notation F =F⊗; F =F⊕ in these circuits (to save space).

Then to show that (F⊗; F⊕) is linear, we could either show how to simulate the gen-
eral F⊗ box and the comonoidal F⊕ box together with their rewrite rules, or we could
use the monoidal rewrites for the boxes above and show that the essential �ve diagrams
(and their duals) commute using the monoidal boxes alone. The former we shall leave
as an exercise (but note that the comonoidal box is essentially what is illustrated by the
circuits above for �⊗), instead directly verifying the necessary commutative diagrams.
The �rst diagram (involving the unit ⊥) is quite simple, and we leave it to the reader.
The next two (involving repeated instances of �) are fairly similar, so we illustrate only
Eq. (5), which amounts to the equivalences in Fig. 10. Eqs. (7) and (8) are handled
in a similar manner, as illustrated by the equivalences in Fig. 11.
Finally, we must show that if � is a monoidal transformation, the induced (�⊗; �⊕) is

linear. The circuit that simulates the �⊕ node is the � node with negation links before
and after to “turn around” the wires. So with this, there is essentially one diagram to
verify (the variants being similar), which amounts to the equivalences in Fig. 12. And
with this we complete the proof that the “deMorgan construction” actually produces
linear functors and transformations.

Remark 6. In fact, it is also true that a linear functor F between ∗-autonomous cate-
gories is equivalent to the linear functor induced by the monoidal functor F⊗; that
is, that F⊕(A)⊥ is naturally isomorphic to F⊗(A⊥). We shall leave to the reader the



174 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

Fig. 10. Validity of Eq. (5).

Fig. 11. Validity of Eq. (7).



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 175

Fig. 12. Validity of Eq. (1).

simple exercise of constructing the appropriate maps that characterize linear negation,
and showing the necessary coherence for these maps [5].

3. Linearly distributive and ∗-autonomous categories

We may summarize the preceding discussion as follows. Let ∗-sAUT be the
2-category of (commutative) ∗-autonomous categories, monoidal functors, and monoidal
transformations, and let ∗-AUT be (the noncommutative analogue) the category of bi-
linear categories (as de�ned in [7] for instance – these are just noncommutative ∗-
autonomous categories), monoidal functors F such that ⊥(F(A⊥)) ∼= (F(⊥A))⊥, and
monoidal transformations.

Proposition 7. There is an inclusion of 2-categories U : ∗-sAUT→ SLDC; and there
is an inclusion of 2-categories U : ∗-AUT→ LDC.

We want to construct right adjoints (or rather bi-adjoints) to these “forgetful”
2-functors U . This is closely related to the development of a generalization of the
notion of “nuclearity” (as de�ned for compact categories in [14, 9]), which may be
found in Appendix A below. The basic idea is that by constructing the full subcategory
of a linearly distributive category consisting of the “complemented objects”, we in fact
construct a ∗-autonomous category, which is the essence of the desired right bi-adjoint.
There is a necessary appeal to the axiom of choice in this construction, which may be
avoided at the expense of some technical obfuscation; essentially the problem is that
even if every object of a category has a complement, that does not explicitly give a
∗ functor (nor even a ∗ function, which su�ces by [5]) without some use of choice.
In Appendix we shall see that there are several ways of constructing a ∗-autonomous
category from a linearly distributive category; these constructions are related, and we
refer the reader to Appendix for details when necessary.



176 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

An object A of a linearly distributive category is said to be complemented if there
is an object B and maps � :> → B⊕A,  :A⊗B→ ⊥ satisfying the equations

(uR⊗)
−1; 1⊕ �; �LL ; ⊕ 1; uL⊕ = 1A;

(uL⊗)
−1; �⊕ 1; �RR ; 1⊕ ; uR⊕ = 1B:

This de�nition and the connection with nuclearity are described in detail in Appendix;
see De�nition A.5 in particular. Then, to a symmetric linearly distributive category
X we assign the full subcategory C(X) of complemented objects. Provided su�cient
idempotents split this is just the nucleus of the category X. The category C(X) is
linearly distributive, and since each object has at least one complement, then we may
choose a negation for each object, making the category ∗-autonomous. Note the use
of the axiom of choice in this construction. On 1- and 2-cells, C is just de�ned by
restriction. To verify that this is well-de�ned on 1-cells, we need to know that linear
functors preserve complemented objects; this is proved in Appendix. Then the following
is a routine exercise.

Proposition 8. C :SLDC→ ∗-sAUT is a 2-functor; and moreover is a right bi-adjoint
to U .

The noncommutative case requires some more delicacy. One approach is to mimic
a construction due to M. Barr of the Chu space of a noncommutative ∗-autonomous
(or bilinear) category [1]. We present a simpli�ed version �rst in the commutative
case, which will avoid the appeal to the axiom of choice we needed above. Instead
of taking C(X) to be (essentially) the nucleus of X, we construct it as follows. The
objects of C(X) are pairs (X; X ′), where X is a left complement of X ′, and so X ′ is
a right complement of X . In this case, the negation function is simple to de�ne: using
the ∗ notation of ∗-autonomous categories, we have (X; X ′)∗=(X ′; X ). Morphisms
of the category are pairs of arrows of X, but contravariant in the second variable,
so (f;f′) : (X; X ′)→ (Y; Y ′) if f :X → Y and f′ : Y ′ →X ′, satisfying the following
commutativity conditions.

X ⊗Y ′ 1⊗f′

−−−−−→ X ⊗X ′

f⊗ 1

y

y


Y ⊗Y ′ −−−−−→ ⊥

> �−−−−−→ X ′ ⊕X

�

y

y
1⊕f

Y ′ ⊗Y f⊕ 1−−−−−→ X ′ ⊗Y

It is straightforward to show that this is indeed a ∗-autonomous category.
In the noncommutative case, we extend this idea by taking doubly in�nite sequences

of objects (· · · ; X−1; X0; X1; · · ·); more precisely, an object is a function Z→Obj(X)
from the integers to the set of objects of X, so that the 0-position is readily identi�able
in the sequence. Furthermore, we require of such sequences that each pair (Xi; Xi+1) is



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 177

a complementation pair. We suppress the complementation morphisms ; � to keep the
notation as simple as possible, but they are an essential part of the de�nition of the ob-
jects of the category. An arrow in this category is a doubly in�nite sequence of arrows,
with the variance alternating, so as to be covariant at even positions, contravariant at
odd positions. These arrows must commute with the complementation structure in the
evident manner:

In this category, there are two evident negation functions. Again, we shall use the ∗
notation (so as not to conict with the ( )⊥ notation). Given a sequence (· · · ; X−1; X0;
X1; · · ·), we de�ne the two objects

(· · · ; X−1; X0; X1; · · ·)∗ = (· · · ; X0; X1; X2; · · ·):

∗(· · · ; X−1; X0; X1; · · ·) = (· · · ; X−2; X−1; X0; · · ·):

(In each case, just shift the sequence one position, right or left, as appropriate.)
Then it becomes straightforward to show that this category is bilinear, or noncom-

mutative ∗-autonomous; in fact, the proof is essentially given in [1]. Moreover, with
this construction of C(X), we can then show the noncommutative version of our main
result.

Proposition 9. C : LDC → ∗-AUT is a 2-functor; and moreover is a right bi-adjoint
to U .

The point of saying this is a bi-adjunction (rather than an adjunction) is that the
triangle equalities required of an adjunction hold in this case only up to natural equiv-
alence. In both the symmetric and nonsymmetric cases we can claim a bit more, how-
ever: for any A, the unit �A of this bi-adjunction is a natural equivalence, and so this
is a bi-coreection. For example, in the nonsymmetric case, this unit takes an object



178 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

A of a ∗-autonomous category A to the sequence (· · · ; ⊥A; A; A⊥; · · ·), and it is clear
that any other sequence “centered” on A must be isomorphic to this one. The counit
of the bi-adjunction evaluates sequences at 0.

4. ! and ? in SLDC

In this section, we shall show that given a linearly distributive category with storage
(in the sense of [3]), the “exponential” functors ! and ? form a linear functor ◦, given
by ◦⊗= ! , ◦⊕= ? . Then storage may be characterized by requiring in SLDC that ◦ be
a cotriple whose cofree coalgebras naturally carry cocommutative comonoid structure.
We begin with some preliminaries. First we note that symmetric linearly distribu-

tive categories may be presented “internally” in SLDC. We recall that there is a 2-
category M, the “2-theory” of symmetric monoidal categories, whose objects are gen-
erated by a single generator, with the property that a symmetric monoidal category
may be represented by a product-preserving 2-functor M→CAT into the 2-category of
categories.

Proposition 10. For any X in SLDC; there is a canonical 2-functor X̂ :M → SLDC
(taking the generator of M to X) which preserves products exactly; and moreover;
ˆ(-) induces a fully faithful 2-functor SLDC→ Lax(M;SLDC).

More elementarily, this means that in SLDC, each object is canonically a monoidal
category; that is, for a symmetric linearly distributive category X, there is a linear
functor ©⊗ :X×X→X given by ©⊗⊗= ⊗ and ©⊗⊕= ⊕ , and a linear functor T : 1→X
given by T⊗=> and T⊕=⊥. Further, functors in SLDC are “lax”, in the sense that
= (m; n) is a linear transformation 〈F; F〉;©⊗ → ©⊗ ;F for any linear functor F , where

m; n are the natural transformations expressing the monoidal (comonoidal) property of
F⊗ (F⊕), and similarly for the units.

Proof of Proposition 10. We can de�ne

�R⊗ = (A⊕B)⊗ (A′ ⊕B′) �RR−→ A⊕ (B⊗ (A′ ⊕B′))
1⊕ �LR−→ A⊕ (A′ ⊕ (B⊗B′)) a⊕−→ (A⊕A′)⊕ (B⊗B′)

and similarly for the other linear strengths. Note there is a use of symmetry in the
use of the “non-planar” �LR. Some generalization of the present result could be made
to the “non-planar weakly distributive categories” of [5], but seems unnecessary in the
present context.
There are some diagrams to verify. The simplest approach is to use the nets described

in [4]; in the present cases, these diagrams essentially (after simple reductions) amount
to Kelly–Mac Lane graphs, with some variations in where the crossings occur, and so



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 179

the necessary equalities hold quite trivially. The reduced normal forms of three of the
nets involved may be found in Fig. 13. (We have omitted two that are very similar to
those for D5; D7; only a few nodes need di�erent labels, the wiring remaining the same.)
Note that all the �’s, m⊗ and n⊕ have the same underlying graph, with appropriate
labelling of the nodes. The nets Di refer to the paths of the diagrams from De�nition 1,
with the subscript indicating which path (top, bottom, left, or right) is intended. We
leave dual cases to the reader.
The corresponding linear strengths for the units are quite trivial (essentially being

given by unit isomorphisms). To verify that (m; n) is linear involves some standard
circuit rewrites (or some diagram chasing) using functor boxes, which we shall leave
as an exercise.

Next, we turn to the matter of ! and ? as linear functors. In [3] we de�ned a notion
of relative tensorial strength, and required that ? be relatively strong, ! relatively
costrong. Here, we note that in the presence of the triple and cotriple structure there
is an alternate presentation of the notion of relative tensorial strength in terms of the
linear strengths that we have introduced in the de�nition of linear functors.

Lemma 11. Suppose given a monoidal category X (whose tensor is denoted ⊕ )
and two endofunctors ! and ? on X; so that ? is a triple. Then there is a bijec-
tive correspondence between natural transformations � : ! (A⊕ ?B) → !A⊕ ?B and
natural transformations � : ! (A⊕B)→ !A⊕ ?B. Similarly; suppose given a monoidal
category X (whose tensor is denoted ⊗ ) and two endofunctors ! and ? on X; so
that ! is a cotriple. Then there is a bijection between � : ?A⊗ !B→ ? (A⊗ !B) and
�′ : ?A⊗ !B→ ? (A⊗B):

Remark. Note that this lemma really does not depend on any special properties of the
monoidal category; and could indeed be stated in terms of any bifunctor instead of the
tensor product or par.

Proof of Lemma 11. We prove the �rst statement; the second is a simple dual. Given
a natural transformation � : ! (A⊕ ?B)→ !A⊕ ?B, de�ne a natural transformation

��= ! (A⊕B) ! (1⊕ �)−−−−−→ ! (A⊕ ?B)
�−→ !A⊕ ?B;

and conversely, given

� : ! (A⊕B)→ !A⊕ ?B

de�ne

��= ! (A⊕ ?B) �−→ !A⊕ ??B
1⊕ �−→ !A⊕ ?B:

Here, � is the unit of the triple ? , and � is its “multiplication”. These constructions
are inverse, as may seen from the diagrams of Fig. 14.



180 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

Fig. 13. Nets needed to show coherence for ©⊗ .



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 181

Fig. 14. Diagrams verifying the bijection �↔ �.

Next, we note that this makes ◦ a linear functor. (We shall use the de�nitions and
notation of [3] in this section.)

Lemma 12. If X is a linearly distributive category with storage; then ◦ (as de�ned
above) is a linear functor. Moreover; (�; �); (�; �); (e; i); and (d; c) are linear trans-
formations.

Proof. Again, this is most easily shown using the nets [3]. For the most part the net
rewrites are straightforward; we illustrate only a representative sample, and just give
the common reductions of nets corresponding to equal maps. (The reader ought to be
familiar with the net rewrites of [3].) To begin with, we note that the condition that
all the relevant functors and transformations are monoidal is part of the de�nition of a
linearly distributive category with storage. So we just have to de�ne the linear strengths,
which is essentially the content of Lemma 11, and show the corresponding coherence
conditions are satis�ed. To show ◦ is linear, there are essentially �ve diagrams (and
their duals) to verify; the common reductions for three of these are shown in Fig. 15;
again Di refers to the ith diagram from De�nition 1. To conserve space, we have
omitted D6 which is similar to D5, and D8 which is similar to D7: in each case, the
main alteration involves switching the wire carrying the � node with the wire passing
through the principal port. To show that there are linear transformations given by the
pairs (�; �), (�; �), (e; i), and (d; c), there are essentially four diagrams to verify (and
their duals), one for each transformation. These are illustrated in Fig. 16, where the
common reduced form is shown in each case.

Proposition 13. The following are equivalent:
(i) X is a symmetric linearly distributive category with storage [3].
(ii) In SLDC X has a cotriple ◦ carrying a compatible cocommutative comonoid

structure.



182 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

Fig. 15. Nets needed to show []
◦
is linear.

Fig. 16. Nets needed to show some transformations are linear.

Remark 14.
(i) To require of a cotriple ! that it carries a compatible cocommutative comonoid

structure means the following:
(a) for each object A, !A is naturally a cocommutative comonoid,
(b) the comonoid structure maps are coalgebra maps, and
(c) the coalgebra structure map � : !A→ !!A is a comonoid map.



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 183

This means that the diagrams given below must commute.

!A
e−−−−−→ >

y
�

y
m

!!A
! e−−−−−→ !>

!A
d−−−−−→ !A⊗ !A

y
�

y �⊗ �

!!A⊗ !!Ay m

!!A
!d−−−−−→ !(!A⊗ !A)

(ii) These diagrams are part of the de�nition in [3, pp. 330–332]. In clause (ii) of
the proposition above they are interpreted in the 2-category SLDC. Thus we automati-
cally obtain the dual version of the diagrams and the coherence with respect to linear
strength.
(iii) Having a monoidal cotriple ! carry a compatible cocommutative comonoid

structure amounts to having the tensor lift to a cartesian product in the Eilenberg–
Moore category of coalgebras. Hence, considering the two components of ◦, and using
the evident duality, we can remark that the Eilenberg–Moore category for ! will have
products, and the Eilenberg–Moore category (of algebras) for ? will have coproducts.

Proof of Proposition 13. All the basic structure (in both directions) is assured by
the previous lemmas; all that remains to do is to show that the appropriate diagrams
commute. The direction (i)⇒ (ii) is essentially done in Lemma 12. For the converse,
we have some further work, to show that the strength of � and the costrength of �,
likewise the strength of i; c and the costrength of e; d, follow from the linearity of the
various functors and transformations. However, it is easy to check all the diagrams
given in [3, pp. 328, 329, 331] that involve strength or costrength, to verify that they
commute when the strength and costrength are induced from the linearity of ◦ and the
corresponding transformations. There are eight diagrams to check (plus their duals); we
illustrate these in Fig. 17 with just four, which show how the various elements come
into play: the various functors and transformations are (monoidal (mon) and) linear (lin),
the functor ? is a triple (trip), the algebra maps must be monoid maps (alg), and so on.
For the rest of the conditions, [3, pp. 325, 326, 330, 331 (top), 332] not involving

strength or costrength, those on pp. 325, 326, 330 (top) just express that various
transformations are monoidal, which is included in the assumption of linearity, and the



184 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

Fig. 17. Linear implies strong.



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 185

rest are those above which de�ne the “compatibility” assumption. This completes the
proof.

We can state the content of the previous proposition in the following fashion, which
internalizes the ! and ? structure. We note �rst that there is a 2-category, Mell, which
is the 2-theory of symmetric monoidal categories with ! (or MELL categories), and an
inclusion M→Mell, corresponding to the “forgetful” interpretation which to a MELL
category assigns the underlying monoidal category. Furthermore, we shall de�ne a
2–category SLDC! consisting of symmetric linearly distributive categories with storage
(i.e. those X (together with the speci�ed ◦) that satisfy the conditions of the previous
proposition), and linear functors and transformations that preserve the ◦ structure.

Corollary 15. For any object (0-cell) 〈X;◦〉 in SLDC!; there is a canonical 2-functor
X̂ :Mell→SLDC (taking the generator of Mell to X and the ! of Mell to ◦) which pre-
serves products exactly. Moreover; ˆ(-) induces a fully faithful 2-functor SLDC!→Lax
(Mell;SLDC); which is the pullback in CAT of the 2-functor from Proposition 10
along the forgetful interpretation.

SLDC −−−−−→ Lax(M;SLDC)
x

x

SLDC! −−−−−→ Lax(Mell;SLDC)

Finally, a special case that is worth mentioning:

Corollary 16. A (symmetric) ∗-autonomous category X with a cotriple ! carrying a
compatible cocommutative comonoid structure is a linearly distributive category with
storage.

This result is almost automatic, in view of the inclusion of ∗-autonomous categories
into LDC. The only point here is that in ∗-autonomous categories the duality guarantees
the deMorgan dual structure, so one only need refer to ! , and ? comes along for free.
In the next section we shall see a similar story for cartesian products.

5. Adding the additives

In this section we shall look at the e�ect of requiring of a linearly distributive
category X that it has a linear functor :X × X→X, given by ⊗=× and ⊕ =+,
which acts as a cartesian product in the 2-category SLDC, so that linear transformations
corresponding to diagonal and projections are present. We shall see that this amounts



186 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

to having distributive cartesian product and coproduct, distributive not with respect to
each other, but with respect to tensor and par, as one would expect, for example, in
a FILL 3 and coFILL category, where the adjoints to tensor and par guarantee such
distributivity because of exactness.
We begin with the simple matter of “linear” terminal objects in linearly distribu-

tive categories. This will give some idea of what to expect when we consider linear
products.

De�nition 17. X has a linearly presented, or more simply, a “linear”, terminal object
if there is a linear constant functor ) : 1→X, )=(1; 0) and a linear transformation
◦: IdX→ )′ :X→X, ◦=(!; ¡). These must satisfy the usual equation for a terminal
object: ◦)= id) : )→ ) : 1→X.

Here )′ is the canonical composite

X→ 1 )−→ X:

Note that this is equivalent to the usual equation for a terminal object (in the monoidal
coordinate) and an initial object (in the comonoidal coordinate).
Notational overload: Please note that ◦ here represents the unique map from an

arbitrary object to the terminal object, and has nothing to do with the “storage” functor
of Section 4. Since the former usage was as a functor and the current usage is as a
transformation, there ought to be no confusion.
Before proceeding, we justify the notation: the proof of the following lemma is

trivial.

Lemma 18. If X has a linear terminal object; then it has a terminal object and an
initial object in the usual sense; given by )⊗ ; )⊕ respectively. For an object A; the
unique maps

A !A−→ 1 and 0
¡A−→ A

are given by ◦ ⊗ (A);◦ ⊕ (A); respectively.

More importantly, linear terminal objects are distributive, and indeed, this gives a
simpler equivalent presentation of this notion.

Proposition 19. If X is a linearly distributive category; the following are equivalent:
(i) X has a linear terminal object ).

3 See Appendix to recall the meaning of these terms.



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 187

(ii) X has a terminal object 1; an initial object 0; and these are “distributive”, in
the sense that 1 is preserved by PAR and 0 is preserved by TENSOR:

0 ∼−→ A⊗ 0 A⊕ 1 ∼−→ 1

are isomorphisms for any object A.

Proof. (i)⇒ (ii): We consider the case with the terminal object (the other case is dual).
First, note that the constant linear functor ) comes equipped with a map �= �R⊗ : 1→
0⊕ 1, which induces a map 1→A⊕ 1 for any object A, namely 1 �−→ 0⊕ 1 ¡⊕ 1−→ A⊕ 1.
So the only thing we need to verify is that the composite A⊕ 1→ 1→A⊕ 1 is the
identity; this is then an instance of the linearity of the transformation ◦. (Explicitly,
this becomes an instance of equation 1 with B=1.)
(ii)⇒ (i): Conversely, it is trivial that )⊗ is monoidal and )⊕ is comonoidal. The

linear strengths � are given using the inverses to the terminal morphisms (which are
assumed to be isomorphisms). And the linearity of the functor ) and of the transforma-
tion ◦ is again trivial, using the fact that all the objects of the form X⊕ 1 are terminal,
and all objects of the form X ⊗ 0 are initial.

Remark 20. Note that there is actually some structure involved in demanding of a
“point” )→X of X that it be linear. This raises the question “what are the linear
points of a linearly distributive category?” Clearly, such a linear point is a pair of
objects of X, and moreover, this pair must lie in the nucleus of X. Also, since the
(single) object of ) is both a commutative monoid and a cocommutative comonoid, the
⊗ component of the pair must be a commutative monoid, and the other component
must be a cocommutative comonoid. We may call such pairs “nuclear monoids”, and
then it is easy to see that the collection of such nuclear monoids is just the collection
of linear points. It is easy to see that the category of linear points has coproducts.

Now we turn to the matter of “linear products”.

De�nition 21. A linearly distributive category X has linearly presented, or simply
“linear”, binary products if there is a linear functor :X × X→X, ⊗ =× and

⊕ =+, and linear transformations : IdX→ ◦ �X :X→X, = (�;∇), and i :
→ �X

2

i :X × X→X, i=(pi; bi) (i=0; 1). Furthermore, these must satisfy the stan-
dard equations for cartesian products (as in [13] for example).

; 0x 1 = idx : → :X × X→X;

; i= id : id→ id :X→X (i=0; 1):

Note that given our de�nition of composition of linear transformations, these are
equivalent to the usual equations for products (in the monoidal coordinate) and co-
products (in the comonoidal coordinate).



188 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

As with terminal and initial objects, the following is evident.

Lemma 22. If X has linear products; then it has cartesian products and coproducts in
the usual sense; given by ⊗ ; ⊕ ; respectively. For the products; the diagonal and the
projections are given by ⊗ ; i⊗ ; respectively; and for the coproducts the codiagonal
and the injections are given by ⊕ ; i⊕ ; respectively.

More importantly, linear products are distributive in the appropriate sense.

Lemma 23. If X has linear products; then the induced cartesian product is preserved
by par; in that there is a natural transformation

(A⊕B)× (A⊕C) �R⊗−→ (A+ A)⊕ (B× C) ∇⊕ 1−→ A⊕ (B× C)

inverse to the canonical transformation

A⊕ (B× C)
〈1⊕p 0 ;1⊕p 1〉−−−−−−−−→ (A⊕B)× (A⊕C):

Dually; the induced cartesian coproduct is preserved by tensor; that is; there is a
natural transformation

A⊗ (B+ C) �⊗ 1−−−−−→ (A× A)⊗ (B+ C) �R⊕−→ (A⊗B) + (A⊗C)

which is inverse to the canonical transformation

(A⊗B) + (A⊗C)
〈1⊗ b 0|1⊗ b 1〉−−−−−−−→A⊗ (B+ C):

Proof. The proof of this lemma is a fairly routine exercise in diagram chasing. For
example, to show that we have an isomorphism (A⊗B) + (A⊗C)→A⊗ (B+ C) we
must show the two composites are the identities. For the identity on (A⊗B)+(A⊗C),
it su�ces to show the two components are b0; b1 respectively. The diagram for b0 is
given below, the one for b1 is similar.



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 189

For the composite giving the identity on A⊗ (B+C), the following diagram does the
trick. (Note the left-hand path is the identity on A⊗ (B+ C) since + is a coproduct.)

Moreover, such distributivity is equivalent to the full linear structure.

Proposition 24. If X is a linearly distributive category; the following are equivalent.
(i) X has linear binary products.
(ii) X has distributive binary products and coproducts; in the sense that × is

preserved by PAR and + is preserved by TENSOR. In other words; the canonical maps

A⊕ (B× C)
〈1⊕p0 ; 1⊕p1〉−−−−−−→(A⊕B)× (A⊕C);

(A⊗B) + (A⊗C)
〈1⊗b0|1⊗b1〉−−−−−−→A⊗ (B+ C)

are natural isomorphisms for any objects A; B; C.

Proof. (i)⇒ (ii) has been proved in Lemma 23, so we only need to show (ii)⇒ (i).
Given suitably “distributive” products and coproducts, we de�ne the linear functor
and the corresponding linear transformations in the evident way. The linear strengths
may be de�ned in terms of distributivity; for example, the transformation �R⊗ is

(A⊕B)× (A′ ⊕B′) (b0⊕1)× (b1⊕1)−−−−−−−−→ ((A+ A′)⊕B)× ((A+ A′)⊕B′)
@−→ (A+ A′)⊕ (B× B′)

where @ is the isomorphism given by distributivity.
We must then show that this does indeed make and the appropriate transformations

linear, and moreover, that these two ways of de�ning cartesian products and coproducts
are equivalent. This means checking a number of coherence diagrams, which is just a
routine diagram chase. Before sketching some of the details, however, we can verify
that at the level of morphisms things do agree: if we have linear products and use the
induced distributivity to de�ne “new” linear distributions �, then indeed, these are just



190 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

the original �’s we started with. For instance, in the case of �R⊕ , this amounts to the
commutativity of the following diagram:

In the other direction, given a distributivity @× : (A⊕B)× (A⊕C)→A⊕ (B×C), then
the induced distributivity (via the induced �) is the outer path in the diagram below.
The diagram commutes (so the induced distributivity equals the original one) because
the inner square commutes by naturality, and the triangle is the identity on (A⊕B)×
(A⊕C) by the coproduct equalities.

The veri�cation of the coherence diagrams for linearity is a straightforward diagram
chase; the key trick is to break the diagrams into smaller ones by reducing to com-
ponents. We shall illustrate this with one example, Eq. (8), which is the following
diagram:



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 191

The bottom arrow @′× is inverse to 〈p0 ⊕ 1; p1 ⊕ 1〉, and so can be reversed. Hence
we can establish the diagram’s commutativity by looking instead at the commutativity
of the two diagrams corresponding to the two projections into (A⊗B)⊕ (C +C′) and
into (A⊗B)⊕ (C + C ′). We shall illustrate the �rst projection.

We can state the content of the previous proposition in terms of the 2-theory Mad
of symmetric monoidal “cartesian” (�nite product) categories. As before there is an
inclusion M→Mad which allows the evident 2-category SLDC× of cartesian linearly
distributive categories to be formed by a pullback.

Corollary 25. For any X in SLDC×; there is a canonical 2-functor X̂ :Mad→SLDC
(taking the generator of Mad to X) which preserves products exactly. Moreover;
ˆ(-) induces a fully faithful 2-functor SLDC× →Lax(Mad;SLDC); which is the pull-
back in CAT of the 2-functor from Proposition 10 along the forgetful inter-
pretation.

SLDC −−−−−→ Lax(M, SLDC)
x

x

SLDCx −−−−−→ Lax(Mad, SLDC)

Note in this, as well as in Corollary 15, we are in e�ect showing how this framework
forces the correct de�nitions once one has the “naive” theory in the monoidal context.



192 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

Again, the special case of ∗-autonomous categories is worth mention:

Corollary 26. A ∗-autonomous category X with �nite products is a linearly distribu-
tive category with linear �nite products.

Proof. This is automatic, in view of the inclusion of ∗-autonomous categories into
LDC; again, the duality guarantees the deMorgan dual structure.

It is worth comparing the semantics for linear logic developed from the current
perspective of linear structure with the semantics de�ned in [15], as clari�ed by
Bierman [2]. If one has a ∗-autonomous category with products and a cotriple ! carry-
ing a compatible cocommutative comonoid structure, then it is straightforward to show
that there are isomorphisms !A⊗ !B ∼→ ! (A× B) and > ∼→ ! 1. In fact, one does not
even need linearity for the products, and so this result is true in the 2-theory Mellad of
monoidal categories with storage and products. This was �rst noticed by Bierman [2].
So these “Seely isomorphisms” exist in any linearly distributive category with linear
storage and products. Once one knows that, it is routine to verify that the semantics
of the storage rule given in [2, 15] (in terms of the “Seely isomorphisms”) coincides
with that given in [3]; since the rest of the semantics in the two treatments is just the
same, this reassures us that in this context, the semantics of [2, 15] and the seman-
tics in terms of linearly distributive categories with storage and distributive products
coincide.

Remark 27. We end with the following observation concerning the existence of lin-
early distributive categories with linear products. Hu and Joyal [10] (and other papers
cited therein) points out that if one forms the limit–colimit completion of a linearly
distributive category, the result will also be linearly distributive. But since the linearity
of the product follows from distributivity, and since distributivity clearly follows from
their notion of softness, we may conclude that this bicompletion process will give
linear products.

Acknowledgements

This paper had its origins in discussions we had with Rick Blute on nuclearity, and
is heavily inuenced by those discussions. We record here our indebtedness to him
for his helpful conversations and advice. Over the years, our work on this project has
bene�ted from Mike Barr’s wisdom and advice in so many ways (even the improved
terminology linearly distributive was a suggestion of his). This paper was �rst presented
at a conference held in Montreal in May 1997, in honour of his 60th birthday, and is
dedicated to him in celebration of this occasion.



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 193

Appendix A. Nuclearity for linearly distributive categories

In this appendix we wish to show the connection between nuclear objects and com-
plemented objects, and to prove that linear functors preserve complemented objects,
which is the key ingredient in constructing a right adjoint to U : ∗-AUT→ LDC. First
we need some de�nitions, and to be sure that the notion we de�ne in linearly dis-
tributive categories is a good generalization of the corresponding notion for symmetric
monoidal categories (in particular, in ∗-autonomous categories), we shall need some
further discussion about nuclearity in linearly distributive categories. So we begin with
a somewhat long digression, before returning to our theme of linear functors.
We shall use the following terminology: a FILL category is a full multiplicative cat-

egory, in the sense of Hyland and de Paiva [11], that is to say, a linearly distributive
category which is also monoidal closed. We shall consider both symmetric and non-
symmetric FILL categories (as described in [7]), as well as the following variants: a
left FILL category is a linearly distributive category with a “left” internal hom −◦, and
a right FILL category is a linearly distributive category with a “right” internal hom ◦−.
The dual notions, where the closed structure is de�ned with respect to the cotensor
(“par”), will be referred to as left (with ©¡) or right (with ©¿) coFILL categories.

De�nition A.1. Suppose C is a linearly distributive category; we shall say that a mor-
phism f :A→B is left nuclear if there are morphisms

�f :>→C ⊕B; f :A⊗C→⊥

such that the following commutes:

A left nuclear object A is an object A whose identity map is left nuclear.
Similarly, a morphism f :A→B is right nuclear if there are morphisms �f :>→B

⊕C; f :C ⊗A→⊥ so that the evident diagram commutes; an object is right nuclear
if its identity map is right nuclear.

We shall refer to the object C in these de�nitions as the witness of the nuclearity
of f. When it is necessary to be more explicit, we shall say the triplet 〈C; �f; f〉
witnesses the nuclearity of f.



194 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

In terms of circuits, this says f is left nuclear if there is an equivalence as shown
at the left below, and right nuclear if an equivalence as on the right below.

for some f; �f; f; �f. In the symmetric case, the notions of left and right nuclear
coincide, since one can easily convert witnesses of left nuclearity into witnesses of
right nuclearity via a “twist”.
In a (left) FILL category, where we have an adjoint to ⊗X for each X, any

f :A⊗C→⊥ can be “curried” to produce curry (f) :C→A−◦⊥, allowing the re-
expression of the de�nition of nuclearity. In particular, this means that in place of f
we can use the evaluation map A⊗ (A−◦⊥) ev−→ ⊥, and adjust �f to include the curried
f:

�f; curry(f)⊕ 1 :>→ (A−◦⊥)⊕ B:

This allows the re-expression of (left) nuclearity in a (left) FILL category as follows.
(As usual, we write A⊥ for A−◦⊥; note this is an “intuitionistic” negation, and is not
an involution.)

Lemma A.2. f is left nuclear in a left FILL category if and only if there is a
nf :>→A⊥ ⊕B such that the following commutes:

where ñf = uR
−1

⊗ ; 1⊗ nf and �= �LL ; ev⊕ 1; uL⊕ .

There is a dual lemma for right FILL categories, using ⊥A=⊥ ◦− A as the witness
of nuclearity; we shall leave the statement of that to the reader. The proof of these
lemmas is a simple exercise, and is also left to the reader.
This is clearly equivalent to the form used in [7], and is the natural generalization of

the de�nition given by Rowe [14] and by Higgs and Rowe [9] in the symmetric monoidal
closed case. Our observation is that the assumption of closedness may be dropped, gen-
eralizing the de�nition to the context of linearly distributive categories. A basic property
of nuclear maps is that they form a two-sided ideal, which we now establish.



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 195

Lemma A.3. The left (respectively right) nuclear maps of any linearly distributive
category form a 2-sided ideal.

Proof. We must establish that if f is nuclear (as witnessed by �f; f), then so is
h;f; g for any (suitably “typed”) h; g. This is straightforward: �h;f;g= �f; 1⊕ g and
h;f;g= h⊗ 1; f. That these maps work is immediately apparent from the following
circuits.

Proposition A.4. In any linearly distributive category > and ⊥ are left and right
nuclear; and if f; g are (left or right) nuclear maps; then so are f⊗ g; f⊕ g. More
precisely:
(i) the left nuclearity of > is witnessed by �>=(uL⊕ )

−1 :>→⊥⊕> and >=
uL⊗ :>⊗⊥→⊥; the right nuclearity is similar; and the witnesses for ⊥ are dual.
(ii) In addition; if f; g are left nuclear; then the left nuclearity of f⊗ g is witnessed

by f⊗g= a⊗ ; 1⊗ �LL ; 1⊗ (g⊕ 1); 1⊗ uL⊕ ; f and �f⊗g=�g; 1⊕ (uR⊗ )−1; 1⊕ (�f ⊗ 1);
1⊕ �RR ; a−1⊕ . Again; right nuclearity witnesses are similar; and the witnesses for f⊕ g
are dual.

Proof. The proofs for ⊥ and ⊕ are dual to those for > and ⊗ , so we show only
the latter. That the witnesses given above satisfy the required coherence conditions is
obvious from the following circuits.



196 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

Notice that this result does not use the symmetry of the tensors, so it is true for the
noncommutative case.

De�nition A.5. In a linearly distributive category, an object A is a left complement
if there is an object B (a right complement) and complementation morphisms �BA ; 

B
A

making A left nuclear and B right nuclear. We say (A; �BA ; 
B
A ; B) is a complementation

pair; frequently we shall abuse the notation by dropping reference to some parts of this
4-tuple of entities, referring to just (A; B) or possibly just (�BA ; 

B
A ) as a complementation

pair.

In circuits, this means we have this pair of �gures.

Lemma A.6. If (�BA ; 
B
A ) and (�

B′
A ; 

B′
A ) are complementation pairs witnessing that A

is left complemented; then there is a unique isomorphism h :B→B′ such that the
equation below for h holds.

Proof. It su�ces to show that h as above is an isomorphism. However it is clear that k
(also as above) is its inverse.

Proposition A.7. Complemented objects are closed under ⊗ ; ⊕ ; > and ⊥ form a
complementation pair.

Proof. This is routine and essentially just follows the ideas of the proof of
Proposition A.4. We shall give an alternate proof at the end of the appendix for the
symmetric case (though the routine approach just outlined shows the result holds in
the noncommutative case as well).



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 197

The observation we would have liked to make was that the full subcategory of
(left) complemented objects forms a (left) ∗-autonomous category (and similarly for
right). However, there is a problem in the nonsymmetric case: a right complement
may not itself be left complemented. We say, therefore, that an object is strongly left
complemented in case it is left complemented and its right complement is strongly
left complemented. (This is a recursive de�nition.) There is another minor matter: we
have shown [5] that a linearly distributive category which has a negation function is
∗-autonomous, but we need an appeal to the axiom of choice if we wish to conclude
that a linearly distributive category has this structure if we only know that every
object has a (strong) complement. (The commutativity conditions do follow from one
another; that is not the problem.) In Section 3 we discuss a way around this matter
using sequences of objects, but the simpler approach does have its appeal, even if the
ontological commitments are more severe.
The following result is now obvious.

Theorem A.8. In any linearly distributive category the strongly left complemented
objects determine a full subcategory which is left ∗-autonomous.

Of course there are dual “right” notions. In the symmetric case we can drop the
notions “strong”, “left”, and “right” to obtain a ∗-autonomous category from the com-
plemented objects.
Now we shall connect these two notions of complemented and nuclear objects. If A

is a left nuclear object, its left nuclearity can be witnessed by several objects and
morphisms. Consider two such objects B and B′, so

Clearly this gives two right nuclear maps B→B′ and B′ →B respectively:



198 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

These maps, when composed, give idempotents on their source and targets, namely,
the right nuclear maps resulting from reversing the action of the complementation:

We call such idempotents right complement idempotents; note that such an idempotent
e :B→B may be decomposed into the maps (uL⊗ )

−1; �BA ⊗ 1; �RR ; 1⊕ BA ; uR⊕ :B→B for
a left nuclear object A. In a similar fashion right nuclear objects induce left com-
plement idempotents (the circuit has the dual shape ∪∩). Note that not all idem-
potents are of this type; not even all nuclear idempotents (that is, idempotents that
are nuclear maps) are complement idempotents. The essential ingredient that makes
these idempotents special is that they embody witnesses of nuclearity, and so the
dual composite is the identity on the corresponding nuclear object. For example,
using the decomposition above, (uR⊗ )

−1; 1⊗ �BA ; �LL ; BA ⊕ 1; uL⊕ :A→A is the identity
on A.
This class of idempotents may seem somewhat strange and arbitrary (for instance, it

is not closed under composition); however, it is just what we need to compare nuclear
objects with complemented ones.

Proposition A.9. If C is a linearly distributive category; then left nuclear objects are
left complements if and only if all right complement idempotents split.

Proof. ⇒: Suppose e is a left complement idempotent (as above), so that e=(uL⊗ )−1;
�BA ⊗ 1; �RR ; 1⊕ BA ; uR⊕ :B→B and (uR⊗ )

−1; 1⊗ �BA ; �LL ; BA ⊕ 1; uL⊕ :A→A is the identity
on A. Then A is left nuclear, so is a left complement, with a right complement, C say.
It then is an easy exercise to show that the evident ∩∪-shape maps “through” C split
e: r=(uL⊗ )

−1; �CA ⊗ 1; �RR ; 1⊕ BA ; uR⊕ :C→B and s = (uL⊗ )
−1; �BA ⊗ 1; �RR ; 1⊕ CA ; uR⊕ :

B→C. (The calculation is similar to that below in the proof of the converse: place the
two ∩∪∩∪ shapes together, cancel the middle, and see the result is e one way, and 1
the other.)
⇐: Let (�A; A) witness the left nuclearity of A; then form the (by now familiar ∩∪

shape) right complement idempotent h=(uL⊗ )
−1; �A⊗ 1; �RR ; 1⊕ A; uR⊕ :C→C. This

may be split: h= eh;mh and mh; eh=1C . Set �CA = �A; eh⊕ 1 and CA =1⊗mh; A; then



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 199

the following simple calculation shows that (�CA ; 
C
A ) is a complementation pair.

Note that if all left nuclear idempotents split, so that certainly the right complement
idempotents split, then the notion of right nuclear and right complemented object
coincide. While nuclear idempotents are not generally complement idempotents, when
all nuclear idempotents split these two notions do coincide.

Lemma A.10. In a linearly distributive category; any right nuclear idempotent whose
corresponding left nuclear idempotents split; is a right complement idempotent; where
a “corresponding idempotent” is obtained by reversing the action of the witness maps.

Proof. Let e be a right nuclear idempotent. Then we have



200 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

is a left nuclear idempotent. e′ can then be split: e′= r; s, where s; r=1C . Now,
�e; 1⊕ r= �C and s⊗ 1; e= C witnesses the left nuclearity of C, by the argument
above. This means e is a right complement idempotent.

Now we return to the FILL category case. There, the special nature of complemen-
tation simpli�es matters.

Proposition A.11. If C is a left FILL category; then every left nuclear object is a left
complement.

This is an immediate consequence of the following lemma.

Lemma A.12. In a left FILL category; all right complement idempotents split.

Proof. Let e be a right complement idempotent, so that e=(uL⊗ )
−1; �BA ⊗ 1; �RR ; 1⊕ BA ;

uR⊕ :B→B for a left nuclear object A. As we saw in the discussion before Lemma A.2,
this means BA can be curried to give a map c :B→A⊥ so that BA =1⊗ c; ev. There is a
canonical map A⊥ →B induced by �BA , and it is evident that e is the composite of this
with c. We have to show that the other composite, viz. the induced right idempotent
on A⊥, is the identity. The circuit equivalences below show this, starting with the
circuit for the idempotent on A⊥ and ending with the expanded normal form of the
identity on A⊥.

Remark. A linearly distributive category may have no nontrivial nuclear objects and
yet the category may have nuclear idempotents. These, when suitably split, will them-
selves generate a nontrivial ∗-autonomous category.

Finally, we are ready to return to the main theme of this paper, with the following
proposition.

Proposition A.13. Linear functors preserve nuclear morphisms and objects.



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 201

Speci�cally, if F :X→Y is a linear functor of linearly distributive categories, and if
f is (left) nuclear in X, then both F⊗(f); F⊕(f) are (left) nuclear in Y, and similarly
for right nuclear maps. Moreover, if the left nuclearity of f is witnessed by an object C,
so that there are maps �f :>→C ⊕B and f :A⊗C→⊥ such that

f=A u−1

−→ A⊗> 1⊗ �f−→ A⊗ (C ⊕B) �LL−→ (A⊗C)⊕B f ⊕ 1−→ ⊥⊕B u−→ B;

then the (left) nuclearity of F⊗(f) is witnessed by F⊕(C):

> m>−→ F⊗(>) F⊗(�f)−→ F⊗(C ⊕B) �R⊗−→ F⊕(C)⊕F⊗(B)

F⊗(A)⊗F⊕(C)
�R⊕−→ F⊕(A⊗C) F⊕(f)−→ F⊕(⊥) n⊥−→ ⊥

and dually for F⊕(f), and similarly for right nuclearity.

Proof of Proposition A.13. We shall do the case of the left nuclearity of F⊗(f),
leaving the other cases to the reader. We have given the appropriate witness above;
we must check that the appropriate composition gives F⊗(f). This amounts to showing
that the outer paths of the rectangle in Fig. 18 commute. Note that the left-bottom path
is just the image under F of the composite that gives f since f is nuclear. (We have
indicated in the cells whether they commute because of naturality (nat), because the
functor is linear (lin), or the functor is monoidal (mon).) The reader might like to try
this using circuits: it is easy to get a simple “one-line” proof corresponding to the
diagram decomposition in Fig. 18. If one puts a F⊗ functor box around each side of
the de�ning circuit equation expressing that f is left nuclear, and then splits the F⊗
box around the ∪∩ circuit (involving the � and  nodes) using the fourth equivalence
from Table 1, one obtains a new ∪∩ shape involving a F⊗ box with a � node inside,
and a F⊕ box with a  node inside, showing that F⊗(f) is left nuclear with F⊕(C) as
witness. With the other cases done dually, this completes the proof.

Corollary A.14. Linear functors preserve complemented objects.

Speci�cally, if F :X→Y is a linear functor of linearly distributive categories, and
if A is (left) complemented in X, then both F⊗(f); F⊕(f) are (left) complemented
in Y, and similarly for right complements.

Proof of Corollary A.14. The proof is immediate from the proposition and proof
above; note that the witness of the left nuclearity of (say) the identity on F⊗(A) will
be F⊕(B), where B is the right complement of A.

Note that this gives another proof, at least in the symmetric case, that complemented
objects are closed under ⊗ ; ⊕ , and that > and ⊥ form a complementation pair, since
we just need to apply the preceding corollary to the linear functor ©⊗ .



202 J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203

Fig. 18. Linear F preserves nuclear f.

References

[1] M. Barr, Non-symmetric ∗-autonomous categories, Theoret. Comput. Sci. 139 (1995) 115–130.
[2] G.M. Bierman, What is a categorical model of intuitionistic linear logic? in: M. Dezani (Ed.), Proc.

Conf. on Typed Lambda Calculus and Applications, Springer, Berlin 1995. (Also: Technical Report
333, University of Cambridge, 1994.)

[3] R.F. Blute, J.R.B. Cockett, R.A.G. Seely, ! and ?: Storage as tensorial strength, Math. Struct. Comput.
Sci. 6 (1996) 313–351.

[4] R.F. Blute, J.R.B. Cockett, R.A.G. Seely, T.H. Trimble, Natural deduction and coherence for weakly
distributive categories, J. Pure Appl. Algebra 113 (1996) 229–296.

[5] J.R.B. Cockett, R.A.G. Seely, Weakly distributive categories, in: M.P. Fourman, P.T. Johnstone,
A.M. Pitts (Eds.), Applications of Categories to Computer Science, London Mathematical Society
Lecture Note Series, vol. 177, 1992, pp. 45–65.

[6] J.R.B. Cockett, R.A.G. Seely, Weakly distributive categories, J. Pure Appl. Algebra 114 (1997) 133–
173. (Updated version available on http:==www.math.mcgill.ca=˜rags.)



J.R.B. Cockett, R.A.G. Seely / Journal of Pure and Applied Algebra 143 (1999) 155–203 203

[7] J.R.B. Cockett, R.A.G. Seely, Proof theory for full intuitionistic linear logic, bilinear logic, and MIX

categories, Theory Appl. Categories 3 (1997) 85–131.
[8] J.-Y. Girard Light linear logic, preprint, 1995 (revised 1997). URL: ftp:==lmd.univ-mrs.fr=pub=

girard=LLL.ps.Z.
[9] D.A. Higgs, K.A. Rowe, Nuclearity in the category of complete semilattices, J. Pure Appl. Algebra 57

(1989) 67–78.
[10] H. Hu, A. Joyal, Coherence completions of categories, in: S. Brookes, M. Mislove (Eds.),

Proc. Mathematical Foundations of Programming Semantics, 13th Annual Conf., Electronic
Notes in Theoretical Computer Science, vol. 6, 1997. URL: http:==www.elsevier.nl=cas=tree=store=
tcs=free=noncas=pc=volume6.htm.

[11] M. Hyland, V. de Paiva, Full intuitionistic linear logic (Extended Abstract), Ann. Pure Appl. Logic 64
(3) (1993) 273–291.

[12] M. Kanovich, M. Okada, A. Scedrov, Phase semantics for light linear logic, in: S. Brookes,
M. Mislove (Eds.), Proc. Mathematical Foundations of Programming Semantics, 13th Ann. Conf.,
Electronic Notes in Theoretical Computer Science, vol. 6, 1997. URL: http:==www.elsevier.nl=cas=
tree=store=tcs=free=noncas=pc=volume6.htm.

[13] J. Lambek, P.J. Scott, Introduction to Higher-Order Categorical Logic, Cambridge Studies in Advanced
Mathematics, vol. 7, Cambridge University Press, Cambridge, 1986.

[14] K.A. Rowe, Nuclearity, Can. Math. Bull. 31 (1988) 227–235.
[15] R.A.G. Seely, Linear logic, ∗-autonomous categories and cofree coalgebras, in: J. Gray, A. Scedrov

(Eds.), Categories in Computer Science and Logic, Contemporary Mathematics, vol. 92, Am. Math.
Soc., Providence, RI, 1989.


