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Abstract RNA decay is thought to exert an important influence
on gene expression by maintaining a steady-state level of tran-
scripts and/or by eliminating aberrant transcripts. However,
the sequence elements which control such processes have not been
determined. Upstream open reading frames (uORFs) in the tran-
scripts of several genes are reported to control translational ini-
tiation by stalling ribosomes and thereby promote RNA decay.
We therefore performed bioinformatic analysis of the tissue-wide
expression profiles and mRNA half-life of transcripts containing
uORFs in humans and mice to assess the relationship between
RNA decay and the presence of uORFs in transcripts. The
expression levels of transcripts containing uUORF were markedly
lower than those not containing uORF. Moreover, the half-life of
the uORF-containing transcripts was also shorter. These results
suggest that uUORFs are sequence elements that down-regulate
RNA transcripts via RNA decay mechanisms.

© 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

RNA decay plays a major role in the post-transcriptional
control of gene expression, maintaining the balance between
the synthesis and degradation of RNA transcripts [1].
Although the complex processing pathways involved in RNA
degradation have been described, the key determinants of
instability remain unclear. Previous research has suggested
that longer mRNA transcripts are less stable [2]. However,
transcript stability was recently shown to not be correlated
with overall transcript size, length of poly (A) tract, number
of ribosomes, expression level, or codon usage [3].

The nonsense-mediated mRNA decay (NMD) pathway is
thought to be an important surveillance mechanism that pro-
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motes the degradation of aberrant transcripts coding for
non-functional or harmful proteins [4-6]. Nonsense or frame-
shift mutations introduce premature translation termination
codons (PTCs) into the open reading frames (ORFs) of
mRNAs and are a common cause of genetic disorders. PTCs
usually lead to rapid mRNA degradation by NMD, which
affects decapping, deadenylation, and 5" — 3’ exonucleolytic
activities [7]. Upstream open reading frames (WORFs) are
small open reading frames located in the 5’ untranslated
regions (5 UTR) of mRNA and also have important post-
transcriptional effects. They are believed to function via cis-
acting peptide products that reduce the initiation of translation
of downstream ORFs by stalling the ribosome at the end of the
uOREF, thereby exposing the mRNA to degradation [8,9]. Gen-
ome-wide comparison of the human and mouse genomes sug-
gest that the majority of uORFs are strongly conserved at the
peptide level [10,11]. Furthermore, expression of the proteins
encoded by human uORFs has been confirmed by mass spec-
trometry [9]. However it is not clear how pervasive a role the
uORFs play in RNA decay. Thus, for example, a small peptide
encoded within the 5UTR of Yap2 mRNA modulates NMD
in yeast [12] whereas the uORF encoded by the upstream re-
gion of the cytokine thrombopoietin transcript has been shown
to not induce NMD in humans [13].

In this study we used a bioinformatics approach to assess
whether uORFs in general affect RNA degradation. We first
predicted the uORFs in the human and mouse transcriptomes
and then compared the tissue-wide expression profile and
decay rate of uORF-containing and non-uORF-containing
transcripts. We found that the average level of expression of
uORF-containing transcripts was markedly lower than that
of the non-uORF-containing transcripts, and their decay rates
were higher.

2. Materials and methods

2.1. Prediction of uORF-regulated transcripts

The human and mouse transcripts in the RefSeq database (release
23, accessed 23 May 2007) and human UniGene database (build 202,
accessed 23 May 2007) were obtained via the National Center for Bio-
technology Information (NCBI) ftp server (ftp:/ftp.ncbi.nlm.nih.gov).
Then all the transcripts were categorized into four levels through the
following steps, as summarized in Fig. 1.

First, transcripts having no definite CDS annotations were elimi-
nated. Then all of the longest ORFs satisfying the following three con-
ditions were defined as uORFs; (1) the ORF (AUG) started in the
S'UTR, (2) the end of the ORF was not identical to the stop codon
of the annotated downstream CDS, and (3) the end of the ORF was
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All transcripts of human and mouse

CDS annotated?
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Homologs of downstream
ORF in counter species?

Fig. 1. Schematic representation of the categorization of the uORF-
regulated candidates into four levels.

not in the 3'UTR [14]; the transcripts having no uORF were defined as
“level 0” uORF candidates (non-candidates) and those having
uORF(s) were defined as “level 17 candidates.

The efficiency of translation initiation from a given AUG codon is
determined in part by the local sequence context around that codon
[15,16]. Therefore, we selected those which had the Kozak consensus
motif, 5'-[G/AJCC(AUG)G-3’ (the sequence in parentheses denotes
the start codon), which is the most efficient context for the start codons
of true ORFs, and re-defined them as “level 2”” candidates.

We further selected those whose downstream ORFs were conserved
in the human and mouse from the candidates in level 2, and re-defined
these as “level 3" candidates. We used the BLAT program [17] with the
E-value cutoff value 1e-50 to search for homologous gene pairs in the
human and mouse. In other words, both transcripts in the human and
mouse homologous pairs have uORFs in level 3.

In order to consider the effect of natural sense-antisense transcripts
to gene expression, we checked the presence of overlapping transcripts
in the antisense strand of the transcripts in each of the four levels. The
dataset of 1233 natural antisense transcripts of humans and 4398 of the
mouse were downloaded via the NATsDB website (http://natsdb.
cbi.pku.edu.cn/, accessed 23 May 2007).

2.2. Preparation of data for comparing the expression intensities and
half-lives of mRNA transcripts
We obtained 4935 RNA expression profiles from 79 different human
tissues and 16617 profiles from 61 different mouse tissues, annotated
with RefSeq IDs, from the SymAtlas database (http://symatlas.
gnf.org/, accessed 23 May 2007) [18]. The expression profiles in the
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SymAtlas database were examined using high-density oligonucleotide
arrays, and the custom arrays were generated using a non-redundant
set of documented and predicted genes compiled from RefSeq [19],
Celera [20], Ensembl, and RIKEN [21]. We used the expression data
normalized by the gcRMA algorithm [22,23].

The decay rates of human mRNAs were obtained from a previous
study which investigated the decay rates of 5245 individual transcripts
in human cells [24]. The data were downloaded from the Genome
Research website (http://www.genome.org/) and we used decay data
on 2948 transcript IDs matching those in the UniGene database.

3. Results and discussion

We divided mRNAs into four categories, i.e. level 0, level 1,
level 2 and level 3, according to the uORF predictions, the
presence or absence of Kozak consensus motifs around
the start codons and the conservation of uORF between the
human and mouse (conservation of sequence patterns of
uORFs were not considered). Among the 38927 human and
46627 mouse mRNAs obtained from the RefSeq database,
and the 6731038 human mRNAs from the UniGene database,
the CDSs of 33670, 42934, and 58745 mRNAs, respectively,
were unambiguously annotated. Using the RefSeq data, we
extracted candidates for uORF-regulated transcripts; 13174,
12711, 242 and 365 of these were classified into levels 0-3,
respectively, in the human case. In the mouse, 15198, 14424,
263 and 440 candidates were classified into each of these four
levels. Similarly, we extracted candidates from the UniGene
database and the number of transcripts which were classified
into levels 0-3 were 53137 39429, 820 and 1146, respectively.
In addition, we extracted mRNAs which had a natural anti-
sense transcript (NAT) in the RefSeq and UniGene databases
to investigate the relationship between the presence of NATs
and gene expression. Approximately, one-fourth of mRNAs
in the human and mouse exhibited a NAT regardless of the
level they were classified. In other words, the presence of NATSs
and uORFs in the transcripts were independent. Approxi-
mately, half of all the mRNAs were predicted to be uUORF-reg-
ulated, in agreement with previous work using human, mouse,
and rat mRNA sequences in the RefSeq database [10,11]. We
speculate that the majority of the predicted uORFs possess the
potential to be scanned by ribosomes, and so to control the
translation reinitiation of downstream ORFs [12] by stalling
and occupying ribosomes at their stop codons [12,25], acting
in cis at the peptide level [11], or promoting NMD [6]. The
RefSeq database contains entries whose transcription initia-
tion sites were not defined [21,26], and many of the 5UTRs
were not completely identified. It is possible therefore that
some of the transcripts categorized as level 0 candidates might
actually contain uUORFs. However, as the aim of this study was
to compare the overall trends of the expression intensities and
half-lives of the different categories using massive and statisti-
cal approaches, we believe that some small number of mis-pre-
dictions of uORF-regulated genes should not have a major
impact on the results. Similarly, some of the candidate tran-
scripts (levels 1-3) may not be regulated by uORFs but this
again should not influence our results.

We compared the amount of transcripts within the corre-
sponding categories of human and mouse mRNA using the
SymAtlas database. The numbers of transcripts in each cate-
gory (that were) cross-linked between the RefSeq and the Sym-
Atlas database are given in Table 1. There were no marked
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Table 1
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The number of human and mouse uORF-regulated transcript candidates in which the intensity of RNA expression was examined

Human (RefSeq)

Mouse (RefSeq)

All Sense—antisense pair All Sense—antisense pair
Level 0 2330 (47.2%) 566 (11.5%) 8952 (53.9%) 2479 (14.9%)
Level 1 2493 (50.5%) 644 (13.0%) 7325 (44.1%) 1830 (11.0%)
Level 2 43 (0.9%) 6 (0.1%) 98 (0.6%) 20 (0.1%)
Level 3 69 (1.4%) 17 (0.3%) 242 (1.5%) 69 (0.4%)
Total 4935 (100.0%) 1233 (25.0%) 16617 (100.0%) 4398 (26.5%)

The number of transcripts which were used for the expressional analyses are listed in the “All” column, separated by their levels. Their ratios among
the total transcripts are shown in the brackets. In the “Sense-antisense pair’” column, the number of transcripts having overlapping transcripts in the

antisense strand is shown.

differences in the proportions of the respective categories in the
RefSeq sequences and those linked in the SymAtlas database
(data not shown). The average expression intensities of levels
1, 2 and 3 candidates in all human and mouse tissues were sig-
nificantly lower than those of the level 0 candidates (see sup-
plementary materials for details) (P-value two-sided -
test < 0.01). The maximum and minimum reductions in aver-
age expression levels in the level 3 candidates compared to
the level 0 candidates were 55.9% and 11.7% in humans, and
67.2% and 15.2% in the mouse, respectively. The average
intensities throughout all the tissues for candidates in each
level are shown in Fig. 2. The average intensities of levels 1,
2 and 3 candidates were significantly lower than those of
the level 0 candidates. These results clearly show that the
amount of expressed mRNAs containing uORF(s) is lower
compared to those which do not contain any uORFs. The
difference between levels 1 and 2 was slight and thus we did
not find the Kozak consensus sequence pattern as an apparent
factor promoting down-regulation of transcripts. However,
the lower intensity of the level 3 candidates compared with
those of level 2 candidates (P-value < 0.01; two-sided z-test)
might suggest that the uORFs which are involved in the
down-regulation of mRNA expressions are evolutionary
conserved.
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The average expression levels of transcripts having NATSs
were significantly lower than those of all transcripts (Fig. 2),
presumably reflecting expressional regulation by the sense—
antisense mechanism of RNA [27,28]. However, we found that
even if the transcripts did have NATSs, the expression levels of
the levels 1, 2 and 3 transcripts were significantly lower than
those of level 0 (Fig. 2). Thus, the down-regulation of mRNAs
by uORFs may be independent of antisense transcripts.

Although the absolute levels of transcripts in cells are not
necessarily closely reflected by the intensities on oligonucleo-
tide arrays due to problems such as lack of probe specificity,
we believe that the relative abundance of sets of mRNAs are
reflected reasonably well due to the massive comparison of
such large amounts of intensity data.

The levels of transcripts in cells are determined by their rates
of transcription and degradation. Thus far, there is no evi-
dence that uORFs themselves regulate transcription. There-
fore, in the absence of a relationship between the presence of
uORFs and certain other factors (e.g. aberrant transcripts,
probe specificities, etc.) influencing the measurements of the
transcript levels, the significant differences in expression levels
between the uORF-containing and non-uORF-containing
mRNAs suggest that uORFs regulate mRNA degradation in
all tissues.
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Fig. 2. Average expression intensities of (A, B) human and (C, D) mouse transcripts which contain putative uORFs in each level. Results for all
transcripts are displayed in (A) and (C), and results for those having antisense transcripts are displayed in (B) and (D), respectively. The error bars are

95% posterior probability intervals.
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Table 2
The number of putative uUORF-regulated transcripts in which the RNA
half-life in humans was examined

Human (UniGene)

Level 0 2003 (67.9%)
Level 1 907 (30.8%)
Level 2 10 (0.3%)
Level 3 28 (0.9%)
Total 2498 (100.0%)
Transcripts were separated into four levels.
0.3
o)
&
> 0.2 4 = I T
Q
a
< 0.14
4
o
0
Level 0 Level 1 Level 2 Level 3

(Non-candidates)

Fig. 3. Average RNA decay rates of human transcripts which contain
putative uORFs in each level. The error bars indicate the 95%
confidence limits.

The human transcript rates of decay were obtained from a
previous report [24], and each transcript was linked to those
in the UniGene database (for detail, see Table 2) in order to
investigate differences in RNA half-life between the different
categories. The average decay rates of candidates for each level
are shown in Fig. 3. Although no marked difference was ob-
served between the level 2 candidates and level 0 candidates,
presumably due to the small amount of data (only 10 tran-
scripts were identified as level 2 candidates), the decay rates
of the level 1 and level 3 candidates were significantly higher
than those of level 0 candidates (P-value < 0.01; two-sided
t-test). This finding is consistent with the results for the expres-
sion levels. We therefore suggest that uORF-containing tran-
scripts are generally degraded by a specific RNA degradation
mechanism.

In conclusion, we have presented evidence that uORFs con-
trol the post-transcriptional levels of their downstream genes
and promote the degradation of these transcripts. We further
speculate that the mechanism of RNA decay promoted by
uORFs is similar to the NMD pathway proposed previously
[12].
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Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.febslet.2007.07.
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