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Cardiac Resynchronization Therapy

Intraventricular Dyssynchrony Predicts Mortality and
Morbidity After Cardiac Resynchronization Therapy
A Study Using Cardiovascular Magnetic
Resonance Tissue Synchronization Imaging

Shajil Chalil, MRCP,* Berthold Stegemann, PHD,† Sarkaw Muhyaldeen, MRCP,*
Kayvan Khadjooi, MRCP,* Russell E. A. Smith, MD, FRCP,* Paul J. Jordan, FRCP,*
Francisco Leyva, MD, FRCP*

Birmingham, England; and Maastricht, the Netherlands

Objectives We aimed to assess a novel measure of left ventricular (LV) dyssynchrony, a cardiovascular magnetic resonance-
tissue synchronization index (CMR-TSI), in patients with heart failure (HF). A further aim was to determine whether
CMR-TSI predicts mortality and major cardiovascular events (MCE) after cardiac resynchronization therapy (CRT).

Background Cardiac dyssynchrony is a predictor of mortality in patients with HF. The unparalleled spatial resolution of CMR
may render CMR-TSI a predictor of clinical benefit after CRT.

Methods In substudy A, CMR-TSI was assessed in 66 patients with HF (age 60.8 � 10.8 years, LV ejection fraction 23.9 �

12.1% [mean � SD]) and 20 age-matched control subjects. In substudy B, CMR-TSI was assessed in relation to
clinical events in 77 patients with HF and with a QRS �120 ms undergoing CRT.

Results In analysis A, CMR-TSI was higher in patients with HF and a QRS �120 ms (79.5 � 31.2 ms, p � 0.0003) and
in those with a QRS �120 ms (105.9 � 55.8 ms, p � 0.0001) than in control subjects (21.2 � 8.1 ms). In anal-
ysis B, a CMR-TSI �110 ms emerged as an independent predictor of the composite end points of death or un-
planned hospitalization for MCE (hazard ratio [HR] 2.45; 95% confidence interval [CI] 1.51 to 4.34, p � 0.0002)
or death from any cause or unplanned hospitalization for HF (HR 2.15; 95% CI 1.23 to 4.14, p � 0.0060) as
well as death from any cause (HR: 2.6; 95% CI 1.29 to 6.73, p � 0.0061) and cardiovascular death (HR 3.82;
95% CI 1.63 to 16.5, p � 0.0007) over a mean follow-up of 764 days.

Conclusions Myocardial dyssynchrony assessed by CMR-TSI is a powerful independent predictor of mortality and morbidity
after CRT. (J Am Coll Cardiol 2007;50:243–52) © 2007 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2007.03.035
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he benefits of cardiac resynchronization therapy (CRT)
re well established. In the CARE-HF (Cardiac Resyn-
hronization Heart Failure) study, CRT was associated with
6% reduction in all-cause mortality (1). It is well accepted,
owever, that the prognostic benefit of CRT in individual
atients is difficult to predict from pre-implant assessments,
uch as echocardiography.

Studies using tissue Doppler imaging have shown that, in
atients with heart failure (HF), intraventricular dyssyn-
hrony is associated with a higher rate of cardiac decom-
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ensation (2). In patients with hypertrophic cardiomyopa-
hy, intraventricular dyssynchrony is an independent
redictor of sudden cardiac death (3). With regard to
atients undergoing CRT, numerous studies have focused
n echocardiographic predictors of reverse left ventricular
LV) remodeling and/or symptoms (4,5), but few have
xplored cardiac dyssynchrony in relation to mortality.

In the assessment of cardiac dyssynchrony, echocardiog-
aphy is limited to imaging only a portion of the LV. In
ontrast, cardiovascular magnetic resonance (CMR) allows
maging of the entire heart. In this study, a novel technique
or assessing cardiac dyssynchrony, CMR-tissue resynchro-
ization imaging, was developed using short-axis views of
he LV. Segmental radial wall motion data were used to
onstruct tissue synchronization polar maps of the LV and
o derive a global dyssynchrony measure, the tissue synchro-
ization index (CMR-TSI). This study comprised 2 anal-

ses: in the first, the CMR-TSI was assessed in healthy
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subjects and in patients with HF;
in the second, the CMR-TSI was
assessed in relation to mortality as
well as hospitalizations, LV re-
modeling, functional capacity, and
quality of life in patients with HF
undergoing CRT.

Methods

This study consisted of 2 sub-
studies, both of which entailed
quantification of LV volumes,
LV ejection fraction (LVEF),
and CMR-TSI.
Substudy 1. In this substudy,
the measurements as described in
the preceding text were studied
in relation to QRS duration in 66
consecutive patients with HF in
New York Heart Association
(NYHA) functional class III or
IV and with an LVEF �35%.
The etiology was coronary heart

isease in 53 patients and dilated cardiomyopathy in 13.
hese were compared with 20 age-matched, healthy control

ubjects with a QRS duration �120 ms.
ubstudy 2. The aim of this substudy was to determine the
bility of the CMR-TSI to predict cardiovascular death,
eath from any cause, major cardiovascular events (MCE),
nd HF admissions in 77 patients with HF and a QRS
120 ms undergoing CRT. This group included 42 pa-

ients from substudy 1.
Patients in substudy 2 also underwent a 6-min hall walk

est (6), a quality-of-life assessment using Minnesota Living
ith Heart Failure questionnaire (7), and transthoracic

chocardiography on the day before implantation, at 1, 3,
nd 6 months thereafter. Follow-up data on patients who
ied relates to the last available review before death.
evice therapy. All patients in substudy 2 underwent

ransvenous biventricular pacemaker implantation using
tandard techniques under local anesthesia. Patients were
ntered into the study only after a successful implantation
nd were followed-up in a dedicated CRT clinic. None of
he patients in atrial fibrillation underwent atrioventricular
ode ablation. Patients in sinus rhythm (n � 68) underwent
ransmitral Doppler-directed optimization of atrioventricu-
ar delay (8) before discharge and at every scheduled visit
hereafter. Backup atrial pacing was set at 60 beats/min, and
he pacing mode was set to DDDR with an interventricular
elay of 4 ms. For patients in chronic atrial fibrillation (n �
), right ventricular and LV leads were implanted, and a
edtronic InSync III generator (model 8042, Medtronic,
inneapolis, Minnesota) was used, plugging the atrial port

nd programming the generator to a ventricular triggered

Abbreviations
and Acronyms

CMR-TSI � cardiovascular
magnetic resonance-tissue
synchronization index

CRT � cardiac
resynchronization therapy

HF � heart failure

LV � left ventricle/
ventricular

LVEDV � left ventricular
end-diastolic volume

LVEF � left ventricular
ejection fraction

LVESV � left ventricular
end-systolic volume

MCE � major
cardiovascular events

NYHA � New York Heart
Association

ROC � receiver-operating
characteristic
ode. Generators used included the Medtronic InSync III c
odel 8040 8042 (n � 61), St. Jude Frontier (St. Jude
edical, St. Paul, Minnesota) (n � 2), Vitatron CRT 8000

Vitatron B.V., Arnhem, the Netherlands) (n � 2),
iotronik Stratos (Biotronik GmbH, Berlin, Germany)

n � 8), and Guidant Contak Renewal TR2 (Guidant
orp., St. Paul, Minnesota) (n � 4).
MR. Images were acquired on a 1.5-T (General Electric
igna, GE Healthcare Worldwide, Slough, United King-
om) scanner using a phased-array cardiac coil during
epeated 8-s breathholds. A short-axis stack of LV images
as acquired using a steady-state in free precession sequence

repetition time 3.0 to 3.8 ms; excitation time 1.0 ms; image
atrix 224 � 224; field of view 36 to 42 cm; flip angle 45o)

n sequential 8-mm slices (2-mm interslice gap) from the
trioventricular ring to apex. Left ventricular volumes,
jection fraction, and mass (myocardial density � 1.05
/cm3) were quantified using manual planimetry of all
hort-axis steady state free precession cine images with

ASS analysis software (Medis, Leiden, the Netherlands).
ach slice in the short-axis stack (Fig. 1A) was divided into
00 cords, running clockwise from a first cord located at the

unction between the inferior right ventricular free wall and
he interventricular septum. Radial wall motion was quan-
ified semiautomatically for all cords at up to 20 phases
time points) in each R-R interval. This yielded up to
6,000 raw data points per patient (100 cords for each of 8
lices imaged over 20 phases. Radial wall motion data were
btained for each of 6 segments (Fig. 1B) in each of,
ypically, 8 slices, for 20 phases (time points). The observer
as blinded to all other clinical details of the patients,

ncluding the outcome measures.
SI. The maximum radial wall motion value of a segmen-

al radial wall motion time series was chosen to parameterize
he peak radial wall motion for each segment for this
nalysis. The time-dependent segmental radial wall motion
ata (y) were fitted to an empirical sine wave function y �
� b * sin (t/RR � c). The sine wave function was chosen

o account for the cyclic nature of myocardial motion and to
pecifically obtain the main cyclic radial wall motion com-
onent from the radial wall motion data. The mean seg-
ental radial wall motion (a), the cyclic segmental radial
all motion amplitude (b), and the segmental phase shift of

he maximum radial wall motion (c) were extracted from the
t. The CMR-TSI was finally calculated as the standard
eviation (SD) of all segmental phase shift of the radial wall
otion extracted from the fit.
chocardiography. Standard 2-dimensional echocardiog-

aphy was performed using System 5 (GE Healthcare
orldwide). Standard left parasternal long-axis and short-

xis, and apical, 4-, 5-, and 2-chamber views were obtained.
igital images were transferred to a computer (EchoPAC,
E Healthcare Worldwide) for off-line analysis. Left ven-

ricular volumes were assessed using planimetry of apical
-chamber views and Simpson’s equation. The LVEF was

alculated as follows: (left ventricular end-diastolic volume
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LVEDV] � left ventricular end-systolic volume [LVESV])/
VEDV � 100%.
ollow-up and end points. After pacemaker implantation,
atients were followed up in a dedicated CRT clinic. As in
he CARE-HF study (1), the clinical end points considered
ere the composite of death from any cause or an un-
lanned hospitalization for a MCE, which included cardiac
ransplantation. Hospitalizations for worsening HF, myo-
ardial infarction, unstable angina, arrhythmia, stroke, pul-
onary embolism, or upgrading to an implantable

ardioverter-defibrillator were included in this end point.
he first event was included in the analysis. The second end
oint considered was the composite of death from any cause
nd unplanned hospitalization with worsening HF. The
hird end point considered was mortality from any cause.
he additional end point of cardiovascular mortality was

lso considered. Sudden cardiac death was defined as “a
atural, unexpected death due to cardiac causes, heralded by

Figure 1 Myocardial Wall Motion in a Control Subject and in a

(A) Division of the left ventricular (LV) myocardium into slices and segments. (B) T
delimits the beginning of segment 1 and the end of segment 6, counting clockwis
cardiac cycle in an LV basal slice in a control subject (C) and in a patient with hea
n abrupt loss of consciousness within one hour of the onset u
f acute symptoms” (9). Mortality data were collected
hrough medical records and, where appropriate, from
nterviews with patients’ caregivers. Information regarding
linical outcome was collected by an investigator who was
linded to the results of the CMR study.
tatistical analysis. Continuous variables are expressed as
ean � SD. Normality was tested using the Shapiro-Wilk

est (the W-statistic). Variables that were not normally
istributed were log-transformed before statistical analyses.
omparisons between normally distributed continuous vari-

bles were made using analysis of variance (ANOVA) with
cheffe’s F procedure for multiple comparisons. Categorical
ariables were analyzed using chi-square tests and Fisher
xact post-hoc test. Changes in variables from baseline to
ollow-up were analyzed using repeated measures ANOVA.
ariables showing significant group differences at baseline
ere entered into Cox proportional hazards analyses.
Receiver-operating characteristic (ROC) curves were

nt With Heart Failure

ction between the interventricular septum and the right ventricular (RV) free wall
nd D) Representative graph of radial wall motion of LV segments throughout the
re (HF) and a left bundle branch block (LBBB) (D).
Patie

he jun
e. (C a
rt failu
sed to derive optimal cutoff points for CMR-TSI. For the
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ifferentiation between control subjects and patients with
F in substudy 1, the value of CMR-TSI with the

ptimum sensitivity and specificity was 40 ms. For the
ifferentiation between the groups at the highest risk of
eeting the various end points in substudy 2, the value of
MR-TSI with the optimum sensitivity and specificity was
10 ms for all end points. The ability of CMR-TSI to
iscriminate between patients in the various risk categories
t this cutoff value was assessed using Cox proportional
azards analyses and Kaplan-Meier survival curves. Differ-
nces in survival curves between the groups were assessed
sing the log-rank (Mantel-Cox) test. Statistical analyses
ere performed using Statview (Cary, North Carolina) and
PSS 13.0 (Chicago, Illinois). A 2-tailed p value of �0.05
as considered statistically significant.
Intraobserver variability of CMR-TSI was derived from
anual planimetry of short-axis stacks from CMR of 10

andomly selected subjects. Studies were performed by the
ame observer on 2 occasions 11 months apart. Interobserver
ariability was derived from the same subjects, performed by 2

Figure 2 CMR-TSI Polar Color Maps in a Healthy Control Subje

Note the late contraction of the inferoposterior wall in the patient with heart failure
branch block (LBBB). CMR-TSI � cardiovascular magnetic resonance tissue synchr
ct and in a Patient With Heart Failure and an LBBB

and a left bundle
onization index.
linded observers. Both intra- and interobserver variabilities
Figure 3 Intraventricular Dyssynchrony in
Control Subjects and in Patients With HF

Box and whisker plot for CMR-TSI in 20 healthy control subjects with a QRS
�120 ms and in 66 patients with heart failure, grouped according to QRS
�120 ms, QRS 120 to 149 ms, and QRS �150 ms. The 5 horizontal lines
represent the 10th, 25th, 50th, 75th, and 90th percentiles, from bottom to
top. CMR-TSI � cardiovascular magnetic resonance tissue synchronization
index; HF � heart failure.
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ere calculated as the SD of the absolute differences between
he 2 measurements divided by the mean of both measure-
ents, and expressed as a percentage. Intraobserver and inter-

bserver variability for CMR-TSI was 3.01% and 8.84%,
espectively. Intraobserver and interobserver correlations were
.99 and 0.98, respectively. In Bland Altman analyses, the
ntraobserver and interobserver agreements, expressed in terms
f the mean difference � 2 SD (upper and lower limits of
greement), were 1.16 (2.04 to 4.36) and 1.25 (�6.92 to 9.41),
espectively.

Analysis of wall motion was performed using the R
tatistical language (10). The nonlinear least square fit
unction implemented by Bates and DebRoy into the “nls”
acket of R was used for the sine fit (11).

aseline Clinical and Cardiovascular Magnetic Resonance Imagingor Patients Undergoing Cardiac Resynchronization Therapy, Groupe

Table 1 Baseline Clinical and Cardiovascular Magnetic Resona
for Patients Undergoing Cardiac Resynchronization The

All

n 77

Follow-up period, days† 764 (379)

Age, yrs 67.3 � 9.8

Gender, male (%) 58 (75)

Etiology, n (%)

Coronary heart disease 58 (75)

Dilated cardiomyopathy 19 (25)

Systolic blood pressure, mm Hg 118.3 � 20.0

Diastolic blood pressure, mm Hg 70.1 � 11.2

Comorbidity

Diabetes mellitus 9 (12)

Hypertension 20 (26)

CABG 20 (26)

Valve replacement 1 (0.01)

Medication, n (%)

Loop diuretics 68 (88)

ACE-I or ARB 70 (91)

Beta-blockers 43 (56)

Spironolactone 37 (48)

Amiodarone 10 (13)

ECG variables

Sinus rhythm 68 (88)

Atrial fibrillation 9 (12)

QRS duration, ms 150.3 � 25.1

CMR variables

LVEDV, cm3 237.8 � 93.4

LVESV, cm3 191.9 � 92.2

LVEF, % 22.6 � 11.5

CMR-TSI, ms 112.6 � 53.2

Mode of death

Pump failure 10

Sudden cardiac death 2

End points

Death from any cause or hospitalization for MCE 26 (34)

Death from any cause or hospitalization for HF 19 (25)

Death from any cause 15 (19)

Cardiovascular death 14 (18)

Refers to differences between the cardiovascular magnetic resonance tissue synchronization in
ontinuous variables are expressed as mean � SD.

ACE-I � angiotensin-converting enzyme inhibitors; ARB � angiotensin II receptor blockers; CABG � coro

nd-diastolic volume; LVEF � left ventricular ejection fraction; LVESV � left ventricular end-systolic volum
esults

ubstudy 1. Patients with HF (n � 66, age 60.8 � 10.8
ears) had an LVEF of 23.9 � 12.1% and a QRS duration of
47.8 � 25.0 ms. As shown in Figure 1C, the pattern of wall
otion was relatively homogenous in healthy control subjects,

ut heterogenous in patients with HF. The heterogeneity of
adial wall motion in patients with HF was also apparent in
olor polar maps of CMR-TSI (Fig. 2). The more homoge-
ous distribution of color in the sine fit polar maps compared
ith the absolute value of the time-to-peak wall motion is a

eflection of the smoothing effect of the sine fit.
The CMR-TSI was higher in patients with HF and a
RS �120 ms (79.5 � 31.2 ms, p � 0.0003), in patients

acteristics and Clinical End Pointscording to Degree of Dyssynchrony

maging Characteristics and Clinical End Points
, Grouped According to Degree of Dyssynchrony

CMR-TSI <110 ms CMR-TSI >110 ms p Value*

43 34

763 (368) 765 (398) NS

68.5 � 10.2 66.4 � 9.6 NS

31 (72) 27 (79) NS

28 (65) 30 (88) 0.0195

15 (35) 4 (12) 0.0195

119.3 � 22.2 117.3 � 18.8 NS

70.1 � 11.6 70.1 � 11.1 NS

3 (7) 6 (18) NS

12 (28) 8 (24) NS

9 (21) 11 (32) NS

0 1 (3) NS

38 (88) 30 (88) NS

39 (91) 31 (91) NS

23 (53) 20 (59) NS

22 (51) 15 (44) NS

5 (12) 5 (15) NS

37 (86) 31 (91) NS

6 (14) 3 (9) NS

145.1 � 21.4 157.0 � 28.0 0.0372

203.8 � 69.4 282.6 � 102.9 0.0002

158.0 � 72.1 236.8 � 97.6 0.0002

26.6 � 13.0 17.2 � 5.9 0.0004

78.4 � 21.6 154.7 � 50.3 �0.0001

0 10 �0.0001

1 1 NS

5 (12) 21 (62) �0.0001

4 (9) 15 (44) 0.0004

2 (5) 12 (35) 0.0004

1 (2) 13 (38) �0.0001

MR-TSI) �110 group and the CMR-TSI �110 ms group; †Refers to follow-up period for events.
Chard Ac

nce I
rapy

dex (C
nary artery bypass grafting; ECG � electrocardiogram; HF � heart failure; LVEDV � left ventricular
e; MCE � major adverse cardiac events.
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ith HF and a QRS between 120 and 149 ms (98.5 � 36.2
s, p � 0.0001), and in patients with HF and a QRS �150
s (112.1 � 68.7 ms, p � 0.0001) than in control subjects

21.2 � 8.1 ms) (Fig. 3). At a cutoff of 40 ms, CMR-TSI
chieved almost absolute discrimination between control
ubjects and patients with HF (area under ROC 0.99,
ensitivity 94%, specificity of 100%, p � 0.0001), a reflec-
ion of the lack of overlap in CMR-TSI between the groups.
ubstudy 2. As shown in Table 1, patients with a CMR-
SI �110 ms had a longer QRS duration (p � 0.0372),
igher LVEDV and LVESV (both p � 0.0002), and a

ower LVEF (p � 0.0004) than patients with a CMR-TSI
110 ms. In the 77 patients undergoing CRT, CMR-TSI

t baseline correlated positively with LVEDV (r � 0.46),
VESV (r � 0.49), and negatively with LVEF (r � �0.55)

all p � 0.0001). There was a positive correlation between
RS duration and CMR-TSI (r � 0.46, p � 0.0001).
Over a mean follow-up of 764 days (range 85 to 1,602

ays), patients with a CMR-TSI �110 ms were 5.2 times
ore likely to die from any cause or to be hospitalized for a
CE, 11 times more likely die from any cause or to be

ospitalized for HF, 7 times more likely to die from any
ause, and 19 times more likely to suffer a cardiovascular
eath than those with a CMR-TSI �110 ms.
Over a mean of 557 days (range 59 to 1,144 days) to the

atest available clinical review, significant reductions in
YHA functional class as well as improvements in 6-min
alk test distance and quality-of-life scores were observed in
oth the CMR-TSI �110 ms and the CMR-TSI �110 ms
roups (Table 2). An increase in LVEF was observed in the
MR-TSI �110 ms group (p � 0.01), but not in the
MR-TSI �110 ms group. A reduction in LVESV was
bserved in the CMR-TSI �110 ms group, but this was not
tatistically significant (p � 0.0986).

As shown in Figure 4, the area under ROCs relating to
he ability of CMR-TSI to discriminate between patients
eeting the various end points ranged from 0.75 to 0.82. At

Clinical and Echocardiographic Variables DuringCardiac Resynchronization Therapy, Grouped Acat Baseline

Table 2
Clinical and Echocardiographic Vari
Cardiac Resynchronization Therapy,
at Baseline

CMR-TSI <
(n � 4

Baseline

NYHA functional class, n (%)

I 0

II 0

III 29 (67)

IV 14 (33)

6-min walk test, m 273.6 � 106.2

Quality-of-life score 61.7 � 18.1

Echocardiography

LVESV, cm3 150.7 � 60.3

LVEDV, cm3 197.3 � 62.0

LVEF, % 26.5 � 12.0
*p � 0.0001; †p � 0.001; ‡p � 0.01. p values refer to differences from bas
NYHA � New York Heart Association; other abbreviations as in Table 1.
cutoff of 110 ms, CMR-TSI predicted cardiovascular
eath with a sensitivity of 93% and a specificity of 67% (p �
.0001). Kaplan-Meier survival curves showed that the rates
f meeting the various end points were higher in the
MR-TSI �110 ms group than in the CMR-TSI �110
s group (Fig. 5). In Cox proportional hazards analyses,
MR-TSI emerged as a strong predictor of all clinical end
oints, independent of LVEDV, LVESV, LVEF, and QRS
uration (Table 3).
An additional analysis using QRS duration as a dichoto-
ous variable, either between 120 ms and 149 ms (n � 31) or
150 ms (n � 46), no group differences emerged with respect

o the composite of death from any cause or an unplanned
ospitalization for an MCE (9 and 17 patients, respectively),
he composite of death from any cause and unplanned hospi-
alization with worsening HF (8 and 11 patients, respectively),
eath from any cause (6 and 9 patients, respectively), or
ardiovascular death (6 and 8 patients, respectively). When
RS duration as a dichotomized variable was entered into Cox

roportional hazards analyses for each of the end points, it
ailed to reach statistical significance (data not shown).

iscussion

e have shown that, on the basis of CMR-TSI, a novel
easure of LV dyssynchrony, almost all patients with HF

ave LV dyssynchrony. The most salient finding from this
tudy is that in patients undergoing CRT, CMR-TSI
redicts death from any cause, cardiovascular mortality, as
ell as the combined end points of death from any cause or
ospitalizations for an MCE, and death from any cause or
ospitalization from HF.
yssynchrony as a predictor of mortality and morbid-

ty. Our finding that increasing LV dyssynchrony, quanti-
ed using the CMR-TSI, predicts survival and morbidity
ight be expected from our observation that LV dyssyn-

hrony correlates positively with LV volumes, and nega-
w-Up in Patients Undergoingng to Degree of Dyssynchrony

During Follow-Up in Patients Undergoing
ped According to Degree of Dyssynchrony

s CMR-TSI >110 ms
(n � 34)

ollow-Up Baseline Follow-Up

2 (28)* 0 6 (18)*

1 (49)* 0 19 (56)*

8 (19)* 28 (82) 9 (26)*

2 (5)* 6 (18) 0*

1 � 122.2* 254.2 � 99.8 326.1 � 97.8†

2 � 25.8* 47.1 � 18.3 29.0 � 21.0†

1 � 58.1 170.0 � 58.8 163.1 � 49.2

8 � 60.5 221.8 � 57.9 209.7 � 53.4

8 � 12.1‡ 24.1 � 10.3 24.4 � 0.09
Follocordi

ables
Grou

110 m
3)

F

1

2

355.

28.

136.

190.

31.
eline values within the group.
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ively with LVEF. It would appear, therefore, that dyssyn-
hrony is a marker of poor cardiac function and the patients
ith the most dyssynchronous, dilated, and poorly function-

ng LVs are the least likely to respond to CRT, measured in
erms of mortality and hospital readmissions. At a cutoff of
10 ms, CMR-TSI predicted cardiovascular death with a
ensitivity of 93% and a specificity of 67% (p � 0.0001).

Numerous echocardiographic studies have shown that LV
yssynchrony is a predictor of improvement in LV function
nd reverse LV remodeling after CRT (12–14). Bax et al. (14),
owever, found that LV dyssynchrony correlated positively
ith reductions in LVESV after CRT, but up to a limit.
eyond a septal-to-posterior wall motion delay of 100 ms,
RT did not result in reductions in LVESV. In the present

tudy, we have not observed evidence of LV remodeling after
RT. However, an improvement in LVEF was witnessed in

he CMR-TSI �110 ms, but not in the CMR-TSI �110 ms

Figure 4 Receiver-Operating Characteristic Curves for CMR-TSI

AUC � area under the curve; MCE � major cardiovascular events; sens � sensitiv
roup. This lack of improvement in LVEF was paralleled by a t
arked increase in the risk of death or hospitalizations for both
CE and HF. A possible interpretation of this finding is that

here is an upper limit of dyssynchrony beyond which CRT
ails to confer a benefit.

Intuitively, patients who die or who are repeatedly hospital-
zed for HF after CRT would also be expected to be the
ymptomatic nonresponders. In the present study, patients
ith a CMR-TSI �110 ms were at higher risk of death and

eadmissions for MCE and HF than those with a CMR-TSI
110 ms, but improvements in NYHA functional class, 6-min
alk test, and quality-of-life scores up to the last available

ollow-up were nevertheless significant. This is in keeping with
he demonstration that clinical improvement after CRT is not
ecessarily a predictor of survival (15). It is also in keeping with
he finding of a lack of correlation between clinical and
chocardiographic changes after CRT (16).

yssynchrony in HF. Echocardiographic studies using

elation to Clinical End Points

ec � specificity; other abbreviations as in Figure 3.
in R

ity; sp
issue Doppler imaging have shown evidence of LV dyssyn-
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hrony only in a proportion of patients with HF (17). Using
he SD of the time to peak systolic velocity in a 12
yocardial segment model as a measure of dyssynchrony,
u et al. (17) demonstrated systolic dyssynchrony in only
4% of patients with HF and a QRS duration �120 ms. In
he present study, however, nearly all patients with HF had
V dyssynchrony, defined in terms of a CMR-TSIs �40
s. It would appear, therefore, that, at least on the basis of
MR-TSI, HF is synonymous with LV dyssynchrony. This

bility of CMR-TSI to almost totally discriminate between
atients with HF and healthy control subjects is perhaps a
eflection of the capacity of CMR to image the entire LV
ith superior spatial resolution.
Methods for assessing cardiac dyssynchrony using CMR

re emerging. Myocardial tagging, for example, allows
ssessment of wall motion and strain in circumferential,
adial, and longitudinal dimensions (18,19). Strain-coded
MR provides real-time quantitative strain measurement,
hich has the potential for rapid assessment of LV dyssyn-

hrony (18). Helm et al. (20) have recently developed a
ethod for assessing dyssynchrony using 3-dimensional

agged CMR. Velocity-encoded CMR has recently been
hown to have an excellent agreement with tissue Doppler
maging (21). By comparison, our measure of dyssynchrony,
MR-TSI, is comparatively crude, insofar as it is based

Figure 5 Kaplan-Meier Estimates of the Time to the Various Cl

Patients were stratified according to a pre-implant cardiovascular magnetic resona
Results of univariate Cox proportional hazards analyses are expressed in terms of
diovascular events.
olely on radial motion. Notwithstanding, this relatively m
imple measure provides powerful prognostic information in
atients undergoing CRT.
RS duration and mechanical dyssynchrony. Small
echanistic studies have shown that QRS duration correlated
ith LV dyssynchrony. Using a 12-segment model and tissue
oppler imaging, Yu et al. (17) failed to find a correlation

etween QRS duration and the LV dyssynchrony. We have,
owever, found that QRS duration does correlate strongly with
MR-TSI. This may be related to the high spatial resolution
f CMR. Notwithstanding, QRS duration failed to emerge as
predictor of clinical outcome measures when entered into

nalysis as either a continuous or a dichotomous (between 120
nd 149 ms or �150 ms) variable.
linical application. The interobserver and intraobserver

ariabilities for CMR-TSI of �9% compare favorably to
ther CMR measures of dyssynchrony, such as velocity-
ncoded CMR, for example, which is associated with
nterobserver and intraobserver variabilities of 10% (21).
ntraobserver and interobserver correlations for CMR-TSI
ere 0.99 and 0.98, respectively. Bader et al. (2) observed

ntraobserver and interobserver correlations of 0.99 and
.97, respectively, for an echocardiographic tissue Doppler
easure of dyssynchrony in 10 patients with HF. The

erivation of CMR-TSI is time-consuming, insofar as it
nvolves manual tracing of endocardial borders and deter-

End Points

sue synchronization imaging score (CMR-TSI) �110 ms or CMR-TSI �110 ms.
zard ratio (HR) and 95% confidence limits. HF � heart failure; MCE � major car-
inical

nce tis
the ha
ination of peak wall motion for each myocardial segment.
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Table 3 Univariate and Multivariate Cox Proportional Hazards Analyses
of Clinical End Points in Relation to Cardiac Magnetic Resonance Variables

HR (95% CI) p Value

Death from any cause or hospitalization for MCE

Univariate

CMR-TSI �110 ms 2.49 (1.59 to 4.31) �0.0001

LVEDV 1.00 (1.00 to 1.01) 0.0621

LVESV 1.00 (1.00 to 1.01) 0.0459

LVEF 0.94 (0.91 to 0.99) 0.0115

QRS duration 1.00 (0.99 to 1.02) NS

Multivariate

1. CMR-TSI �110 ms 2.45 (1.51 to 4.34) 0.0002

LVEDV 1.00 (1.00 to 1.00) NS

2. CMR-TSI �110 ms 2.43 (1.29 to 4.33) 0.0002

LVESV 1.00 (1.00 to 1.00) NS

3. CMR-TSI �110 ms 2.28 (1.39 to 4.12) 0.0006

LVEF 0.98 (0.92 to 1.03) NS

Death from any cause or hospitalization for HF

Univariate

CMR-TSI �110 ms 2.21 (1.33 to 4.14) 0.0016

LVEDV 1.00 (1.00 to 1.01) NS

LVESV 1.00 (1.00 to 1.01) NS

LVEF 0.93 (0.88 to 0.98) 0.0064

QRS duration 1.00 (0.98 to 1.02) NS

Multivariate

1. CMR-TSI �110 ms 2.15 (1.23 to 4.14) 0.0060

LVEDV 1.00 (1.00 to 1.01) NS

2. CMR-TSI �110 ms 2.11 (1.20 to 4.07) 0.0083

LVESV 1.00 (1.00 to 1.01) NS

3. CMR-TSI �110 ms 1.82 (1.07 to 3.52) 0.0266

LVEF 0.95 (0.88 to 1.01) NS

Death from any cause

Univariate

CMR-TSI �110 ms 2.79 (1.45 to 7.06) 0.0011

LVEDV 1.00 (1.00 to 1.01) NS

LVESV 1.00 (1.00 to 1.01) NS

LVEF 0.93 (0.86 to 0.99) 0.0139

QRS duration 1.00 (0.98 to 1.02) NS

Multivariate

1. CMR-TSI �110 ms 2.60 (1.29 to 6.73) 0.0061

LVEDV 1.00 (1.00 to 1.01) NS

2. CMR-TSI �110 ms 2.55 (1.26 to 6.62) 0.0077

LVESV 1.00 (1.00 to 1.01) NS

3. CMR-TSI �110 ms 2.28 (1.16 to 5.90) 0.0143

LVEF 0.94 (0.86 to 1.02) NS

Cardiovascular death

Univariate

CMR-TSI �110 ms 4.1 (1.83 to 17.47) 0.0001

LVEDV 1.00 (1.00 to 1.00) 0.0487

LVESV 1.00 (1.00 to 1.01) 0.0368

LVEF 0.93 (0.86 to 0.99) 0.0183

QRS duration 1.01 (0.99 to 1.03) NS

Multivariate

1. CMR-TSI �110 ms 3.82 (1.63 to 16.5) 0.0007

LVEDV 1.00 (0.99 to 1.01) NS

2. CMR-TSI �110 ms 3.77 (1.61 to 16.3) 0.0009

LVESV 1.00 (0.99 to 1.01) NS

3. CMR-TSI �110 ms 3.49 (1.50 to 15.2) 0.0014

LVEF 0.96 (0.87 to 1.05) NS
CI � confidence interval; HR � hazard ratio; other abbreviations as in Table 1.
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he technique, however, does not involve specialized acqui-
ition, as it employs the short-axis stacks of the LV normally
cquired during a standard CMR LV function study.
tudy limitations. One of the limitations of CMR relates

o its safety in patients with pacemakers, which may
reclude its use after implantation. Recent studies, however,
ave shown that CMR can be performed with safety in such
atients (22,23). These concerns are likely to wane with
mergence of CMR-compatible pacemakers. With respect
o the quantification of CMR-TSI, impaired LV contrac-
ion is associated with less variation in wall motion during
he cardiac cycle. Consequently, CMR-TSI may reflect
igher noise, or dyskinesis, rather than true dyssynchrony.
ur study of patients undergoing CRT is limited to patients
ith a QRS �120 ms. Our cutoff of 110 ms for CMR-TSI

s a predictor of mortality and events can, therefore, only be
pplied to a similar population, and not to patients with a
RS �120 ms, in whom this cutoff is likely to be lower. A

urther limitation is the lack of scar imaging. As demon-
trated by others (24–26), scar size as well as location are
lso powerful predictors of outcome after CRT and could,
onceivably, be superior to CMR-TSI.

onclusions

sing a novel CMR measure of LV dyssynchrony, CMR-TSI,
e have shown that HF is synonymous with intraventricular
yssynchrony. Importantly, CMR-TSI is a powerful indepen-
ent predictor of total mortality, cardiovascular mortality, and
ospitalizations for MCE and for HF after CRT. This
easure is, therefore, likely to be valuable in risk-stratifying

atients with ischemic cardiomyopathy before CRT.

cknowledgments
he authors are very grateful to Lisa Ball, Janet Brashaw-
mith, and Nick Irwin for their dedication to the follow-up
f patients included in this study.

eprint requests and correspondence: Dr. Francisco Leyva,
epartment of Cardiology, Good Hope Hospital, Rectory Road,

utton Coldfield/Birmingham, West Midlands B75 7RR, United
ingdom. E-mail: francisco.leyva@heartofengland.nhs.uk.

EFERENCES

1. Cleland JGF, Daubert J-C, Erdmann E, et al., for the Cardiac
Resynchronization-Heart Failure (CARE-HF) Study Investigators.
The effect of cardiac resynchronization on morbidity and mortality in
heart failure. N Engl J Med 2005;352:1539–49.

2. Bader H, Garrigue S, Lafitte S, et al. Intra-left ventricular electrome-
chanical asynchrony: a new predictor of severe cardiac events in heart
failure patients. J Am Coll Cardiol 2004;43:248–56.

3. D’Andrea A, Caso P, Severino S, et al. Prognostic value of intra-left
ventricular electromechanical asynchrony in patients with hypertrophic
cardiomyopathy. Eur Heart J 2006;27:1311–8.

4. Park RC, Little WC, O’Rourke RA. Effect of alteration of left ventricular
activation sequence on the left ventricular end-systolic pressure-volume

relation in closed -chest dogs. Circ Res 1985;57:706–17.
5. Burkhoff D, Oikawa RY, Sagawa K. Influence of pacing site on canine
left ventricular contraction. Am J Physiol 1986;251:H428–35.

6. Guyatt GH, Sullivan MJ, Thompson PJ. The 6-minute walk: a new
measure of exercise capacity in patients with chronic heart failure. Can
Med Assoc J 1985;132:919–23.

7. Rector TS, Kubo SH, Cohn JN. Patient’s self-assessment of their
congestive heart failure. Content, reliability and validity of a new
measure—the Minnesota living with heart failure questionnaire. Heart
Fail 1987;3:198–207.

8. Ritter P, Padeletti L, Gillio-Meina L, Gaggini G. Determination of
the optimal atrioventricular delay in DDD pacing: comparison be-
tween echo and peak endocardial acceleration measurements. Eu-
ropace 1999;1:126–30.

9. Myerburg RJ, Castellanos A. Cardiac arrest and sudden cardiac death.
In: Braunwald E, editor. Heart Disease: A Textbook of Cardiovascular
Medicine. New York, NY: WB Saunders, 1997:742–79.

0. R Development Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing.
Available at: http://www.r-project.org. Accessed June 11, 2007.

1. Bates DM, Watts DG. Nonlinear Regression Analysis and Its Appli-
cations. New York, NY: Wiley, 1988.

2. Pitzalis MV, Iacoviello M, Romito R, et al. Cardiac resynchronization
therapy tailored by echocardiographic evaluation of ventricular asyn-
chrony. J Am Coll Cardiol 2002;40:1615–22.

3. Yu CM, Fung WH, Lin H, Zhang Q, Sanderson JE, Lau CP.
Predictors of left ventricular reverse remodeling after cardiac resyn-
chronization therapy for heart failure secondary to idiopathic dilated or
ischemic cardiomyopathy. Am J Cardiol 2003;91:684–8.

4. Bax JJ, Bleeker GB, Marwick TH, et al. Left ventricular dyssynchrony
predicts response and prognosis after cardiac resynchronization ther-
apy. J Am Coll Cardiol 2004;44:1834–40.

5. Yu CM, Blerker GB, Fung JW, et al. Left ventricular reverse
remodeling but not clinical improvement predicts long-term sur-
vival after cardiac resynchronization therapy. Circulation 2005;112:
1580 – 6.

6. Bleeker GB, Bax JJ, Fung JW, et al. Clinical versus echocardiographic
parameters to assess response to cardiac resynchronization therapy.
Am J Cardiol 2006;97:260–3.

7. Yu C-M, Lin H, Zhang Q, Sanderson JE. High prevalence of left
ventricular systolic and diastolic asynchrony in patients with congestive
heart failure and normal QRS duration. Heart 2003;89:54–60.

8. Lardo AC, Abraham TP, Kass DA. Magnetic resonance imaging
assessment of ventricular dyssynchrony: current and emerging con-
cepts. J Am Coll Cardiol 2005;46:2223–8.

9. Wyman BT, Hunter WC, Prinzen FW, et al. Mapping propagation of
mechanical activation in the paced heart with MRI tagging. Am J
Physiol 1999;276:H881–91.

0. Helm RH, Lecquercq C, Faris Q, et al. Cardiac dyssynchrony
analysis using circumferential versus longitudinal strain: implica-
tions for assessing cardiac resynchronization. Circulation 2005;111:
2760 –7.

1. Westenberg JJM, Lamb H, van der Geest RJ, et al. Assessment of
left ventricular dyssynchrony in patients with conduction delay and
idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2006;47:
2042– 8.

2. Sommer T, Naehle CP, Yang A, et al. Strategy for safe performance of
extrathoracic magnetic resonance imaging at 1.5 tesla in the presence of
cardiac pacemakers in non-pacemaker-dependent patients: a prospective
study with 115 examinations. Circulation 2006;114:1285–92.

3. Nazarian S, Roguin A, Zviman MM, et al. Clinical utility and safety
of a protocol for noncardiac and cardiac magnetic resonance imaging
of patients with permanent pacemakers and implantable-cardioverter
defibrillators at 1.5 tesla. Circulation 2006;114:1277–84.

4. Bleeker GB, Kaandorp TAM, Lamb HJ, et al. Effect of posterolateral
scar tissue on clinical and echocardiographic improvement after cardiac
resynchronization therapy. Circulation 2006;113:969–76.

5. White JA, Yee R, Yuan X, et al. Delayed enhancement magnetic
resonance imaging predicts response to cardiac resynchronization
therapy in patients with intraventricular dyssynchrony. J Am Coll
Cardiol 2006;48:1953– 60.

6. Ypenburg C, Roes SD, Bleeker GB, et al. Effect of total scar burden
on contrast-enhanced magnetic resonance imaging on response to

cardiac resynchronization therapy. Am J Cardiol 2007;99:657–60.

http://www.r-project.org

	Intraventricular Dyssynchrony Predicts Mortality and Morbidity After Cardiac Resynchronization Therapy
	Methods
	Substudy 1
	Substudy 2
	Device therapy
	CMR
	TSI
	Echocardiography
	Follow-up and end points
	Statistical analysis

	Results
	Substudy 1
	Substudy 2

	Discussion
	Dyssynchrony as a predictor of mortality and morbidity
	Dyssynchrony in HF
	QRS duration and mechanical dyssynchrony
	Clinical application
	Study limitations

	Conclusions
	Acknowledgments
	REFERENCES


