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We investigate thermal inflation in double-screen entropic cosmology. We find that its realization is
general, resulting from the system evolution from non-equilibrium to equilibrium. Furthermore, going
beyond the background evolution, we study the primordial curvature perturbations arising from the
universe interior, as well as from the thermal fluctuations generated on the holographic screens. We
show that the power spectrum is nearly scale-invariant with a red tilt, while the tensor-to-scalar ratio
is in agreement with observations. Finally, we examine the non-Gaussianities of primordial curvature
perturbations, and we find that a sizable value of the non-linearity parameter is possible due to
holographic statistics on the outer screen.
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1. Introduction

As early as the study of black hole physics [1,2], the holographic
thermodynamics was discovered to be related to the quantization
of Einstein gravity as a nonperturbative quantum feature. In par-
ticular, the holographic principle was conjectured as a significant
property of quantum gravity, stating that physics of a volume of
space is encoded on its boundary, such as a gravitational horizon
[3]. This principle was also applied in cosmology [4,5] and it was
studied in detail in string theoretical background [6].

Based on these, an extended holographic picture was suggested
by Verlinde [7] in which Einstein gravity is no longer a funda-
mental theory, but it emerges from a statistic effect of a holo-
graphic screen, while a similar scenario was discussed by Pad-
manabhan [8]. The cosmological application was extensively stud-
ied in the literature, for example see Refs. [9–11] and references
thereafter. However, this theory involves the controversial issue of
whether the uniqueness of gravity is preserved in such an emer-
gent scenario. Therefore, a more explicit formulation of entropic
gravity theory was suggested [12,13], in which Einstein gravity is
still a fundamental theory but with a boundary term being intro-
duced. Such a boundary term provides a holographic statistics and
thus it leads to an entropic force in bulk physics. This model was
soon applied to realize the current acceleration [12] and inflation
[13] at early times, but it has also led to some criticism from the
point of view of observations [14].

* Corresponding author.
E-mail addresses: ycai21@asu.edu (Y.-F. Cai), msaridak@phys.uoa.gr

(E.N. Saridakis).
0370-2693 © 2011 Elsevier B.V.
doi:10.1016/j.physletb.2011.02.020

Open access under CC BY license.
On the other hand, inflation has been widely considered as
a remarkably successful theory in describing the very early uni-
verse [15]. In this paradigm, the primordial curvature perturbation
caused by the quantum fluctuations of the inflaton field was found
to be nearly scale-invariant and thus it is able to form the Large
Scale Structure (LSS) of our universe [16]. Currently many observa-
tions, particularly the angular spectrum of the Cosmic Microwave
Background (CMB) anisotropies [17] and the power spectrum of
density fluctuations observed for the LSS [18], strongly support
the compatibility of inflationary cosmology for describing the early
universe.

Recently, an explicit scenario of realizing the inflationary pe-
riod in entropic cosmology was proposed in [19], composed by two
holographic screens. In particular, it was found that inflationary so-
lutions can be achieved even in a radiation dominated universe,
provided the two screens are not at thermal equilibrium. Such re-
alizations of “thermal inflation” have become an interesting issue
in recent studies of entropic inflationary cosmology.1

In the present work we are interested in investigating thermal
inflation in double-screen entropic cosmology, both at the back-
ground as well as at the perturbations level. In particular, after
showing the generality of inflationary solutions at high energy
scales, we study the primordial curvature perturbations. As we will
see, the main contribution arises from the holographic fluctuations
generated on the outer screen, while the usual thermal fluctuations
of the universe content is subdominant, and the resulting a power
spectrum is nearly scale-invariant with a red tilt. Additionally, by
examining the non-Gaussianities for holographic initial conditions,
we find that a sizable non-linearity parameter could be obtained.

1 See also [20,21] for relevant discussion in Verlinde’s framework.
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The outline of this Letter is as follows. In Section 2 we briefly
review the scenario of entropic cosmology with two holographic
screens, focusing on the background evolution, and in Section 3
we examine the realization of thermal inflation in this model.
In Section 4 we perform an analysis of the cosmological per-
turbations generated during thermal inflation, which are mainly
of holographic origin. Then, in Section 5 we estimate the non-
Gaussianities that arise in the examined scenario. Finally, Section 6
is devoted to the summary of the obtained results.

2. A double-screen model of entropic cosmology

In this work we are interested in investigating thermal infla-
tion in a scenario of entropic cosmology involving two holographic
screens[19]. However, let us first remind the basic features of stan-
dard, one-screen, entropic cosmology, which is also called EFS sce-
nario [12,13].

2.1. One-screen entropic cosmology

In usual entropic cosmology one incorporates a gravitational
system including matter fields and surface terms of the form of

I =
∫

Mb

(
R

16πG
+ Lm

)
+

∮
∂Mb

Lb, (1)

where R is the Ricci scalar of the whole spacetime, Lm is the
Lagrangian of matter fields living in the bulk, and Lb is the corre-
sponding Lagrangian describing the physics of the boundary. Clues
from string theory and AdS/CFT indicate that the boundary terms
should include the extrinsic curvature of the boundary and holo-
graphic dual gauge theories. Finally, throughout the Letter we use
the convention c = kB = h̄ = 1 and M p = 1/

√
G .

By varying the action with respect to the metric, one obtains
the Einstein field equation as follows,

Rμν − 1

2
Rgμν = 8πGT μν

m + Jμν
b , (2)

in which the last term Jb is a current describing the exchange
of energy and momentum between the bulk and the boundary.
This term is determined by the holographic description of bound-
ary physics, and so is a nonlocal effect which corresponds to an
entropic force in the universe.

Assuming that the boundary physics can be described by ther-
modynamics satisfying a holographic distribution, the number of
degrees of freedom on this holographic screen is proportional to
its area, that is N ∝ A. Thus, the classical holographic entropy on
this screen is given by

Sb = A

4G
= π

G
r2

b , (3)

where rb is the radius location of the boundary surface. Therefore,
variation of energy with respect to the radius will provide us the
entropic force [7]:

Fe = −
(

dE

dr

)
b
= −

(
T

dS

dr

)
b
= −2π

G
Tbrb, (4)

in which Tb is the temperature of the boundary of the system.
Finally, due to the Unruh effect (when a test particle with mass
m is located nearby the holographic screen the variation of the
entropy on this screen with respect to the radius takes the form of
dS
dr = −2πm) the above force yields an entropic acceleration ae of
the form [22]
ae ≡ Fe

m
= 2π Tb. (5)

Note that the corresponding entropic pressure is negative Pe =
Fe/Ab = −Tb/2Grb , and so it is expected to realize an accelerat-
ing process of the universe.

Let us apply the above results into a homogeneous and isotropic
flat Friedmann–Robertson–Walker (FRW) universe described by the
metric

ds2 = dt2 − a(t)2 dxi dxi . (6)

In usual, one-screen entropic cosmology, the boundary rb , that is
the location of the holographic screen, is assumed to be near the
Hubble horizon rH = H−1, where H ≡ ȧ/a is the Hubble parameter
of the universe. This non-complete coincidence is quantified by the
parameter β [19], that is we write

rb = (βH)−1, (7)

while the boundary temperature is

Tb = βH

2π
. (8)

Thus, substituting everything in the field equations, we obtain the
modified Friedmann acceleration equation

ä

a
= −4πG

3
(ρ + 3p) + β2 H2, (9)

where ρ and p are respectively the total energy density and pres-
sure of the content of the universe. In this expression, the last
term accounts for the cosmological acceleration due to the en-
tropic force.

A final addition must be made, concerning the precise form of
the horizon entropy. In particular, quantum gravitational and string
theoretical considerations, taking into account higher order quan-
tum corrections [23] and the holographic renormalization group
flow [24], yield an improved relation for the entropy with leading
order correction as:

S = 1

4G

(
A + gG ln

A

G
+ · · ·

)
, (10)

where the coefficient g is determined by the specific environment
and it is left as a free parameter. Thus, the Friedmann acceleration
equation arising from this improved entropic relation reads [13]

ä

a
= −4πG

3
(ρ + 3p) + β2 H2 + gGβ4 H4

4π
+ · · · . (11)

Although the aforementioned scenario is qualitatively very in-
teresting, the above modified Friedmann equation (with β2 of the
order of O(1)) cannot quantitatively describe the radiation and
matter epochs. One interesting way out is the additional consid-
eration of a second holographic screen.

2.2. Double-screen entropic cosmology

Since one-screen considerations exhibit difficulties in quanti-
tatively describing the thermal history of the universe, a double-
screen extension was introduced in [19]. Since the Hubble horizon
(or a surface near it) is the natural choice for the outer bound-
ary of the universe, one introduces an additional “inner” boundary,
which is just the Schwarzschild horizon of the whole universe. The
corresponding Schwarzschild radius rS is given by

rS = 2GMtot = 2G

∫
ρ dV = 8πGρ

3β3 H3
, (12)
Mb
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where we have used that the volume of the universe is V =
4πr3

b/3. Its corresponding temperature is given by

T S = 1

8πGMtot
= 3β3 H3

32π2Gρ
, (13)

and therefore its induced acceleration (with the simple entropy
form) will be

ae = 2π T S , (14)

but with direction towards the inner screen, that is opposite to the
outer one.

In summary, in double-screen entropic cosmology, the induced
acceleration is

ae = 2π(Tb − T S) = βH

(
1 − 3β2 H2

16πGρ

)
, (15)

that is it incorporates a competition of entropic effects from the
outer and the inner screens. Consequently, the modified Friedmann
acceleration equation in this scenario writes as [19]

ä

a
= −4πG

3
(ρ + 3p) + β2 H2

(
1 − 3β2 H2

16πGρ

)
. (16)

Finally, if instead of the simple entropy form we use the quantum
corrected one (10), the modified Friedmann equation in double-
screen cosmology becomes

ä

a
= −4πG

3
(ρ + 3p) + f (ρ, H), (17)

with the form of surface function being

f (ρ, H) = β2 H2
(

1 − 3β2 H2

16πGρ

)

+ gH Gβ4 H4

4π

(
1 − 27gSβ

6 H6

1024gHπ3G3ρ3

)
+ · · · , (18)

where gH and gS are the corresponding correction coefficient for
each boundary.

Eq. (17) determines the cosmological evolution in double-
screen cosmology. If the two holographic screens are in thermal
equilibrium with Tb = T S and choosing the coefficient β = √

2, one
can recover the exact form of the traditional Friedmann equation.
However, in general, Eq. (17) describes the evolution of the uni-
verse towards such an equilibrium. The cosmological system will
close, as usual, by the consideration of the evolution equation of
the total energy density ρ . In the case at hand, in which one may
have flow through the boundaries, the corresponding equation is
modified as [19]

ρ̇ + 3H(ρ + p) = Γ, (19)

with the effective coupling term Γ being

Γ = 27β6 H6

1024π3G3ρ3
ρ̇ + 3β2 H Ḣ

4πG

(
1 − 27β4 H4

256π2G2ρ2

)
, (20)

at classical level. Again, when Tb = T S and β = √
2, the coupling

Γ vanishes and (19) takes its standard form.
We close this subsection by mentioning the following. At early

cosmological times the aforementioned scenario holds as it is.
However, for completeness we mention that at late times, in
order to describe the dark-energy epoch and universe accelera-
tion, one has to take into account the evaporation of the inner,
Schwarzschild screen [19]. Since in the present work we are inter-
ested in very early times, that is in inflationary epoch, we will not
make such a consideration in the following.
3. Thermal inflation at early universe

In the previous section we analyzed the basic features of
double-screen entropic cosmology. Here we focus on the early-
time universe evolution, and in particular we examine the inflation
realization. Let us first show why such a realization is easily ob-
tained in the model at hand.

In such early-time epochs, the universe is radiation dominated,
and thus in the following we assume that the equation of state of
the total universe content is p = ρ/3. Solving the equations of mo-
tion (17) and (19) up to leading order, considering the first order
quantum correction to the entropy, one can obtain the following
approximate solution for the Hubble parameter at early times [19]

H2 = 8πG

3

[
ρ + 8g

69
G2ρ2 + · · ·

]
, (21)

where we have introduced the coefficient g = gH − 4gS . Therefore,
the standard Friedmann equation can be achieved when g = 0 at
early times. An interesting property of this scenario is that when
g > 0, the Hubble parameter is proportional to the energy den-
sity at high energy scales. In this case the ρ2 term could make
the early time inflation much easier to be realized, providing an
implement of holographic inflation.

Let us now investigate the inflation realization in more detail.
In the case of g > 0, at sufficiently early times the ρ2-term in (21)
will always dominate, and thus the universe will exhibit the in-
flationary epoch, which, since it is radiation dominated, we call
thermal inflation. This is a difference from other examinations of
inflation in one-screen entropic cosmology, in which the neglecting
of thermal effects makes inflation difficult [13] or impossible [21].
As time passes and the universe grows, ρ will be decreasing, and
when it reaches the critical value of ρC � 69/(8gG2) the ρ-term
will dominate, triggering the end of inflation. Solving the equations
of motion one finds that the energy density of the universe evolves
as [19]

ρ �
√

ρ2
C − 512π3t

27g5/2G9/2
. (22)

In this relation the initial Big Bang time is set to be negative in-
finity, the observable entropic thermal inflation starts at a time
−∞ < ti � 0 (surely −g3/2G1/2 � ti since only after that time the
Hubble parameter becomes smaller than the Planck scale), while it
ends at tC = 0, after which ρ becomes smaller than ρC and stan-
dard post-inflationary cosmology begins.

Proceeding forward one finds that at early times (t � 0) the
Hubble parameter behaves like

H(t) � 24.25 × (−t)1/2

(gG)3/4
, (23)

and thus the slow-roll parameter ε reads:

ε ≡ − Ḣ

H2
� 2.06 × 10−2 (gG)3/4

(−t)3/2
, (24)

which is indeed much less than unity when t � −√
gG . Thus, one

can make an estimation for the efolding number N , for the ob-
servable inflationary stage starting at ti and ending at tC = 0, as

N ≡
tC∫

ti

H(t)dt � 16.17 × (−ti)
3/2

(gG)3/4
. (25)

We mention that this is an approximate result, since the relation
(23) does not hold up to t = tC = 0. Finally, note that in the above
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case g ∼ O(1016) [19], as it is implied by the requirement that the
inner holographic screen evaporates within the age of our universe
so that one can obtain the late-time acceleration. The relevant ob-
servational constraints on this parameter will be studied in detail
in near future.

4. Primordial perturbations in entropic cosmology

In the previous section we investigated the realization of ther-
mal inflation in a double-screen entropic cosmology. The whole
analysis remained at the background level, since it is the one that
determines the basic features of the cosmological evolution. In the
present section we extend our analysis at the perturbation level,
since such an examination reveals important details of a cosmolog-
ical scenario. More importantly, especially for the case of inflation,
the perturbation analysis can be straightforwardly confronted by
observations, leading to strong constraints or ruling out a specific
inflationary model.

The standard mechanism of generating primordial perturbations
is to require that the initial cosmological fluctuations emerge in-
side the Hubble radius, and subsequently they are transformed
into classical perturbations, through decoherence, after exiting the
Hubble radius. It is usually suggested that these initial fluctua-
tions are generated as quantum vacuum perturbations. However,
in the scenario of the present work, the universe is always filled
with radiation, even at very early times. As a consequence, and
as predicted by thermal field theory [25], the thermal fluctuations
dominate the quantum ones, and thus their investigation is suffi-
cient. Now, in our case the thermal fluctuations have two origins,
one is the thermal particle fluctuation inside the bulk-universe,
and the other is the holographic fluctuation on the two boundary
screens. In the following we assume that the correlation between
thermal particle fluctuation and holographic perturbation is negli-
gible, and thus we calculate the contribution of each component
independently.

Thermal fluctuations as the origin of the structure in the uni-
verse were considered in the context of an expanding universe,
but it was concluded that a scale-invariant spectrum of cosmolog-
ical perturbations could not be created from a usual thermal ori-
gin [26]. However, motivated by string gas cosmology [27], people
have noticed that thermal fluctuations satisfying a specific holo-
graphic statistical distribution are able to provide a scale-invariant
spectrum in certain backgrounds, namely in a Hagedorn phase
[28], in an eternally expanding universe [29] and in bouncing cos-
mology [30]. As we will show, this is not the case in the scenario
at hand, that is we can obtain a scale-invariant spectrum without
the need of specific considerations.

4.1. The formalism

We are interested in studying primordial curvature perturba-
tions originating both from the fluctuations of normal radiation
and of boundary matter on the two holographic screens. We
start by considering the perturbed flat FRW metric in longitudi-
nal gauge, which takes the usual form

ds2 = a(τ )2[(1 + 2Φ)dτ 2 − (1 − 2Φ)dxi dxi], (26)

where τ is the conformal time, and Φ(τ , xi) represents the metric
fluctuation. Following the formula developed in [30], the key con-
straint equation relating matter and metric fluctuations is given by
the time component of the perturbed Einstein equations, namely
from

−3H
(

HΦ + Φ ′) + ∇2Φ = 4πGa2δρ, (27)
where H = aH is the conformal Hubble parameter, the prime de-
notes the derivative with respect to conformal time, and δρ is
the fluctuation of energy density which contains thermal particle
modes and holographic boundary ones. Finally, as usual, one trans-
forms into Fourier space, and uses the corresponding modes as the
relevant variables.

In summary, for a cosmological system filled with general ther-
mal matter, the thermally originated power spectrum Φk can be
expressed as [30]

PΦ(k) ≡ k3

2π2

〈
Φ2

k

〉 = 8G2〈δρ2〉
H4

∣∣∣∣
t∗(k)

, (28)

up to a constant of order O(1), where t∗(k) denotes the moment
of Hubble crossing for the specific mode. In this expression, 〈δρ2〉
is the correlation function of density fluctuations in position space,
within a sphere of radius R(k), where R(k) is the physical corre-
lation length corresponding to the co-moving momentum scale k.
Moreover, in a thermal system 〈δρ2〉 is given by

〈
δρ2〉 = C V

T 2

R6
, (29)

where CV ≡ ∂〈E〉/∂T is the heat capacity of radiation matter. We
mention that in our scenario there exist two kinds of thermal
matter, one being the normal radiation constituted by a gas of rela-
tivistic point particles, and the other being the boundary matter on
the two holographic screens. In the following two subsections we
study the curvature perturbations arisen from these two sources
separately.

4.2. Fluctuations from normal radiation

In this subsection we consider primordial curvature perturba-
tions induced by the radiation sector that fills the universe during
thermal inflation. As it is known from thermodynamics, the radia-
tion energy density as a function of the temperature is given by

ρr ∼ T 4
r , (30)

while the heat capacity of normal radiation reads [30]

Cr
V = gr R3

r T 3
r , (31)

where the subscript r stands for “radiation” and Rr is the radi-
ation correlation length, given as usual from Rr = cs/H , with cs

the sound speed. Additionally, the coefficient gr characterizes the
species of the relativistic point particles of the radiation sector, and
it usually takes a value of the order O(1).

Inserting (31) in (29) and then in (28), with all quantities con-
sidered with a subscript r, one obtains the expression of the power
spectrum for metric perturbations seeded by normal radiation,
namely

P r
Φ = grβ

5

4π5c3
s

G2 H4. (32)

Note that in the extraction of this relation we have assumed that
the background temperature of the universe is Tr = βH/2π near
thermal equilibrium, that is it coincides with the temperature of
the outer holographic screen given by (8). Specifically, in a realistic
model with cs = 1/

√
3 and β = √

2, (32) yields,

P r
Φ = 3

√
6gr

π5
G2 H4. (33)

Therefore, as can be clearly seen from (32) or (33), the spectrum
of curvature perturbation from radiation fluctuations is scale in-
variant during thermal inflation.
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4.3. Fluctuations from outer holographic screen

In this subsection we consider primordial curvature perturba-
tions induced by holographic fluctuations on the outer screen.
In entropic cosmology the boundary terms satisfy a holographic
statistics, which states that the fundamental degrees of freedom
are bounded by their surface areas. According to the equipartition
principle, one can acquire the total energy of the outer screen as
〈E〉 ∼ rb Tb/G , with the boundary location rb and temperature Tb
given by (7) and (8) respectively. Correspondingly, the heat capac-
ity of the holographic statistics on outer screen can be written as

Cb
V = cv

r2
b

G
, (34)

where cv is a constant of the order of O(1) determined by the
detailed microscopic quantities of quantum gravity.

Having expressed the heat capacity, we repeat the steps of the
previous subsection, that is we insert (34) in (29) and then in (28),
with all quantities considered with a subscript b. We mention here
that in this case the correlation length coincides with the holo-
graphic screen’s radius rb , as it has been shown from black-hole
physics and its application to cosmology [28–30]. Assembling ev-
erything we extract the expression of the power spectrum for per-
turbations caused by holographic fluctuations on the outer screen,
namely

P b
Φ = 2cvβ6

π2
G H2. (35)

Furthermore, in the specific model with β = √
2, the power spec-

trum writes as

P b
Φ = 16cv

π2
G H2. (36)

As we observe, the primordial curvature perturbations are also
scale-invariant.

Finally, we mention that one should repeat these calculations
for the inner screen, too. From (35) it is implied that the power
spectrum of holographic fluctuations is almost proportional to one
over the area of the screen, and thus the contribution of the in-
ner screen might be significant. However, since the size of the
inner screen is much smaller than the cosmological scale during
inflation, its corresponding fluctuations only contribute to the sub-
Hubble regime. Therefore, we can neglect the inner screen contri-
bution to CMB observations.

4.4. Primordial perturbation spectrum

In the previous two subsections we extracted the expressions
for the power spectrum for primordial curvature perturbations,
generated by the radiation sector, as well as by the outer holo-
graphic screen, namely relations (32) and (35) respectively, ne-
glecting possible interaction terms between the two perturbation
sources and the inner screen contribution. Comparing the two re-
sults we can immediately find that the perturbation amplitude
from radiation behaves like the square of the one from the outer
holographic screen. Fitting with current CMB observations, one
concludes that P b

Φ is of the order of O(10−10), and therefore P r
Φ

is completely negligible. Thus, this is a significant difference of
the model at hand from conventional cosmology, that is the main
source of perturbation comes from the outer holographic screen
and not from the radiation sector of the universe interior. This fea-
ture has some interesting physical implications.

Let us specify the discussion, considering a variable that is
widely used, namely the curvature perturbation in comoving co-
ordinates [16]:
Fig. 1. The spectral index nS of primordial curvature perturbation in the entropic
scenario of thermal inflation as a function of the efolding number N .

ζ ≡ Φ + H
H2 − H′

(
Φ ′ + HΦ

)
. (37)

This variable can be computed from the gravitational potential Φ

and background parameters. Since in inflation the metric pertur-
bation is frozen at super-Hubble scales, we acquire the simple
relation ζ � Φ/ε . As a consequence, and using (35), we obtain the
primordial power spectrum of curvature perturbation during the
thermally induced inflationary period in entropic cosmology:

Pζ � 16cv

ε2π2
G H2. (38)

Therefore, we can easily calculate the spectral index, which is the
basic quantity in any relevant discussion [31], namely

nS − 1 ≡ d ln Pζ

d ln k
= −2ε − 2η, (39)

where η ≡ ε̇/Hε . In the deviation of this relation we have used the
usual relation d ln k ≈ d ln(aH) ≈ d ln(a) [16], which results from
the fact that during inflation the variation of the scale factor is
much larger than that of the Hubble parameter.

Interestingly, in the scenario at hand one can approximately
extract a very simple relation connecting the spectral index of
thermal inflation nS with the efolding number N . In particular,
combining (24), (25) and (39), using ti as a free variable and using
the background parameter value β = √

2, we result to

nS � 1 − 8

3N
. (40)

Thus, it is obvious that the longer time inflation lasts, the closer
to scale-invariance will be the spectral index. Therefore, we can
immediately construct the nS –N graph, which is presented in
Fig. 1. Indeed, at large N the resulting spectrum is very close
to scale-invariance, with a red tilt, and the deviation from 1 is
quantitatively in agreement with observations, which require that
nS = 0.96 ± 0.012 at 2σ level [17]. This is a basic result of the
present work, revealing that the dominance of holographic fluc-
tuations not only does not affect the scale-invariant, conventional
thermal ones, but it also improves the picture of the produced
spectrum.

Finally, let us examine the tensor perturbations and their re-
lation to the scalar ones examined above. Such a quantity, that
is the tensor-to-scalar ratio, is the second measure, along with the
spectral index, that characterizes the primordial fluctuations. In the
scenario of thermal inflation in entropic cosmology, the primordial
power spectrum for tensor perturbation coincides with that of the
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Fig. 2. The contour of the tensor-to-scalar ratio r in the entropic scenario of thermal
inflation, as a function of the efolding number N , in the value regime of 0.01 �
cv � 9.

usual slow-roll inflation, which reads P T = 16G H2/π [31], since
the holographic screens do not affect the tensor part of perturba-
tion equations. Therefore, defining as usual the ratio r of tensor-
to-scalar perturbation, we acquire

r ≡ P T

Pζ

= ε2π

cv
, (41)

which is doubly suppressed by the slow roll parameter ε but may
be enhanced by a small value of the holographic parameter cv .
This behavior is different from the usual inflationary scenario. In
particular, we conclude that in the general case with cv ∼ O (1)

the primordial tensor perturbation is insensitive to current cosmo-
logical observations, but it is still possible to obtain sizable tensor
modes if we fine-tune the value of cv to be small enough.

To investigate these features in more detail we again combine
(24) and (25) using ti as a free variable and using the parame-
ter value β = √

2, resulting to the helpful relation ε ≈ 1
3N . Thus,

insertion into (41) leads to the simple relation

r ≈ π

9cv N 2
. (42)

In Fig. 2 we present the r–N graph taking the value regime of cv

between 0.01 and 9. As we observe, at large efolding N the result-
ing tensor-to-scalar ratio r acquires very small values. Furthermore,
combining (40) with (42), we find

r ≈ π(1 − nS)
2

64cv
. (43)

The corresponding r–nS graph is presented in Fig. 3, taking cv

in the interval from 0.01 to 9. Comparing this figure with latest
cosmological data [17,32], it is clear that our results are compati-
ble with current observations. Moreover, the smallness of r seems
to be closer to observations comparing to the usual paradigm of
chaotic inflationary models [33].

5. Non-Gaussianities

Recently, a lot of interest has been paid on the analysis of non-
linear perturbations at early universe, under the scenarios of single
field slow-roll inflation [34], brane inflation models [35–37], in-
flation models with general non-canonical form [38,39], curvaton
configurations [40–42], ekpyrotic scenarios [43], phantom inflation
[44], matter bounce cosmology [45], etc. (see [46,47] for recent re-
views). Such a non-linear analysis is necessary in order to reveal
Fig. 3. The contour of the tensor-to-scalar ratio r in the entropic scenario of thermal
inflation, as a function of the spectral index nS , in the value regime of 0.01 < cv < 9.

the possible non-Gaussianity of the primordial fluctuations, which
can be measured by cosmological observations [48]. Thus, along
with the examination of the spectral index and the tensor-to-scalar
ratio, the estimation of the non-Gaussianities that are produced by
an inflationary scenario is a crucial step, since they can constrain
or rule out the examined scenario.

In this section we investigate the non-linear perturbation of
thermal inflation in double-screen entropic cosmology, by comput-
ing its non-Gaussianity estimator. This technique of incorporating
non-Gaussianities in a thermal system has been applied in an in-
flationary model coupled to normal radiation [49], in the context
of bounce cosmology [30], in a string gas scenario [50], and in a
holographic universe [51].

For a perturbation mode with fixed k its non-Gaussianity es-
timator is given by the amplitude of the three-point correlation
function over the square of the two-point one, and can be written
as

fNL = 5〈ζ 3
k 〉

18k3/2〈ζ 2
k 〉2

. (44)

In the previous section we calculated the result of the two-point
function, namely relation (29). Therefore, we need to calculate also
the three-point correlator.

As we showed above, the dominant contribution of primordial
curvature perturbation comes from the holographic fluctuations on
the outer boundary surface. Thus, the key point is to calculate the
three-point function of these holographic fluctuations. In an equi-
librium ensemble, one obtains [30]

〈
δρ3

b

〉∣∣
t∗ = T 2

b

R9
b

∂

∂Tb

(
Cb

V T 2
b

) = 2cv T 3
b

G R7
b

, (45)

which is calculated at the moment t∗ of Hubble crossing in co-
ordinate space. In the above relation we have used (34), and the
fact that the correlation length Rb coincides with the holographic
screen’s radius rb .

In summary, we can now insert (45) and (29) (applied with
indices “b”) into the expression of non-Gaussianity estimator (44).
Using also the approximation ζ � Φ/ε , we finally obtain

fNL � 5

36
√

2π2

εRb H2

cv Tb
. (46)

We mention here that this result is similar to the one obtained in
a thermal bouncing universe filled with Gibbons–Hawking radia-
tion [30]. However, there exists a manifest difference between the
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two results, that is the non-Gaussianities may be suppressed by
the slow-roll parameter ε in the present scenario of entropic ther-
mal inflation, but not in the thermal bouncing cosmology. Thus,
we deduce that this suppression behavior is a consequence and a
physical reflection of inflation.

Proceeding forward, we insert in (46) the expression for Rb ,
that is for rb , which is given by (7), and for Tb , which is given by
(8), resulting to

fNL � 5ε

36
√

2πcv
. (47)

This relation provides the non-Gaussianity of thermal inflation in
double-screen entropic cosmology, and as we observe it is scale-
invariant.

We close this section by mentioning that although the non-
Gaussianities of primordial curvature perturbation in the scenario
at hand are suppressed by the slow-roll parameter ε , it is still pos-
sible to produce a sizable value of fNL if cv ∼ ε . Therefore, in order
to complete a quantitative investigation, one needs to perform a
detailed analysis of the microscopic properties of a holographic
screen in entropic cosmology, which will lead to an estimation
of cv . However, such an analysis is a hard task under the present
knowledge, and it lies outside the scope of the present work.

6. Conclusion

In this work we investigated a scenario of thermal inflation
realized by two holographic screens in the context of entropic
cosmology. We found that the realization of inflation is general,
resulting from the system evolution from non-equilibrium to equi-
librium. Going beyond the background evolution, we analyzed the
primordial curvature perturbations arising from the universe inte-
rior, as well as the thermal fluctuations generated on the outer
holographic screen. For both these contributions the power spec-
tra are almost scale-invariant, however the amplitude of curva-
ture perturbation arisen from holographic fluctuations on the outer
screen is much larger than that of the universe interior. Further-
more, due to the thermal initial conditions for scalar-type metric
perturbations, the consistency relation widely held in usual infla-
tion models was found to be modified in the present scenario. In
summary, the produced power spectrum is nearly scale-invariant
with a red tilt.

Proceeding forward, we provided approximate analytic expres-
sions for the tensor-to-scalar ratio as a function of the spectral
index, with the one free parameter cv determined by the detailed
microscopic quantities of quantum gravity. As we saw, the cor-
responding contour plot is in agreement with observations, with
even better quantitative features comparing to the usual paradigm
of chaotic inflationary models.

Finally, we examined the non-Gaussian distribution of the inho-
mogeneities of primordial curvature perturbations, generated from
the outer screen. Since these fluctuations satisfy the holographic
statistics, the resulting non-linearity parameter is inversely propor-
tional to cv , and it is suppressed by the slow-roll parameter, while
it is nearly scale-invariant. Therefore, a sizable value of the non-
linearity parameter is possible due to holographic statistics on the
outer screen, provided cv is of the same order with the slow-roll
parameter.

It is important to mention that our analysis involves a few un-
certainties on the coefficients, since the detailed thermodynamics
of holographic statistics on the boundary screens is still not well
understood in current knowledge. This provides a wide parame-
ter space to fit to current cosmological observations. Therefore, it
may be far from conclusive to give strong constraints on the sce-
nario of double-screen entropic thermal inflation. However, we still
might be able to distinguish such a scenario from a normal model
of slow-roll inflation by measuring the spectral indexes of primor-
dial power spectra and examining their consistency relation in the
coming experiments. Moreover, we expect that the scenario con-
sidered in this work can be theoretically developed along with
the accumulating studies on holographic properties of entropic
cosmology, so that it may be verified or ruled out by future cos-
mological data.

As an end, we would like to point out that a distinguishable
feature of entropic cosmology with double holographic screens is
the explanation of inflation and late time acceleration in a uni-
fied frame. In this work we focused on the predictions of infla-
tion realized by holographic screens out of thermal equilibrium at
early universe. However, at significantly late times the inner screen
would evaporate and thus yield another acceleration epoch, which
could explain the current dark-energy period. Therefore, we ex-
pect that the scenario at hand might be related to the holographic
dark energy scenario, which incorporates the universe acceleration
in consistency with the basic quantum gravitational requirements
embedded in the holographic principle [52].
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