
Linear Algebra and its Applications 415 (2006) 426–454
www.elsevier.com/locate/laa

Model order reduction for nonlinear dynamical
systems based on trajectory piecewise-linear

approximations
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Abstract

In this paper we analyze and expand a recently developed approach to Model Order Reduc-
tion (MOR) for nonlinear dynamical systems based on trajectory piecewise-linear (TPWL)
approximations. Error estimates are given for solutions computed with TPWL reduced order
models, and problems of preserving stability and passivity are examined. Since the TPWL
method has limited a priori guarantees on global accuracy, its effectiveness is demonstrated on
a range of examples including a micromachined switch, two nonlinear electronic circuits, and
shock propagation modeled by Burgers’ equation.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Today’s highly engineered systems, such as e.g. electronic circuits or jet engines,
integrate a large number of functionally and physically varied elements, often leading
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to complicated mixed-technology designs. The involved, multi-physical descriptions
of the subsystems force the designers to move to higher levels of abstraction and
use simplified descriptions, in order to efficiently perform system-level design. At
the same time, however, a constant push toward higher performance of the systems
(e.g. higher operating frequencies in electronic circuits, increased operating speeds in
turbomachinery) generates a need to consider a more complete set of physical effects,
typically described by large-scale (and often nonlinear) dynamical systems. In this
context, Model Order Reduction (MOR) arises as an approach which links those con-
tradicting trends, by providing methods for automatically extracting easily evaluated
models of important dynamical characteristics from detailed physical descriptions.

So far, most of the research effort has focused on developing MOR techniques
suitable for linear systems. The most popular approaches to linear MOR include
using Krylov subspace projections [4], Hankel norm approximants and Truncated
Balanced Realization (TBR) [5,12], and Proper Orthogonal Decomposition (or Kar-
hunen–Loève expansion) [6,21].

Model Order Reduction techniques for nonlinear systems are much scarcer and
include methods based on linearization or bilinearization of the initial system around
the equilibrium point [1,11,13], algorithms using Proper Orthogonal Decomposition
[7,20], and finally methods of balanced truncation [9,16]. Still, many problems arise
while using existing nonlinear MOR algorithms. On one hand, simple methods based
on polynomial expansions about a single state are effective only for weakly nonlinear
systems and ‘small’ inputs [2,11]. On the other hand, algorithms based on balancing
transformations, although accurate, either are characterized by high numerical cost
of generating the models or inadequately address the problem of numerical cost of
evaluating the final reduced order model. The last problem is associated with the fact
that, unlike in the linear case, projection of a nonlinear system and reduction of its
order does not automatically imply reduction of simulation costs for the obtained
reduced order model [15].

What is needed is an approach for extracting nonlinear reduced order models which
can be evaluated at a very low cost, yet are capable of capturing strongly nonlinear
behavior of the original system. One approach is based on quasi-piecewise-linear
approximation of the nonlinearity, with linearization points taken from a trajectory in
the state space of the initial system [15], and was found to significantly outperform
MOR methods based on polynomial expansions or bilinearization (cf. [1,2,15]). In
this paper we aim at further analyzing this MOR approach, discussing in more detail
its limitations, applicability, and issues related to stability and passivity preservation.

In Section 2, we describe the idea of quasi-piecewise-linear approximation of non-
linearity, and the corresponding order reduction strategies. We also give an approach
for selecting linearization points from a state-space trajectory, leading to Trajectory
Piecewise-Linear (TPWL) reduced order systems, and present examples of applying
the TPWL MOR method. Then, in Sections 3 and 4, we consider the problems of
estimating the errors in solutions computed with TPWL reduced models, and pre-
serving stability with the discussed models, respectively. Section 5 shows how error
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estimates and stability analysis may be used to select subsequent linearization points.
In Section 6 we briefly describe the issue of passivity of TPWL models. Section 7
provides additional computational results for more sophisticated examples from the
engineering domain. Finally, in Section 8 we present our conclusions.

2. TPWL reduced order models

In this paper we focus on discussing model order reduction strategies for nonlinear
dynamical systems in the following state-space form:{

ẋ = f (x) + Bu,

y = CTx,
(1)

where x = x(t) ∈ RN is a vector of states (evolving with time t) for a given sys-
tem, f : RN → RN is a nonlinear vector-valued function, B is an N × M input
matrix, u = u(t) ∈ RM is an input to the system, C is an N × K output matrix and
y = y(t) ∈ RK is the output.

In order to perform order reduction, many MOR schemes construct an orthonormal
basis V = [v1, . . . , vq ] (where q � N ) which spans an ‘important’ part of the state
space. Performing a projection x = V z, and applying the same ‘testing’ basis V to
the initial nonlinear system (1) yields{

ż = V Tf (V z) + V TBu(t),

y = CTV z,
(2)

where z is a reduced, q-th order vector of states.

2.1. Quasi-piecewise-linear approximation of nonlinearity

Although the order of system (2) is reduced to q, its numerical solution will
typically remain costly, due to a high cost of evaluating the nonlinear term V Tf (V z).
Evaluation of this term will normally require O(Nα) (α � 1) operations, and will be
as costly as evaluating f (x) in the initial nonlinear system. In order to reduce the
computational cost, the following quasi-piecewise-linear approximate representation
of nonlinear function f has been proposed in [15]:

f (x) ≈
s−1∑
i=0

w̃i(x) (f (xi) + Ai(x − xi)) , (3)

where xi’s (i = 1, . . . , (s − 1)) are some linearization points (states), Ai’s are the Jac-
obians of f evaluated at states xi , and w̃i(x)’s are state-dependent weights
(
∑s−1

i=0 w̃i(x) = 1, for all x). Applying the above approximation, and performing
a projection of system (1) yields:{

ż = (
∑s−1

i=0 wi(z)[V Tf (xi) + V TAi(V z − xi)]) + V TBu,

y = CTV z,
(4)
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where wi(z)’s are weights dependent on the reduced order state z (
∑s−1

i=0 wi(z) = 1
for all z). Unlike the cost of evaluating (2), the cost of evaluating the right hand side
of Eq. (4) is typically less than O(sq2) (assuming that scalar weighting functions
wi(·) are inexpensive to compute), where s is the number of linearization points used.
(Note also that in a typical situation only one or two of wi’s are non-zero at a time,
and consequently the model evaluation time is rather insensitive to s.) Since, unlike
in the reduced order system (2), the considered cost does not depend on the initial
size of the problem N , large speedup of computations may be achieved if using the
above reduced system.

The main three questions concerning reduced order system (4) refer to:

(1) computing weights wi(z),

(2) selecting projection basis V ,

(3) selecting suitable linearization points xi .

Generally speaking, weights wi are computed using information on distances
between the current state and the linearization points (or their projections). Also, it has
been found advantageous to apply weights which transition rather rapidly as the state
proceeds from the neighborhood of one linearization point to another, making a single
linearized model dominant for most of the state space. This provides a rationale to
refer to model (4) as to a piecewise-linear model. A detailed discussion on the method
for computing weights may be found in [15].

Referring to the issue of selecting a suitable projection basis––various strategies
for generating projection bases have been considered, including algorithms based
on Krylov subspace methods (e.g. in which a collection of Krylov subspaces are
computed for different linearized models and then merged together), Truncated Bal-
anced Realization (TBR), or methods performing hybrid, two-step reduction using
both previously mentioned approaches. Detailed descriptions of various effective
procedures for obtaining the projection bases for piecewise-linear models may be
found in [14,15,17].

2.2. Selecting linearizations along a state-space trajectory

One of the most crucial issues while trying to extract a reduced order model in
form (4) is selecting the collection of linearization points xi . It is a trivial observation
that a linearization of f from state xi accurately approximates the initial nonlinear
function at some given state x, provided x is ‘close enough’ to the linearization point
xi , i.e. ‖x − xi‖ < ε, or x lies within an N -dimensional ball of radius ε, centered
at xi .

Consequently, in order to obtain a good global approximation of f , it is obviously
desirable to ‘cover’ the entire N -dimensional state space with such balls, thereby
assuring that any state is within ε of a certain linearization point (and a corresponding
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linearized model). The problem is that the number of balls will grow exponentially
with order of the state space N . For example, the number of radius 0.1 balls required
to fill a 1000-dimensional unit hypercube will equal roughly 101000. Generating and
storing in computer’s memory such a large number of linearized models would be
inefficient, if not impossible.

Since it is computationally infeasible to cover the entire N -dimensional state space
with suitable linear models, we have proposed to generate a collection of models
selected from a single, fixed ‘training’ trajectory of the system, corresponding to
some relevant ‘training input.’ In order to obtain the training trajectory (or its approx-
imation) one performs simulation of the full order nonlinear system (1) or applies a
fast approximate simulation proposed in [15].

After selecting linearization points from a ‘training’ trajectory, and generating the
corresponding models, one obtains a ‘trajectory piecewise-linear’ (TPWL) reduced
order model, which consists s linearizations, where s � N . Usually s ≈ q, and conse-
quently the cost of simulation with model (4) is substantially lower than an analogous
cost for system (2). Nevertheless, in this approach linearized models will ‘cover’
only a region in the state-space around the training trajectory. Therefore, the scope
of applicability of model (4) will be limited to those input signals which do not drive
the operating point of the considered system ‘too far’ from the linearization points
(and the ‘training’ trajectory). Before we attempt to more precisely discuss this issue
by performing error analysis for TPWL approximations, and investigate some of the
qualities of TPWL reduced order models, let us first illustrate their performance by
presenting two simple application examples.

2.3. Application examples

As a first example consider modeling shock movement, as described by 1D Bur-
gers’ equation:

∂U(x, t)

∂t
+ ∂f (U(x, t))

∂x
= g(x), (5)

where U is the unknown conserved quantity (e.g. mass, density, heat), and f (U) =
0.5U2, g(x) = 0.02 exp(0.02x), in this example. The initial and boundary conditions
used with the above PDE are

U(x, 0) ≡ 1, U(0, t) = u(t),

for all x ∈ [0, l], t > 0, where u is the incoming flow, and l is the length of the
modeled region. Discretizing U with respect to x yields U = [U1, . . . , UN ]T, where
Ui approximates U at point xi = i�x (�x = l/N , where N is the number of grid
points). Then, using (5), and incorporating the boundary conditions results in the
following dynamical system:

dU

dt
= F(U) + G + Bu,

where G = 0.02[exp(0.02x1) · · · exp(0.02xN)]T, B = [1/(2�x)0 · · · 0]T, and
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Fig. 1. Shock movement modeled by a TPWL reduced order model of order q = 31 (with s = 21 linear-
ization points).
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Fig. 1 shows the shock movement, as modeled by Burgers’ equation (5), for l = 100,
N = 100, �x = 1, and the incoming flow u(t) ≡ √

5, computed for a full-order
nonlinear model and a reduced TPWL model of order q = 31. One may note excellent
agreement between the two discussed models. Nevertheless, one should also be aware
that an approximately three-fold reduction of the problem size achieved in this case
needs to be treated as very modest when compared to other application examples (cf.
Section 7).

Another example we considered was a nonlinear transmission line circuit model
with quadratic resistors, shown in Fig. 2. The current flowing through the resistors to
the ground at each node is given by

in(v) = g · sgn(v)v2,

C i  (v)n C i  (v)n C i  (v)n C i  (v)ni(t)
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Fig. 2. Example of a transmission line model with quadratic nonlinearity.
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where v is the voltage at the resistor terminals, g is the conductivity coefficient,
sgn(v) = 1 if v � 0, and sgn(v) = −1 if v < 0. If we take C = r = g = 1, then the
nonlinear operator f (cf. (1)) takes the following form:

f (v) = Av − n(v), (6)

where

A =




−2 1
1 −2 1

. . .
. . .

. . .
1 −2


 , n(v) =




sgn(v1)v
2
1

sgn(v2)v
2
2

. . .

sgn(vN)v2
N


 , (7)

and v = [v1 · · · vN ]T is the vector of states.
In a numerical test we generated a reduced order TPWL model of order q = 25

(with s = 16 linearization points), for the initial circuit with N = 100 nodes. Then,
we simulated both original nonlinear system and TPWL reduced order model, with
the input current i(t) equal to unit step

i(t) =
{

0 if t < 0,

1 if t � 0.

A sample comparison of voltage at node 5, computed with both models is shown in
Fig. 3. Again, one may note a very good agreement of the transients computed with
full and reduced order models. This example is also used in the following sections to
test an error estimation procedure.
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Fig. 3. Comparison of voltage at node 5 for the nonlinear transmission line model, computed with full
nonlinear simulator, and the reduced order TPWL model.
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3. Error analysis in TPWL models

In this section we analyze the errors which arise if a full-order nonlinear model is
replaced by a TPWL reduced order model. First, we present a procedure for estimating
the error in solution computed with a reduced order model. Then, we analyze the more
general issue of error boundedness.

3.1. A posteriori error estimation

Recall that due to a local nature of approximations provided by linearized mod-
els, a TPWL model will adequately approximate a response of the initial nonlinear
system to a given (testing) input signal, only if this input signal does not drive the
operating point of the considered system too far from the linearization points xi . In
other words, if initial system’s testing trajectory corresponding to the testing input
stays close to the states visited by the training trajectory, the TPWL reduced model is
expected to provide adequate approximation of the initial system. Yet, such a priori
information on the testing trajectory is normally unavailable (since it would require
simulation of the initial nonlinear system for the considered testing input). In this case
one may use a posteriori error analysis, which exploits information from the testing
trajectory computed by a TPWL reduced model to assess the approximation error.
The a posteriori error analysis for TPWL models, first presented in [15] for the case
of negative monotone function f , aims at estimating ‖δx(t)‖2, where

δx(t) ≡ x(t) − x̂(t) = x(t) − V z(t),

‖ · ‖2 is the Euclidean norm, and x(t) and z(t) are solutions at time t of (1) and (4),
respectively (for the same initial condition xo

1 and the same input signal u). As proven
in [15], if f from Eq. (1) is negative monotone2, i.e.

∃λ>0∀x,y (x − y)T(f (x) − f (y)) � −λ(x − y)T(x − y), (8)

then ‖δx(t)‖2 satisfies the following inequality:

‖δx(t)‖2 � 1

λ
sup

τ∈[ti ,ti+1]
‖h(z(τ )) + (I − V V T)Bu(τ)‖2

×(1 − exp(−λ(t − ti ))) + ‖δx(ti)‖2 exp(−λ(t − ti )), (9)

for all t ∈ [ti , ti+1], where

h(z) = f (V z) −
s−1∑
i=0

wi(z)[V V Tf (xi) + V V TAiV (z − zi)]. (10)

1 If xo cannot be represented exactly in basis V , the initial condition for the reduced system is taken as
zo = V Txo.

2 One may easily prove that e.g. function f given by (6) is negative monotone.



434 M. Rewieński, J. White / Linear Algebra and its Applications 415 (2006) 426–454

The above inequality leads us to proposing the following iterative scheme of com-
puting error bounds e(ti) for ‖δx(ti)‖2 at timesteps t0, t1, t2, . . .:

(1) At initial time t0 take

e(t0) = ‖I − V V T‖2‖xo‖2,

where xo is a known initial condition.
(2) For i = 1, 2, . . . iteratively compute

e(ti) = 1

λ
sup

τ∈[ti−1,ti ]
‖h(z(τ )) + (I − V V T)Bu(τ)‖2

×(1 − exp(−λ(ti − ti−1))) + e(ti−1) exp(−λ(ti − ti−1)). (11)

Clearly, ‖δx(t0)‖2 = ‖(I − V V T)xo‖2 � e(t0), and also it follows from (9) that
e(ti) � ‖δx(ti)‖2 for every t1, t2, . . . , i.e. e(ti) provides a desired error bound. In
practice, we replace the supremum in the above formula by a maximum over a
discrete set of timesteps between ti−1 and ti , corresponding to a certain numerical
time integration scheme. (If ti are the same as subsequent integration steps, we take a
maximum of the two values at the ends of the considered time interval.) Clearly, this
method of evaluating the supremum implicitly assumes that neither h(z(t)) nor u(t)

behave pathologically between subsequent integration timesteps.
Note, that in general the cost of evaluating h(z) given by (10) could be as high as

the cost of evaluating the initial nonlinear model, which would make using the above
error estimation procedure impractical. However, in many cases we may compute the
discussed estimates at a significantly lower cost. Note that if we include xi in the
projection basis V , then we have V zi = xi , for every i. Furthermore, if we include
(f (xi) − Aixi) (∀i) in V , then V V T(f (xi) − Aixi) = (f (xi) − Aixi), and ‖h(z)‖2
may be estimated with

‖h(z)‖2 �
s−1∑
i=0

wi(z)

[
1

2
sup
x

‖W(x)‖2 ‖z− zi‖2
2 +‖(I −V V T)AiV ‖2 ‖z‖2

]
,

where W(x) is the Hessian of f at x: W(x) = [wk
ij ] ∈ RN×N×N , and wk

ij = ∂2fi(x)
∂xi∂xj

.
Then, we may replace (11) with

e(ti) = 1

λ
sup

τ∈[ti−1,ti ]

s−1∑
i=0

wi(z(τ ))

[
1

2
sup
x

‖W(x)‖2 ‖z(τ ) − zi‖2
2

+‖(I − V V T)AiV ‖2 ‖z(τ )‖2 + ‖(I − V V T)B‖2‖u(τ)‖2

]

×(1 − exp(−λ(ti − ti−1))) + e(ti−1) exp(−λ(ti − ti−1)). (12)

One should note that since the values of norms ‖(I − V V T)AiV ‖2 (for every i)
and ‖(I − V V T)B‖2 can be computed during construction of the reduced model,
the cost of evaluating (12) is O(sq) only. This means that error estimation may be
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performed ‘on the fly’, along with the reduced order simulation, without increasing
the complexity of the fast solver.

The main challenges associated with using the above scheme are related to: (1)
Finding λ (cf. (8)) which should be as precise as possible. (Quality of the error
estimates heavily depends on this parameter, therefore one could consider using dif-
ferent λ’s in different regions of the state space, if at all possible and computationally
feasible.); (2) Finding estimates of ‖h(z(t))‖2, given by (10), which typically requires
estimating ‖W(x)‖2––the norm of the Hessian of f .

In some instances both λ and ‖W(x)‖2 are readily available, as in the nonlinear
transmission line example considered in Section 2.3 (cf. Fig. 2). It is trivial to show
that function f describing nonlinearity of this system (given by Eq. (6)) is negative
monotone, provided all vi are nonnegative at all times (which is satisfied if the input
current i(t) � 0 for all t).

In the considered example the value of λ (cf. (8)) may then be taken as λ =
−1 · maxi{λi ∈ σ(A)}, where σ(A) is the spectrum of matrix A, given by (7). For the
number of nodes N = 100, λ = 9.67 × 10−4. We also have that ‖W(x)‖2 = 2g = 2
for all x. Knowing λ and ‖W(x)‖2 we are ready to use formula (11) to compute error
estimates.

In a numerical test we used the same reduced order TPWL model of order q = 25
as the one described in Section 2.3, and simulated both original nonlinear system and
TPWL reduced order model, with the input current i(t) equal to unit step. (It should
be stressed that q is relatively large, as compared to N for this example, and therefore
it may be inefficient to use the extracted TPWL model in practice. Still, this reduced
model provides useful insight while considering the problem of error estimation.) The
actual error ‖δx‖2 and its estimate were computed at every timestep. Fig. 4 shows a
comparison of this error and its estimate for the considered case. One may note that
formula (12) gives reasonable estimates of the error of approximating the original
nonlinear system with a TPWL reduced order model.

3.2. Error boundedness

Although a posteriori error analysis is helpful in assessing quality of solutions
computed with a reduced order TPWL system, in response to given, finite input
signals u(t), it does not provide us with information about global properties of the
discussed reduced order system.

Suppose the initial nonlinear system is Lp-stable (for any p ∈ [1, ∞]). In particular
this means that trajectories of this system will be bounded, for bounded input signals.
We may ask whether this property also holds for the corresponding TPWL reduced
order model. (Equivalently, one may ask if the respective trajectories of the initial
system and the TPWL model do not diverge, i.e. the error δx(t) = x(t) − x̂(t) =
x(t) − V z(t) (cf. (1) and (4)) is bounded for all times.) Furthermore, we may ask if,
or under what conditions, a TPWL reduced order model is Lp-stable (for any p) or
passive. Those issues are discussed below.
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Fig. 4. A posteriori error estimates for a TPWL reduced order model of a nonlinear transmission line
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First consider the problem of error boundedness. For simplicity, we compare
the full nonlinear model (1) with a corresponding full-order quasi-piecewise-linear
model:3

˙̂x =
s−1∑
i=0

w̃i(x̂)[f (xi) + Ai(x̂ − xi)] + Bu. (13)

The first of Eq. (1) may be transformed as follows:

ẋ = f (x) + Bu =
s−1∑
i=0

(w̃i(x̂)f (x)) + Bu =
s−1∑
i=0

w̃i(x̂)

{
[f (xi) + Ai(x − xi)]

+
[∫ 1

0
(1− s)W(x + s(x − xi)) ds · (x −xi) ⊗ (x −xi)

]}
+ Bu. (14)

Subtracting Eq. (13) from (14) yields an error equation:

δ̇x =
(

s−1∑
i=0

w̃i(x̂)Ai

)
δx +

s−1∑
i=0

w̃i(x̂)

×
∫ 1

0
(1 − s)W(x + s(x − xi)) ds · (x − xi) ⊗ (x − xi), (15)

where δx = x − x̂. We now make use of the following Theorem [18]:

3 The following derivation can be easily extended to the case when we compare model given by (1) with
a reduced order TPWL model (4).
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Theorem 1. Given a linear time-varying differential equation:
ẋ = A(t)x(t) + v(t),

where t � 0, x(t), v(t) ∈ RN, A(t) ∈ RN×N, and v(·) and A(·) are piecewise-con-
tinuous, ‖x(t)‖ is bounded as follows:

‖x(t)‖ � exp

{∫ t

t0

µind[A(τ)] dτ

}
‖x0‖

+
∫ t

t0

exp

{∫ t

τ

µind[A(s)] ds

}
‖v(τ)‖ dτ,

for t � t0 � 0, where t0 is the initial time, x0 = x(t0), and µind(·) denotes a matrix
measure (cf. [18]) induced by an RN norm ‖ · ‖ defined by

µind(A) = lim
ε→0+

‖I + εA‖ − 1

ε
.

Note, that the above inequality based on matrix measures will give tighter bounds
than inequalities derived using Gronwall’s inequality. In our case we take A(t) =
(
∑s−1

i=0 w̃i(x̂(t))Ai), since x̂(t) is a fixed, although possibly unknown trajectory in
the state space. Applying the above theorem to the error equation (15), and keeping
in mind that δx(t0) = 0, yields:

‖δx(t)‖ �
∫ t

t0

exp

{∫ t

τ

µind

[
s−1∑
i=0

w̃i(x̂(s))Ai

]
ds

}

×
∥∥∥∥∥

s−1∑
i=0

w̃i(x̂(τ ))

∫ 1

0
(1− s)W(θ(x(τ ), s)) ds(x(τ )−xi) ⊗ (x(τ )−xi)

∥∥∥∥∥ dτ

(16)

where ⊗ denotes the Kronecker product, and θ(x, s) = x + s(x − xi). Since

µind

[
s−1∑
i=0

w̃i(x̂(s))Ai

]
�

s−1∑
i=0

w̃i(x̂(s))µind[Ai]
and ∥∥∥∥∥

∫ 1

0
(1 − s)W(θ(x, s)) ds · (x − xi) ⊗ (x − xi)

∥∥∥∥∥ � 1

2
sup
x

‖W(x)‖‖x − xi‖2,

where θ(x, s) = x + s(x − xi), inequality (16) may be further transformed as
follows:

‖δx(t)‖1,2,∞ �
∫ t

t0

exp

{∫ t

τ

s−1∑
i=0

w̃i(x̂(s))µind1,2,∞[Ai] ds

}

×
s−1∑
i=0

[
w̃i(x̂(τ ))

1

2
sup
x

‖W(x)‖1,2,∞‖x(τ) − xi‖2
1,2,∞

]
dτ, (17)
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where µ1,2,∞ denotes a matrix measure corresponding to the 1-, 2-, or ∞-norm used
to estimate δx(t). Moreover, since 0 � w̃i(x̂) � 1 and

∑s−1
i=0 w̃i(x̂) = 1, for every x̂

we have:

‖δx(t)‖1,2,∞ �
∫ t

t0

exp{µmax(t − τ)}1

2
sup
x

‖W(x)‖1,2,∞

× max
i∈{0,...,(s−1)}

‖x(τ) − xi‖2
1,2,∞ dτ

� 1

2
sup
x

‖W(x)‖1,2,∞ sup
τ∈[t0,t]

[
max

i∈{0,...,(s−1)}
‖x(τ) − xi‖2

1,2,∞
]

× 1

−µmax

[
1 − exp(µmax(t − t0))

]
, (18)

where µmax = maxi∈{0,...,(s−1)} µind1,2,∞[Ai]. From the above it follows that the error
δx will be bounded for all times t � t0 provided: 1) the trajectory x(t) is bounded
for all times, 2) µmax < 0. Note, that for a given matrix A = [aij ] we have: µind1 =
maxj {ajj +∑i /=j |aij |}, µind2 = λmax[AH + A]/2, and µind∞ = maxi{aii +∑

j /=i |aij |}.
Consequently, since the initial nonlinear system is assumed to be Lp-stable, one

may immediately infer from the above analysis that, provided the input signal is
bounded, δx will be bounded for all times in the following cases: (1) All Ai’s are
symmetric and strictly stable; (2) All Ai’s are strictly diagonally dominant, with all
diagonal elements being negative. Note, that if we were comparing solutions of the
initial nonlinear system and the reduced TPWL model, then the above conclusions
hold, provided we replace Jacobians Ai with V V TAi .

Knowing that trajectories of the initial nonlinear, stable system, and the respective
TPWL reduced order model, corresponding to the same bounded input signal, do not
diverge may not be enough. Often, we need to know whether the response of a given
TPWL model to a finite energy signal will also have finite energy. This leads us to
a question of whether a TPWL model preserves the property of L2 (or more gener-
ally Lp) stability of the initial nonlinear system. This issue is discussed in detail in
Section 4.

4. Stability of TPWL models

4.1. Exponential stability of unforced systems

We start our discussion by considering unforced (autonomous) dynamical systems,
for which the input term Bu is eliminated. First, we note that MOR algorithms like
PRIMA [10] build stable reduced order models by exploiting the fact that congruence
transformations preserve definiteness of system’s “A” matrix. Let us consider an
unforced, stable linear dynamical system ẋ = Ax, which implies that A is a stable
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(Hurwitz) matrix. Then, a reduced order system ż = V TAV z is not guaranteed to be
stable, unless A is negative definite (which implies that matrix V TAV is also negative
definite). If A is an indefinite stable matrix, then only for some special choices of V

(e.g. if every column of V is an eigenvector of A) matrix V TAV will remain Hurwitz.
Below, we will build an analogy with the linear case, by considering systems in

form (1) with a nonlinear function f satisfying the following condition:

∃λ>0∀x xTf (x) � −λxTx. (19)

Without loss of generality we also assume throughout this section that f (0) = 0, i.e.
that system (1) has an equilibrium at the origin. If f is Lipschitz continuous, the above
condition is equivalent to the fact that solution of the Cauchy problem: ẋ = f (x) with
initial condition x(t0) = x0 satisfies the inequality

‖x(t)‖2 � ‖x(t0)‖2 e−λ(t−t0), (20)

for t > 0. This in turn implies that 0 is an exponentially stable equilibrium point for
system ẋ = f (x). Clearly, projected function f̂ (·) = V Tf (V ·) also satisfies condi-
tion (19) (with the same λ if V is an orthonormal basis), and therefore the projected
system: ż = V Tf (V z) also has an exponentially stable equilibrium point at the origin.

Once we replace the nonlinear function f with its trajectory quasi-piecewise
approximation the situation becomes much more involved. Let us consider first an
unforced TPWL system

ż =
s−1∑
i=0

wi(z)[V Tf (xi) + V TAiV z − V TAixi)], (21)

where Ai are Jacobians of f at linearization points xi . Let us also assume that one
of the linearized models is generated at the equilibrium of f . For instance we may
assume that x0 = 0.

One of substantial problems which arise is a possible existence of artificial, non-
physical equilibria in TPWL system (21). Suppose that, for a given j ∈ {1, . . . ,

(s − 1)}, there exists a nonempty set D in the state space defined as follows: D =
{z ∈ Rq : wj(z) = 1}. If z ∈ D then TPWL system (21) reduces to a single, linearized
dynamical model

ż = V Tf (xj ) + V TAj(V z − xj ).

Let us now consider z̃ = (V TAjV )−1(V TAjxj − V Tf (xj )). It is trivial to check
that if z̃ ∈ D then z̃ will be an equilibrium point of TPWL system (21). In order to
illustrate this situation better let us consider the following example of a simple 1D
dynamical system: ẋ = − tan(x), where x ∈ (−π/2, π/2). Now, let us generate a
corresponding TPWL system with two linearization points x0 = 0 and x1 = π/4. It
is easy to check that the resulting system takes the following form:

ẋ = w0(x) · (−1 · x) + w1(x) · (−1 − 2 · (x − π/4)). (22)
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The initial system has a single equilibrium point at x = 0. In the TPWL model an
‘artificial’ equilibrium point may appear at x̃ = π/4 − 1/2, depending on the applied
weighting procedure.

If we apply e.g. the following weighting procedure:

w1(x) =
{

1 if |x − π/4| < 1/4,

0 otherwise

and w0(x) = 1 − w1(x) then for the initial condition x(0) = π/4 the solution x(t)

of (22) will monotonically tend to 0 as t → ∞. On the other hand, if we apply the
following weights:

w1(x) =
{

1 if |x − π/4| < 3/5,

0 otherwise

and w0(z) = 1 − w1(z) then the solution of (22) (with the same initial condition
x(0) = π/4) will monotonically tend to the artificial equilibrium point at (π/4 − 1/2)

as t → ∞ (cf. Fig. 5).
In order to examine the problem of artificial equilibria, consider the ‘negative

definiteness’ condition also for TPWL reduced order system (21):

zT ·
(

s−1∑
i=0

wi(z)[V Tf (xi) + V TAi(V z − xi)]
)

� −k3z
Tz, (23)

where k3 is some positive constant (for instance, we could possibly take k3 = λ).
The above simple condition clearly guarantees exponential stability of system (21).
The important question is whether this condition can be satisfied e.g. for a certain
distribution of linearization points or weights.
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Fig. 5. The effect of artificial equilibrium in a 1D TPWL system.
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Note, that if f satisfies condition (19) then xTA0x � −λxTx, i.e. the Jacobian at
the origin is negative definite. Unfortunately, such condition does not hold for the rest
of Jacobians A1, . . . , As−1. Consequently, condition (23) will not be satisfied auto-
matically for any distribution of weights and/or linearization points. First, we may ask
if there exists a weighing procedure which will stabilize the TPWL system, i.e. provide
such distribution of weights that condition (19) will be satisfied for any x. The answer
is clearly positive, since one may take: w0(z) ≡ 1 and w1(z) ≡ · · · ≡ ws−1(z) ≡ 0.
Still, applying this trivial weighting procedure is equivalent to using only a single
linearized model at the origin. In this case the TPWL model would be no more
accurate that a simple linear reduced order model.

Therefore we may ask the following question: Is it possible to generate a weighting
procedure such that, for all z, condition (23) is satisfied and, for every i, there exists
εi , such that, for all z, if z ∈ Bεj

(zj ) (i.e. if z is in a ball with radius εj centered at
zj , where zj = V Txj is the projection of linearization point xj ) for some particular
j = 0, . . . , (s − 1) then wj(z) = 1? In other words, is there a stability-preserving
weighting procedure which will also select the ‘optimal’ linearized model, in partic-
ular – the model which is the closest to the current state of the system z, provided z is
close enough to the linearization points? As proved below, the answer to this question
is positive if f satisfies condition (19).

Theorem 2. Suppose f : RN → RN is Lipschitz continuous, f (0) = 0, and f sat-
isfies condition (19) with some positive constant λ. Suppose also that all lineari-
zation points xi can be represented exactly in basis V, i.e. xi = V zi for i = 1, . . . ,

(s − 1). Then the origin is an exponentially stable equilibrium point for TPWL system
(21) if, for all i = 1, . . . , (s − 1), wi(z) = 0 for z ∈ (Rq\Bεi

(zi)), where

εi �



√

λ̃2

W 2
+ 2λ̃

W
‖xi‖2 − λ̃

W


 , (24)

and λ̃ is any positive constant such that λ̃ < λ, W = supx ‖W(x)‖2, W(x) is the
Hessian of f evaluated at x, and Bεi

(zi) = {z ∈ Rq : ‖z − zi‖ � εi} (cf. Fig. 6).

Proof. We will prove that assumptions of the theorem on weights and function f

imply that condition (23) is satisfied. Since for every z,
∑s−1

i=0 wi(z) = 1 and xi = V zi

this condition may be written in the following form:(
s−1∑
i=0

wi(z)z
T[V Tf (xi) + V TAiV (z − zi)]

)
� −k3

s−1∑
i=0

(wi(z)z
Tz). (25)

Therefore, the condition which clearly implies (23) is the following:

∃λ>k3>0∀i=0,...,(s−1)∀z∈Di
zT(V Tf (xi) + V TAiV (z − zi)) � −k3z

Tz (26)

where Di = {z : wi(z) /= 0}. First, we note that if z ∈ D0 then, since A0 is negative
definite, we have
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Fig. 6. Admissible weight distribution in a stability-preserving weighting procedure.

zT(V Tf (x0) + V TAiV (z − z0)) = zTV TA0V z � −λzTz < −k3z
Tz. (27)

Therefore condition (25) needs to be considered only for i = 1, . . . , (s − 1). If we
subtract zTV Tf (V z) from both sides of (26) and use (19) then we obtain the following
condition equivalent to (26):

∃λ>λ̃>0∀z∈Di
zT(V Tf (xi) + V TAiV (z − zi) − V Tf (V z)) � λ̃zTz, (28)

for all i = 1, . . . , (s − 1). Since

V Tf (V z) = V Tf (xi) + V TAi(V z − xi)

+
∫ 1

0
(1 − s)V TW(xi + s(V z − xi)) ds (V z − xi) ⊗ (V z − xi), (29)

for all i and z, (28) is equivalent to condition:

∃λ>λ̃>0 − zT

(∫ 1

0
(1 − s)V TW(θ(z, s)) ds(V (z − zi)) ⊗ (V (z − zi))

)

� λ̃zTz

for all z ∈ Di , and i = 1, . . . , (s − 1), where θ(z, s) = xi + s(V z − xi). Below we
write two subsequently stronger conditions implying the above inequality:

∃λ>λ̃>0

∥∥∥∥∥
∫ 1

0
(1 − s)V TW(θ(z, s)) ds(V (z − zi)) ⊗ (V (z − zi))

∥∥∥∥∥
2

� λ̃‖z‖2; ∃λ>λ̃>0
1

2
W‖z − zi‖2

2 � λ̃‖z‖2, (30)

for all z ∈ Di , and i = 1, . . . , (s − 1), where θ(z, s) = xi + s(V z − xi), W =
supx ‖W(x)‖2, and we used the fact that ‖V T‖2 = ‖V ‖2 = 1 since V is an
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orthonormal basis. Suppose now we consider a ball Bεi
(zi) for a given i and Di ⊂

Bεi
(zi). This means that wi(z) /= 0 only if ‖z − zi‖2 < εi . If we impose that

∀i=1,...,(s−1)∀z∈Di

1

2
Wε2

i � λ̃‖z‖2,

for some λ > λ̃ > 0 then condition (30) will be satisfied. Since ‖z‖2 � ‖zi‖2 − εi �
‖xi‖2 − εi for every i = 1, . . . , (s − 1) then we may write the following stronger
condition

∀i=1,...,(s−1) ε2
i � 2λ̃

W
(‖xi‖2 − εi).

Solving the above inequality for εi yields condition (24). Therefore, as we have shown
condition (24) implies condition (23) which proves that the origin is an exponentially
stable equilibrium point for TPWL system (21). �

One may note that, for any i = 1, . . . , (s − 1), condition (24) implies that εi <

‖xi‖2. It is also clear that we should take λ̃ closest to λ in order to obtain the loosest
bound for εi . Condition (24) also tells us that as λ grows (i.e. when the trajectories of
the initial nonlinear system converge faster to the origin) we may take larger radii εi

in the TPWL model, which is intuitively correct. Also, if f is smoother, i.e. if second
order variations (represented by W ) are smaller we may take larger radii.

Theorem 2 tells us that, provided f satisfies condition (19), we can select an
‘optimal’ linearized model provided the state z of the TPWL model is close enough
to linearization points zi or more precisely, provided z is in ball centered at zi with
radius εi , satisfying condition (24). Still, this condition is only a sufficient one and it is
significantly stronger than condition (23) (with xi = V zi). Consequently, in practice
we may use (23) instead of (24) in order to compute stability-preserving weights. This
can be done on-the-fly during simulation of the TPWL reduced order model without
significantly increasing the simulation cost. Yet another method of enforcing negative
definiteness of the right hand side of (21) is adding artificial dissipative terms in form
−γ (z)zTz, where γ (z) is a nonnegative number, for those of z at which condition
(23) is not satisfied.

4.2. Lp stability of TPWL models

The following fact links exponential stability with Lp stability:

Theorem 3. Let us consider the following input-output system:{
ż = f̃ (z, u),

y = g(z, u).

Suppose f̃ is continuously differentiable, the Jacobian matrices [�f̃ /�z] and [�f̃ /�u]
are bounded, and g(x, u) satisfies the condition
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∀z,u ‖g(z, u)‖ � η1‖z‖ + η2‖u‖, (31)

for some nonnegative η1, η2. If z = 0 is a globally exponentially stable equilibrium
point of the unforced system ż = f̃ (z, 0), then the considered system is Lp stable for
any initial condition z0.

Proof of the above theorem may be found in [8].
Let us now consider the following forced TPWL system:{

ż =∑s−1
i=0 wi(z)[V Tf (xi) + V TAiV z − V TAixi))] + V TBu,

y = CTV z.
(32)

Applying Theorems 2 and 3 with h(z, u) = CTV z, and

f̃ (z, u) =
s−1∑
i=0

wi(z)[V Tf (xi) + V TAiV z − V TAixi))] + V TBu

immediately yields the following corollary:

Corollary 1. Suppose f : RN → RN is Lipschitz continuous and differentiable,
f (0) = 0, and f satisfies condition

∃λ>0∀x xTf (x) � −λxTx.

Suppose also, that all linearization points xi can be represented exactly in basis
orthonormal V , i.e. xi = V zi for i = 1, . . . , (s − 1). Then system (4) is Lp stable for
any initial condition x0, if for all i = 1, . . . , (s − 1),wi(z) = 0 for z ∈ (Rq\Bεi

(zi)),

where

εi �



√

λ̃2

W 2
+ 2λ̃

W
‖xi‖2 − λ̃

W


 , (33)

λ̃ is any positive constant such that λ̃ < λ, W = supx ‖W(x)‖2, W(x) is the
Hessian of f evaluated at x, and Bεi

(zi) = {z ∈ Rq : ‖z − zi‖ � εi}.

5. Improved selection of linearization points

The a posteriori error estimation procedure described in the Section 3.1 may be
used not only to assess errors of simulation with an existing TPWL reduced order
model, but also to help one select a more optimal collection of linearization points from
the training trajectory, during extraction of the reduced model. In a basic approach,
during the ‘training simulation’ subsequent linearization points are selected using
a simple geometric criterion: if the current state is ‘far enough’ from the previous
linearization point, i.e. if
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‖xi‖

)
> δ,

where δ > 0 is fixed, thenxi+1 = x, i.e.x becomes the next linearization point. Instead
of this geometric criterion one may use a measure based on error estimates (which
use information on the nonlinear system at hand) to select a collection of linearization
points. Below we present a procedure which uses fast approximate simulation and a
posteriori error estimates derived in Section 3.1 to select a collection of linearization
points x0, . . . , xs−1:

(1) Generate a linearized model about the initial state x0; Set i = 0 and the initial
error estimate e(0) = 0.

(2) Simulate the linearized reduced order system generated at state xi while(‖e(tk)‖2

‖V z‖2

)
< ε,

where

e(tk) = 1

2λ
sup

τ∈[tk−1,tk]

[
sup

x∈T (V z(tk−1),V z(ki ))

‖W(x)‖2 ‖V z(τ) − xi‖2
2

+‖(I − V V T)(Aiz(τ ) + Bu(τ))‖2

]
(1 − exp(−λ(tk − tk−1)))

+e(tk−1) exp(−λ(tk − tk−1)), (34)

tk and tk−1 are the current and previous timesteps, respectively, z(tk) is the
current reduced order state, and T (α, β) denotes a trajectory of the simulated
system between states α and β.

(3) Generate a new linearized model about xi+1 = V z(tk), Set e(tk) = 0, i :=
i + 1.

(4) If i < (s − 1) return to step (2).

One may also develop a similar procedure if exact, full-order nonlinear simulation
is performed to find the training trajectory.

We have tested the above procedure again for the example of a transmission line
circuit model with quadratic nonlinearity, introduced in the previous section. First, we
used a simple procedure for selecting linearization points, based solely on distances
between the points in the state space, and obtained a TPWL model of order q = 27
with s = 15 linearizations. Then, we applied the above procedure based on error
estimates to select linearization points. We have taken ε = 0.18 to obtain a TPWL
model (of order q = 27) again with 15 linearizations. In order to compare the quality
of both TPWL models we tested them for a step input voltage with amplitude 1, and
computed the relative error. The results of this comparison are shown in Fig. 7. One
may note that, on average, the relative error for a TPWL model obtained with the
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Fig. 7. Comparison of relative errors for two different reduced order TPWL models. x and xr are vectors
of states computed with full nonlinear, and reduced order TPWL models, respectively.

procedure discussed above in this section is significantly lower than the error for the
TPWL model obtained with a simple algorithm of selecting linearization points. As
one would expect, taking into account the impact of system’s nonlinearity, results in
a better selection of linearization points.

A different set of guidelines for selecting subsequent linearization points follows
from Theorem 2, which gives a condition to be satisfied by the weights, sufficient to
ensure stability of a TPWL reduced order system. The discussed theorem defines state-
space regions around linearization points xi (or, more precisely, balls with radii εi ,
centered at xi) which are admissible support regions for the corresponding weighting
functions wi . Note, that if distances between xi become large enough, then those
regions may become disjoint (cf. Fig. 6), which means that in order to enforce stability
we may need to set w0 to 1 in the regions located between the linearization points.
This in turn may adversely affect accuracy of a given TPWL model. In order to avoid
such situation one may select subsequent linearization points in such a way that e.g.
‖xi−1 − xi‖2 < (εi−1 + εi).

6. Preserving passivity with TPWL models

A problem related to input-output stability of reduced order TPWL models is
that of preserving passivity of the original system by a TPWL model. This problem
plays a crucial role, not only in the context of controlling the approximation error,
but more importantly, in the context of using MOR to model interconnected sub-
systems (e.g. subsystems in a feedback loop). For instance, if we replace an initial
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passive subsystem (i.e. a subsystem which does not generate energy) of a larger
system with a non-passive reduced model, simulation of the entire system may lead to
non-physical solutions. Then, the reduced order model may act as an artificial energy
source. In order to avoid such situation a number of approaches to extract stable and
passive reduced order models have been proposed for linear systems [3,10]. Below
we present a short passivity analysis for the case of TPWL reduced order models.

We define system (1) as passive if there exists a continuously differentiable positive
semidefinite function V : RN → R such that

∀x∈RN ∀u∈RM uTy � �V (x)

�x
f̃ (x, u) + δyTy,

for some δ � 0, wheref̃ (x, u) = f (x) + Bu. If δ > 0 then we call system (1) output
strictly passive. The following fact holds:

Fact 1. Suppose we consider a nonlinear dynamical system{
ẋ = f (x) + Bu,

y = CTx.
(35)

Then, the above system is output strictly passive provided C = B and

∃λ>0∀x xTf (x) � −λxTx.

Proof. We consider a simple quadratic function V (x) = xTx/2. This function is
clearly positive semidefinite. We compute:

uTy − �V (x)

�x
(f (x) + Bu) = yTu − xTf (x) − xTBu

= yTu − xTf (x) − xTCu = −xTf (x) � λxTx � 0.

Therefore, system (35) is passive. Furthermore, sinceyTy = xTCCTx � ‖CCT‖2x
Tx,

then from the above we obtain:

uTy � �V (x)

�x
(f (x) + Bu) + λxTx � �V (x)

�x
(f (x) + Bu) + λ

‖CCT‖2
yTy.

Consequently, system (35) is output strictly passive. �

Fact 1 immediately implies the following corollary:

Corollary 2. Suppose assumptions of Corollary 1 are satisfied. Then the reduced
order trajectory piecewise-linear system (32) is output strictly passive provided
C = B.

This corollary states that if nonlinear function f is negative definite and C =
B (which implies passivity of the initial nonlinear system), then this passivity is
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preserved by a TPWL reduced order system, provided weighting functions wi satisfy
appropriate conditions, as described in Corollary 1.

7. Additional computational examples

Trajectory Piecewise-Linear (TPWL) model order reduction strategy has been
successfully applied to modeling various dynamical systems demonstrating strongly
nonlinear behavior, or composed of strongly nonlinear components. It has been used
to effectively and efficiently perform time-domain, transient simulations, as well as
periodic steady state simulations for a number of devices or systems, such as nonlinear
transmission line models, operational amplifier circuits, or micro-electro-mechanical
systems [14,15]. In this section we present performance of the discussed MOR method
for two additional examples of strongly nonlinear systems, based on actual designs
taken from the electrical engineering domain.

We first consider an example of a micromachined switch shown in Fig. 8. The
switch consists of a polysilicon beam suspended over a silicon substrate, controlled
by a voltage source inserted between the beam and the substrate. Beam dynamics are
modeled by Euler’s equation, and damping caused by air layer between the beam and
the substrate is modeled by the nonlinear Reynolds equation. Discretization of those
equations leads to a nonlinear dynamical system of order N = 880.

In order to obtain an inexpensive approximation of this large dynamical system we
have generated a TPWL reduced order system of order q = 26 with s = 26 lineariza-
tion points located on a training trajectory corresponding to a step 9-V input voltage.
The obtained TPWL reduced order model has been tested first for the same 9-V step
input voltage, and then for a cosinusoidal input voltage u(t) = (7 cos(4πt))2 with a
7-V amplitude. Figs. 9 and 10 present results of the simulations for the two cases.

The graphs clearly show that in the considered cases, TPWL models provide very
accurate approximations for the initial nonlinear system. They also demonstrate that
TPWL models outperform linear and quadratic reduced order models based on single-
state polynomial expansions of the nonlinear function f (cf. [2,11] for details on those
reduced order models). Fig. 9 shows that a strongly nonlinear pull-in effect (the beam
is pulled in to the substrate), which is particularly important in applications, can be

Fig. 8. Micromachined switch (following Hung et al. [7]).
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Fig. 9. Comparison of system response (micromachined switch example) computed with different MOR
algorithms. The TPWL model was generated for the 9-V step input voltage.
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Fig. 10. Comparison of system response computed using the linear, quadratic and TPWL reduced order
models. Input signal u(t) = (7 cos(4πt))2.

correctly simulated by the discussed model. Also, Fig. 10 indicates that a TPWL
model can be effectively applied even if the testing input (a cosinusoid with 7-V
amplitude) is significantly different from the ‘training’ input (a step input with 9-V
amplitude).
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Another example we considered is an operational amplifier circuit with differential
input and output, and consisting of 70 MOSFET transistors, 13 resistors and 9 linear
capacitors connected to 51 circuit nodes. Nodal analysis [19] yields a nonlinear model
of the device in form (1), with voltages at the circuit nodes defining a state vector.
Also, the operational amplifier is modeled as a multiple input system with eight inputs:
1) the differential input with signals vin1 and vin2, 2) the auxiliary inputs vcmmrst ,
vgnd , vintn, vintp, vrst , and vcmmin.

In order to generate the reduced order TPWL models we applied the following set
of training inputs:

vin1(t) =



0 if t < 290,

12.5 × 10−3(t − 290)/10 if 290 � t < 300,

12.5 × 10−3 if t � 300,

where time t is in nanoseconds, vin2 = −vin1 (cf. Fig. 11), and auxiliary input signals
shown in Fig. 12.

We obtained a TPWL reduced model of order q = 34 (with 29 linearization points
and 8 inputs). The model was then tested for the following piecewise-linear input (cf.
Fig. 11):

vin1(t) =



0 if t < 290,

11.5 × 10−3(t − 290)/110 if 290 � t < 400,

11.5 × 10−3 if t � 400,

where time t is in nanoseconds, and vin2 = −vin1. Fig. 13 shows a comparison of
the transients computed with full nonlinear circuit simulator and with the reduced
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Fig. 11. Operational amplifier input signals vin1 and vin2.
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Fig. 13. Comparison of the output voltages for the operational amplifier example, computed with a reduced
order TPWL model and full order nonlinear solver.

order TPWL models for one (of the two) output nodes of the amplifier. One may
note excellent agreement of the output signals for both cases, which indicates that
suitable reduced order TPWL models of the original systems have been constructed.
It is important to point out that not only do the TPWL models have a lower order
than the original system, but also they are much easier to use. Since a TPWL model
consists of a weighted combination of linear models, the time-stepping is very
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straightforward. In a simplified backward Euler time-stepping scheme we compute
the weights wi (cf. Eq. (4)) e.g. using the previous state of the system or a predictor of
the next state and then, assuming that these weights are fixed, we find the state at the
next timestep by performing only a single Newton update (i.e. by solving a low order
linear system of equations). In a more sophisticated time stepping scheme, one can
account for derivatives of wi(x)’s, which is also straightforward, since the weights
are simple scalar functions. In a regular simulator, if using backward Euler scheme,
finding the next state requires computation of a number of Newton updates for the
full order nonlinear system, which is considerably more complex.

8. Conclusions

In this paper we have discussed a recently developed Trajectory Piecewise-Lin-
ear approach toward Model Order Reduction of nonlinear dynamical systems. As
illustrated with a few computational examples, the proposed MOR strategy provides
accurate reduced models for the simulated nonlinear systems. It has also been found to
outperform MOR methods based on single-point polynomial expansions or bilineari-
zation, as well as generally provide larger speedups in computation time, as compared
to MOR algorithms based on Karhunen–Loève expansion (cf. also [1,2,7,15]).

We have also presented a procedure for a posteriori estimating the error in the
solutions computed with TPWL models, for the case of negative monotone nonlin-
earities. A numerical experiment described confirms that the derived estimate can be
effectively used to assess quality of the solutions. It has also been shown that the
estimates can be applied during extraction of the reduced order models, to obtain an
improved distribution of the linearization points, and consequently––more accurate
models.

Apart from considering a posteriori error estimates we have also obtained a priori
conditions for boundedness of the error. Then, by drawing an analogy with linear
negative definite systems, we derived a set of conditions sufficient to guarantee input-
output stability and passivity of TPWL reduced order models for nonlinear systems,
with negative definite nonlinearities.

In this paper we have attempted to analyze properties of TPWL reduced mod-
els without imposing any significant constraints on the projection basis used. This
approach has lead us to restricting the class of initial nonlinear systems for which e.g.
stability or passivity can be preserved with TPWL reduced models. One may try to
take an opposite approach, by considering only some restricted classes of projection
bases (e.g. generated with balancing transformations), and analyzing properties of
the resulting TPWL models (for initial nonlinear systems which do not satisfy the
negative definiteness constraint).

It should also be noted that in this paper we have considered examples of very
damped systems (except for the shock modeling problem). It seems that thanks to
this property those systems can be effectively reduced using a single training tra-
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jectory. One of key questions is therefore identifying classes of systems which can
be reduced using linearizations about just a few trajectories. A converse problem
concerns selecting a training input (or a set of training inputs) which would pro-
vide the largest scope of applicability of the extracted TPWL model for a given
system.
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