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A three species Hastings and Powell (HP) food chain model involving another predator
of top prey is proposed and studied. The modified food web model is analyzed to
obtain the different conditions for which system exhibits stability around the biological
feasible equilibrium points. The permanence is established and global stability of boundary
equilibrium point Ex is discussed. It is observed through numerical simulations, that
four-dimensional model may show stable dynamics in contrast to chaotic dynamics that
occurred in three species food chain. Varieties of dynamical behaviors in the food web are
possible depending upon the sharing of food between the two predators of the top prey.
The results demonstrate that the additional predator play the crucial role in reducing the
complexity in the dynamical behavior of the system.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Unpredictability is ubiquitous in ecological system. It is argued whether this unpredictability is due to deterministic
chaos or stochastic environmental disturbances. Although Hassell et al. [1] found no evidence of chaotic behavior in any
field of population, the notion that populations fluctuations in nature may be caused by deterministic chaos has persisted.
Berryman and Millstein [2] observed that chaos is frequently described but rarely explained. It was discussed that although
every ecological system has seeds of chaos but also pointed out the ecological reasons due to which ecosystem fail to
exhibit chaos frequently. According to them chaos may be driven by human actions that increase growth rates or induce
delays in the regulatory process. Rai [3] explained one of the reason for non-occurrence of chaos lies in the organization of
the ecological system. The chaotically fluctuating population are prone to extinction, with consequence that group selection
acts to eliminate species and chaos disappears. Apart from that class of model are identified which lies on the edge of
chaos.

Deterministic chaos is currently an interesting area of research in ecological, mathematical and physical sciences. The
ecological systems contain the ingredients (positive feed back) for possible occurrence of chaos. The pioneering work done
by Hastings and Powell [4] has emerged as a subject of interest to ecologists. Hastings and Powell proposed three species
food chain system and chaos is obtained for biologically reasonable choices of parameters [4]. The three species food chain
model is a coupled system of nonlinear equations. Hastings and Powell numerically simulated the behavior of the model
and established the occurrence of chaos for the realistic parametric values. The behavior of solution is sensitive to initial
conditions as well as the specific model parameter with respect to which chaos is observed. The small change in any of
these will change the behavior all together. As such the chaotic systems are not robust in contrast to ecological systems.
Probably, nature has its own ways to counter the complexity of the system.
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Fig. 1. Food web model.

Several investigations have reported the complex dynamical behavior of multi-species food chains/food webs of variable
lengths [5–8] is explored by several researchers for various ecological interests [9–11]. As appearance of chaos is rare in the
natural populations. Several investigators made efforts to replace this chaotic dynamics by stability and oscillatory behavior.
Thus, since last decade stabilizing the chaos has become a new aspect in ecological modeling.

Scrutinizing the HP model formulation, it is observed that the three species forming food chain are assumed to live in
isolation with other species of the habitat. In other words, either only three species forming food chain live in the habitat
or food chain is not affected by the presence of other species. As such, the effects of other species living in the habitat have
been largely ignored. Here is an effort to analyze the influence of additional predator to top prey on the Hastings–Powell
food chain. The possibility to reduce the complexity of original HP model is being investigated and attempt is made to bring
order in otherwise chaotic system.

2. Mathematical formulation

Let the density of top prey be X . The two predator species having densities Y and U share food on the top prey species.
Due to difference in predation capabilities of two predators, let the fraction m1 of total prey density is exposed to the first
predator and the fraction of food m2(m1 + m2 = 1) is available for predation to the second predator i.e. the fraction m1 of
prey X is available for predation by first predator Y and m2 X is predated by second predator. The other interpretation may
be that a prey is predated by first predator with probability m1 and the probability that it is predated by second predator
is m2. There is an inherent competition between two predators. Let there be a third predator having density Z and first
predator be its prey. The combined four-dimensional food web model is schematically shown in Fig. 1. Accordingly, the
following mathematical model is proposed for the dynamics of the combined system:

dX

dT
= R X

(
1 − X

K

)
− C1 F1(m1 X)Y − C2 F2(m2 X)U

dY

dT
= F1(m1 X)Y − F3(Y )Z − D1Y

dZ

dT
= C3 F3(Y )Z − D2 Z

dU

dT
= F2(m2 X)U − D3U , Fi(V ) = Ai V

Bi + V
, i = 1,2,3. (1)

In the model, the function Fi(V ) represents the Holling type II functional response. R , K , Ci and Di are model parameters
assuming only positive values and are defined as follows:

R is the growth rate of prey X , K measures the carrying capacity of prey species and Di (i = 1,2,3) describes the loss
of predator population in absence of food. C−1

i (i = 1,2) represents the conversion rate of common prey into predators
Y and U , whereas C3 is the conversion rate of Y into Z . It may be observed that the model (1) transforms to the
Hastings–Powell food chain when m2 = 0.

The food web has two subsystems I and II. The subsystem I is the usual HP food chain with common prey, first predator
and third predator, while subsystem II consists of common prey and second predator.
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The model (1) has 13 parameters which are reduced to 10 by introducing the following non-dimensional variables and
parameters:

t = RT , x = X

K
, y = C1Y

K
, z = C1 Z

C3 K
, u = C2U

K

a = A1 K

R B1
, b = K

B1
, c = K A3C3

R B3C1
, d = K

B3C1
, e = A2 K

R B2

g = K

B2
, l = D1

R
, n = D2

R
, p = D3

R
.

Accordingly, the non-dimensional system takes the form

dx

dt
= x(1 − x) − am1xy

1 + bm1x
− em2xu

1 + gm2x

dy

dt
= am1xy

1 + bm1x
− cyz

1 + dy
− ly

dz

dt
= cyz

1 + dy
− nz

du

dt
= em2xu

1 + gm2x
− pu. (2)

The non-negative initial conditions are associated with system (2):

x(0) � 0, y(0) � 0, z(0) � 0, and u(0) � 0. (3)

In order to explore the survival/extinction of species/sub-systems and control of chaos, the model (2) system is analyzed in
the next section.

3. Some preliminary results

In the following section, positivity and boundedness for the system (2) are established. Since the state variables x, y, z, u
represent populations, positivity insures that they never become negative and population always survive. The boundedness
may be interpreted as a natural restriction to growth as a consequence of limited resources.

3.1. Positive invariance

The model system (2) can be put into the matrix form ˙̄X = G( X̄) with X̄(0) = X̄0 ∈ R4+ , where X̄ = (x, y, z, u)T ∈ R4.
G( X̄) is given by

G( X̄) =

⎛
⎜⎜⎜⎝

G1( X̄)

G2( X̄)

G3( X̄)

G4( X̄)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

x(1 − x) − am1xy
1+bm1x − em2xu

1+gm2x
am1xy

1+bm1x − cyz
1+dy − ly

cyz
1+dy − nz

em2xu
1+gm2x − pu

⎞
⎟⎟⎟⎟⎠

where G : C+ → R4 and G ∈ C∞(R4).

It can be seen, whenever X̄(0) ∈ R4+ such that X̄i = 0 then Gi( X̄)| X̄i(0) � 0 (i = 1,2,3,4). Now any solution of ˙̄X = G( X̄)

with X̄0 ∈ R4+ , say X̄(t) = X̄(t, X̄0), is such that X̄(t) ∈ R4+ for all t > 0 [12].

3.2. Boundedness

Theorem 3.1. All the solutions of the model system (2) with initial conditions (3) that initiate in R4+ are uniformly bounded.

Proof. Let

W = x + y + z + u.

The time derivative along a solution of (2) is

dW = x(1 − x) − ly − nz − pu.

dt
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Introducing positive L and rewriting gives

dW

dt
+ LW = (

(1 − x) + L
)
x − (l − L)y − (n − L)z − (p − L)u.

Choosing L = min{l,n, p}, yields

dW

dt
+ LW � −

(
x − 1 + L

2

)2

+ (1 + L)2

4
or

dW

dt
+ LW � (1 + L)2

4
.

Applying the theory of differential inequality[13], it is obtained

0 < W (x, y, z, u) � (1 + L)2

4L

(
1 − e−Lt) + W

(
x(0), y(0), z(0), u(0)

)
e−Lt .

For t → ∞, 0 < W � (1+L)2

4L . Hence, all solutions of (2) that initiate in R4+ are confined in the region

B =
{
(x, y, z, u) ∈ R4+: 0 < W � (1 + L)2

4L
+ φ, for any φ > 0

}
.

This proves the theorem. �
3.3. Existence of equilibrium points

System (2) has the following equilibrium points:
The trivial equilibrium point E0 = (0,0,0,0) always exists.
The axial equilibrium point is Ex = (1,0,0,0).
The planar equilibrium point Exy = (x̃, ỹ,0,0) = ( l

(a−bl)m1
,

(a−bl)m1−l
((a−bl)m1)2 ,0,0) exists provided

(a − bl)m1 > l. (4)

Another planar equilibrium point is

Exu = ( ˜̃x,0,0, ˜̃u) =
(

p

(e − gp)m2
,0,0,

(e − gp)m2 − p

((e − gp)m2)2

)
; m2 �= 0,

and its existence condition is

(e − gp)m2 > p. (5)

The equilibrium point (x̄, ȳ,0, ū) lies on intersection of the following planes:

(1 − x) − am1 y

1 + bm1x
− em2u

1 + gm2x
= 0

am1x

1 + bm1x
− l = 0

em2x

1 + gm2x
− p = 0. (6)

The system is consistent when

x̄ = l

(a − bl)m1
= p

(e − gp)m2
.

But it is not realistic to impose such a restriction in the ecological context. In rare cases, if it is so then equilibrium points
lie on the plane:

am1 ȳ

1 + bm1x̄
− em2ū

1 + m2 gx̄
+ x̄ − 1 = 0. (7)

The following theorems give the existence of other equilibrium points.
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Theorem 3.2. Let

x̂ =
−(1 − bm1) +

√
(1 + bm1)2 − 4bm2

1an
c−nd

2bm1
, ŷ = n

(c − nd)
,

ẑ = 1

(c − nd)

(
am1x̂

1 + bm1x̂
− l

)
, û = 0. (8)

The equilibrium point E H P = (x̂, ŷ, ẑ,0) exists when

c > (am1 + d)n, x̂ > x̃. (9)

Proof. Equilibrium point is obtained from solving equations

(1 − x̂) − am1 ŷ

1 + bm1x̂
= 0

am1x̂

1 + bm1x̂
− cẑ

1 + dŷ
− l = 0

cẑ

1 + dŷ
− n = 0. (10)

Solution of the third equation of (10) gives ŷ positive for c > nd.
From the second equation, ẑ positive is obtained for x̂ > x̃.
x̂ is obtained from the quadratic equation

bm1x̂2 + (1 − bm1)x̂ −
(

1 − am1n

c − nd

)
= 0. (11)

It may be observed that x̂ positive will be unique provided c > (am1 + d)n.
Hence the result. �

Note. Two positive values of x̂ exist if

c < (am1 + d)n, bm1 > 1, (bm1 + 1)2 >
4abm2

1n

c − nd
.

For the subsequent part of this paper, the parameters choice are restricted by conditions (9) for unique positive equilibrium
point.

Remark 1. Since top prey is source of the food for both y and z species, the equilibrium level prey density x̂ for HP model
should be greater than the prey density at Exy .

Theorem 3.3. Consider

x∗ = ˜̃x = p

m2 ¯(e − gp)
, y∗ = n

c − nd
, z∗ = 1

(c − nd)

(
am1x∗

1 + bm1x∗ − l

)
,

u∗ = 1 + gm2x∗

em2

{(
1 − x∗) − am1n

(c − nd)(1 + bm1x∗)

}
. (12)

The positive interior equilibrium point E∗ = (x∗, y∗, z∗, u∗) exists provided

(e − gp)m2 > p, c > nd, x∗ > x̃. (13)

Proof. The interior equilibrium point is the solution of the following system of equations:

(1 − x) − am1 y

1 + bm1x
− em2u

1 + gm2x
= 0

am1x

1 + bm1x
− cz

1 + dy
− l = 0

cy

1 + dy
− n = 0

em2x − p = 0. (14)

1 + gm2x
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The solution is obtained as (12). For positive equilibrium point

e > gp, c > nd, x∗ > x̃, x∗(1 − x∗) >
nl

c − nd
.

Clearly for c > nd, last condition simplifies to (e − gp)m2 > p. Hence the result. �
Remark 2. To satisfy (13), the equilibrium level of prey density to support all species at E∗ must be higher than the
equilibrium level of prey density at Exy . Further, when interior equilibrium point E∗ exists then the planar equilibrium
point Exu will always exist.

4. Local stability analysis

The Jacobian matrix V (x, y, z, u) for the system (2) at any point (x, y, z, u) is given by⎛
⎜⎜⎜⎜⎜⎝

1 − 2x − am1 y
(1+bm1x)2 − em2u

(1+gm2x)2 − am1x
1+bm1x 0 − em2x

1+gm2x

am1 y
(1+bm1x)2

am1x
1+bm1x − cz

(1+dy)2 − l − cy
1+dy 0

0 cz
(1+dy)2

cy
1+dy − n 0

em2u
(1+gm2x)2 0 0 em2x

1+gm2x − p

⎞
⎟⎟⎟⎟⎟⎠

. (15)

Remark 3. The eigenvalues about E0 are 1, −l, −n, −p. Hence E0 is a saddle point and has unstable manifold along x-axis.

Theorem 4.1. The equilibrium point Ex(1,0,0,0) is stable if

(a − bl)m1 < l and (e − gp)m2 < p. (16)

Proof. The eigenvalues of the variational matrix about the equilibrium point Ex(1,0,0,0) are −1, (a−bl)m1−l
(1+bm1)

, −n, (e−gp)m2−p
1+m2 g .

Accordingly, Ex is stable under (16). �
Therefore, the equilibrium point Ex is a saddle point when either of (a − bl)m1 < l or (e − gp)m2 < p is violated.
Further, it is observed that the stability of this equilibrium point rules out the existence of Exy , Exu and E∗ .

Theorem 4.2. The equilibrium point Exy(x̃, ỹ,0,0) is asymptotically stable provided

x̃ < x∗, ỹ < y∗, (a + bl) > (a − bl)bm1. (17)

Proof. The variational matrix about Exy gives

λ1 = elm2

(a − bl)m1 + glm2
− p, λ2 = c(am1 − blm1 − l)

(a − bl)2m2
1 + d(am1 − blm1 − l)

− n and

am1(a − bl)λ2 + l
[
(a + bl) − (a − bl)bm1

]
λ + l

(
(a − bl)m1 − l

)
(a − bl) = 0.

Accordingly, λ1 and λ2 will be negative for

p(a − bl)m1 < l(e − gp)m2 and (c − nd)
(
(a − bl)m1 − l

)
< n(a − bl)2m2

1

respectively or x̃ < x∗ , ỹ < y∗ .
The remaining two eigenvalues will be negative if (a + bl) > (a − bl)bm1.
Combining these, with existence condition (4) gives the asymptotic stability of Exy under conditions (17). �

Theorem 4.3. The equilibrium point Exu( ˜̃x,0,0, ˜̃u) is locally asymptotically stable provided

l(e − gp)m2 > p(a − bl)m1 and g(e − gp)m2 < (e + gp). (18)

Proof. The eigenvalues of variational matrix around the equilibrium point Exu are obtained from the following characteristic
equation:

(λ + n)

(
λ − p(a − bl)m1 − l(e − gp)m2

(e − gp)m2 + bm1 p

)
(

λ2 − g(e − gp)m2 − (e + gp)
pλ + ((e − gp)m2 − p)p

)
= 0.
e(e − gp)m2 em2
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The quadratic factor gives eigenvalues with negative real parts provided

g(e − gp)m2 < (e + gp).

From the linear factors, the eigenvalues will be negative provided

l(e − gp)m2 > p(a − bl)m1 or x̃ > x∗.

Hence, the equilibrium point is locally asymptotically stable under conditions (18). �
Remark 4. The stability of Exu violates the stability of Exy as well as the existence of E∗ .

The characteristic equation around the equilibrium point E H P (x̂, ŷ, ẑ,0) is

λ4 + A1λ
3 + A2λ

2 + A3λ + A4 = 0 (19)

where

A1 = −1 + p + s − m(v − l) − w + 2x̂

A2 = (v − l)
[
n(1 − m) + m(1 − s − 2x̂ + w − p)

] + vs + (−1 + s + 2x̂)(p − w)

A3 = n(1 − m)(v − l)(−1 + p + s + w + 2x̂) − vs(p − w) − (p − w)m(−1 + s + 2x̂)(v − l)

A4 = n(1 − m)(v − l)(p − w)(−1 + s + 2x̂)

m = nd

c
, v = am1x̂

1 + bm1x̂
, s = am1n

(c − nd)(1 + bm1x̂)2
, w = em2 x̂

1 + gm2x̂
. (20)

The conditions for local stability are given in the following theorem.

Theorem 4.4. The equilibrium point E H P (x̂, ŷ, ẑ,0) is locally stable when

Ai > 0, A1 A2 > A3, A3(A1 A2 − A3) − A4 A2
1 > 0. (21)

Similarly, the characteristic equation around the equilibrium point E∗ = (x∗, y∗, z∗, u∗) is

λ4 + B1λ
3 + B2λ

2 + B3λ + B4 = 0 (22)

where

B1 = −1 + p + q + 2x∗ − w − m(v − l)

B2 = rw + sv + m(v − l)
(
1 − p − q − n − 2x∗ + w

) + n(v − l) + (w − p)
(
1 − q − 2x∗)

B3 = n(1 − m)(v − l)
(−1 + p + q − w + 2x∗) − wm

(
1 + r − q − 2x∗)(v − l) − vs(w − p)

+ p
(−1 + q + 2x∗)(lm − vs)

B4 = n(1 − m)(v − l)
[
(w − p)

(−1 + q − 2x∗) + wr
]

q = am1nx∗(gm2 − bm1)

(c − nd)(1 + bm1x∗)2(1 + gm2x∗)
+ 1 − x∗

1 + gm2x∗ , m = nd

c
, v = am1x∗

1 + bm1x∗ ,

s = am1n

(c − nd)(1 + bm1x∗)2
, w = em2x∗

1 + gm2x∗ , r = (1 − x∗) − am1n
(1+bm1x∗)(c−nd)

{1 + gm2x∗}2
. (23)
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The conditions for local stability are given in the following theorem.

Theorem 4.5. The positive interior equilibrium point E∗ = (x∗, y∗, z∗, u∗) is stable when

Bi > 0, B1 B2 > B3, B3(B1 B2 − B3) − B4 B2
1 > 0. (24)

5. Permanence and global stability

From biological point of view, persistence of a system means the long term survival of all populations of the system, no
matter what the initial populations are. Mathematically, persistence of a system means that strictly positive solutions do
not have omega limit points on the boundary of the non-negative cone.

Theorem 5.1. If (a − bl)m1 > l, (e − gp)m2 > p, x̃ > x∗ , g(e − gp)m2 < (e + gp) hold and there exists a finite number of periodic
solutions (say, k) x = φi(t), u = ψi , i = 1,2,3, . . . ,k in the x–u plane. Then the system (2) is uniformly persistent provided for each
periodic solution of period T ,

ηi = −l + 1

T

T∫
0

am1φi

1 + bm1φi
> 0, i = 1,2, . . . ,k.

Proof. Let x be a point in the positive octant and o(x) be the orbit through x and Ω(x) be the omega limit set of the orbit
o(x). Note that Ω(x) is bounded.

First, it is claimed that E0 /∈ Ω(x). If E0 ∈ Ω(x) then by Butler–McGehee lemma [14] there exists a point P in Ω(x) ∩
W s(E0) where W s(E0) denotes the stable manifold of E0. Since o(P ) lies in Ω(x) and W s(E0) is the y–z–u space. It can
be concluded that o(P ) is unbounded, which is a contradiction.

Next Ex /∈ Ω(x), for otherwise, since Ex is a saddle point (whenever (a − bl)m1 > l, (e − f p)m2 > p, i.e. existence con-
ditions of Exy and Exu), by the Butler–McGehee lemma there exists a point P in Ω(x) ∩ W s(Ex). Now W s(Ex) is the x–z
plane implies that an unbounded orbit lies in Ω(x), which is contrary to the boundedness of the system.

Next Exy /∈ Ω(x). If Exy ∈ Ω(x), the condition x̃ > x∗ implies that Exy is saddle point. W s(Exy) is the x–y–z space and
hence the orbits in this space emanate from either E0 or E1 or an unbounded lies in Ω(x), again a contradiction. In the
same way it can be shown that E H P /∈ Ω(x) for under those conditions on which Routh–Hurwitz criterion is not satisfied.

Lastly it is shown that no periodic orbit in x–u plane or Exu ∈ Ω(x). Let γi , i = 1,2, . . . ,k denote the closed orbit of
the periodic solution (φi(t),ψi(t)) in x–u plane such that γi lies inside γi−1. The variational matrix V i(φi(t),0,0,ψi(t))
corresponding to γi is given by

V i =

⎛
⎜⎜⎜⎜⎝

1 − 2φi − em2ψi
(1+gm2ψi)

2 − am1φi
1+bm1φi

0 − em2φi
1+gm2φi

0 am1φi
1+bm1φi

− l 0 0

0 0 −n 0
em2ψi

(1+gm2φi)
2 0 0 em2φi

1+gmiφi
− p

⎞
⎟⎟⎟⎟⎠ .

Computing the fundamental matrix of the linear periodic system

M ′ = V i(t)M, M(0) = M0.

It can be noticed that the Floquet multiplier in the y direction is eηi T . Then by Kumar and Freedman [15], it can be
concluded that no γi lies on Ω(x). Thus Ω(x) lies in the positive quadrant and system (2) is persistent. Finally, since only
the closed orbits and the equilibria form the omega limit set of the solutions on the boundary of R4+ and the system in (2)
is dissipative. By main theorem of Butler et al. [16], system (2) is uniformly persistent. �
Corollary 1. If

(a − bl)m1 > l, (e − gp)m2 > p, x̃ > x∗, g(e − gp)m2 < (e + gp),
am1

˜̃x
1 + bm1

˜̃x
> l (25)

hold then if there are no limit cycles in the x–u plane, the system (2) is uniformly persistent.

Proof. Proof is obvious and hence omitted. �
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Theorem 5.2. Let (a − bl)m1 > l, (e − gp)m2 > p. If the condition x̃ < x∗ holds, then the system (2) is impermanent.

Proof. If conditions (a − bl)m1 > l, (e − gp)m2 > p hold, the equilibrium points Exy and Exu exist. The given condition
x̃ < x∗ implies that Exy is strictly a saturated equilibrium point on the boundary. Hence, there exists at least one orbit in
the interior that converges to the boundary [17]. Consequently the system (2) is impermanent [18]. �

As discussed in Section 4, E0 is a saddle point (see Remark 3) and Ex is stable under the condition (16) according to
Theorem 4.1. It is noticed that the stability of Ex rules out the existence of Exy , Exu as well as E∗ .

The global stability of Ex for system (2) is established here using Li and Muldowney approach, which is outlined as
follows [19].

Let the map x 	→ f (x) from an open subset D ⊂ Rn to Rn be such that the solution x(t) to the differential equation

ẋ = f (x) (26)

is uniquely determined by its initial value x(0) = x0 and this solution is denoted by x(t,x0). It is assumed that

(H1) D is simply connected;
(H2) x̄ is the only equilibrium point of (26) in D; and
(H3) there is compact absorbing set K ⊂ D.

A set K is called absorbing in D for system (26) if x(t, F ) ⊂ K for each component set F ⊂ D1 ⊂ D (D1 is an open set) for
sufficiently large t > 0.

For a square matrix B , the Lozinskiı̆ measure (or logarithmic norm) μ with respect to induced matrix norm ‖ · ‖ is
defined by [20]

μ(B) = lim
h→0

‖I + hB‖ − 1

h
. (27)

For x ∈ D, consider a nonsingular nC2 × nC2 matrix valued C1 function x → M(x) and it is defined

B = M f M−1 + M J [2]M−1.

Here M f is the matrix obtained by replacing each entry mij in M by its directional derivative in the direction of f , and
M[2] is the second additive compound matrix [21] of Jacobian matrix M of the system (26).

For Lozinskiı̆ measure μ on R
nC2×nC2 , define a quantity q̄2 as

q̄2 = lim sup
t→∞

sup
x0∈K

1

t

t∫
0

μ
(

B
(
x(s,x0)

))
ds. (28)

Consider x = (x, y, z, u)T and

f (x) =

⎛
⎜⎜⎜⎜⎝

x(1 − x) − am1xy
1+bm1x − em2xu

1+gm2x
am1xy

1+bm1x − cyz
1+dy − ly

cyz
1+dy − nz

em2xu
1+gm2x − pu

⎞
⎟⎟⎟⎟⎠

for the system (2). x̄ = Ex is the unique equilibrium point in D. Let the assumptions (H1)–(H3) hold.

Theorem 5.3. The equilibrium point Ex(1,0,0,0) is globally asymptotically stable provided

p − em2

1 + gm2
< n, l < 1, p < n and p < 1 (29)

if there exist a function M(x) and a Lozinskiı̆ μ such that q̄2 < 0.

Proof. The Jacobian matrix of system (2) around equilibrium point Ex is

J (Ex) =

⎛
⎜⎜⎜⎝

−1 −δ − l 0 −ν − p

0 δ 0 0

0 0 −n 0

0 0 0 ν

⎞
⎟⎟⎟⎠ ; δ = am1

1 + bm1
− l, ν = em2

1 + gm2
− p
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whose second additive compound matrix J [2] is

J [2](Ex) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 + δ 0 0 0 ν + p 0

0 −(1 + n) 0 −δ − l 0 ν + p

0 0 −1 + ν 0 −δ − l 0

0 0 0 δ − n 0 0

0 0 0 0 δ + ν 0

0 0 0 0 0 ν − n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Set the following diagonal matrix

M(x, y, z, u) = diag(x, x,1,1,1,1).

Then M f M−1 = diag( ẋ
x , ẋ

x ,1,1,1,1) where f is vector field of (2).

Therefore, the matrix

B = M f M−1 + M J [2]M−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ
x − 1 + δ 0 0 0 (ν + p)x 0

0 ẋ
x − (1 + n) 0 −(δ + l)x 0 (ν + p)x

0 0 − 1 + ν 0 −(δ + l) 0

0 0 0 δ − n 0 0

0 0 0 0 δ + ν 0

0 0 0 0 0 ν − n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

or

B =
(

B11 B12
B21 B22

)

where

B11 =
(

ẋ

x
− 1 + δ

)
, B12 = (

0 0 0 (ν + p)x 0
)
, B21 =

⎛
⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎠

and

B22 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ
x − (1 + n) 0 −(δ + l)x 0 (ν + p)x

0 −1 + ν 0 −(δ + l) 0

0 0 δ − n 0 0

0 0 0 δ + ν 0

0 0 0 0 ν − n

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The Lozinskiı̆ measure μ(B) with respect to ‖ · ‖ can be estimated as follows

μ(B) � max{g1, g2} (30)

where g1 = μ(B11) + ‖B12‖ and g2 = ‖B21‖ + μ(B22) (‖B12‖ and ‖B21‖ are with respect to one-norm).
Now,

g1 = ẋ

x
− 1 + δ + (ν + p)x, g2 = μ(B22)

μ(B) � max

{
ẋ

x
− 1 + δ + (ν + p)x,μ

(
(B22)5×5

)}
.

Using successive partitioning as in matrix, the Lozinskiı̆ measure μ(B) is computed as

μ(B22)5×5 � max
{

C11 + ∥∥(C12)1×4
∥∥,

∥∥(C21)4×1
∥∥ + μ(C22)4×4

}
μ(C22)4×4 � max

{
D11 + ∥∥(D12)1×3

∥∥,
∥∥(D21)3×1

∥∥ + μ(D22)3×3
}

μ(D22)3×3 � max
{

E11 + ∥∥(E12)1×2
∥∥,

∥∥(E21)2×1
∥∥ + μ(E22)2×2

}
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Fig. 2. (a) Time series. (b) Phase portrait in x–y–z plane. (c) Phase portrait in x–y–u plane depicting stable behavior of the system at m1 = 0.8.

Fig. 3. Bifurcation diagram with respect to m1.

μ(E22)2×2 � max{δ + ν,ν − n}
μ(E22)2×2 � δ + ν since −δ < n

μ(D22)3×3 � max{δ − n, δ + ν}
μ(D22)3×3 � δ + ν since −ν < n
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Table 1
Study of system (2) for fixed parameter values a = 5.0, b = 3.0, c = 0.1, d = 2.0, l = 0.4,
n = 0.01, e = 0.5, g = 1.0, p = 0.05.

m1 Dynamical behavior of the system

0.0 System reduces to Prey–Predator model, Fig. 4
y and z extinct, only x and u survive, stable behavior

0.3 y and z extinct, only x and u survive, stable behavior Fig. 5

0.54 All four species, oscillate, limit cycle Fig. 6

0.7 All species survive
Long periodic solution with multiple periodicity Fig. 7

0.8 All four species coexist, stable behavior Fig. 2

0.9 u extinct, chaotic behavior Fig. 8

1.0 HP model, tea cup attractor Fig. 9

Fig. 4. (a) Time series. (b) Phase portrait in x–u plane depicting stability in the system at m1 = 0.0.

Fig. 5. (a) Time series. (b) Phase portrait in x–u plane depicting stability in the system at m1 = 0.3.

μ(C22)4×4 � δ + ν if l < 1

μ(B22)5×5 � ẋ

x
+ δ + ν if p < n.

Finally,

μ(B) � ẋ + δ + ν since p < 1.

x
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Fig. 6. (a) Time series. (b) Phase portrait in x–y–z plane. (c) Phase portrait in x–y–u plane depicting limit cycle in the system at m1 = 0.54.

As δ + ν < 0, say δ + ν = −ω, then

μ(B) � ẋ

x
− ω.

Now, let Ex(1,0,0,0) be any solution starting in the compact absorbing set K ⊂ D and let T be sufficiently large such that
Ex ∈ K for all t > T . Since the system is uniformly persistent under (25), then for c > 0

x(t) � c,
1

t
log x(t) <

ω

2
(31)

for all x(0), y(0), z(0), u(0) ∈ K. Then along each solution of Ex ⊂ K, it is obtained for t > T

1

t

t∫
0

μ(B)dt < log x(t) − ω < −ω

2
(32)

for all x(0), y(0), z(0), u(0) ∈ K. Therefore, q̄2 < 0 on K, completing the proof. �
The system (2) attain Poincar’e–Andronov–Hopf (Hopf-steady state) bifurcation (PAHB) around E H P equilibrium

point [22].

6. Numerical explorations

In this section, numerical experiments are performed to investigate the dynamics of the system (2). Hastings and Pow-
ell [4] has studied food chain model which is a subsystem of system (2) under the following choice of parameters:

a = 5.0, b = 3.0, c = 0.1, d = 2.0, l = 0.4, n = 0.01. (33)
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Fig. 7. (a) Quasi-periodic attractor in x–y–z plane. (b) Quasi-periodic attractor in x–y–u plane at m1 = 0.7.

Fig. 8. (a) Chaotic attractor in x–y–z plane. (b) Chaotic attractor in x–y–u plane at m1 = 0.9.

Fig. 9. (a) Tea cup attractor in x–y–z plane. (b) Chaotic attractor in x–y–u plane at m1 = 1.0.

For this choice of parameters, HP model has chaotic dynamics. These parameters are kept fixed throughout the numerical
simulations, while the remaining four parameters are varied. Consider the following typical parametric choice

e = 0.5, g = 1.0, m1 = 0.8, p = 0.05. (34)
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Fig. 10. (a) Time series. (b) Phase portrait in x–y–z plane. (c) Phase portrait in x–y–u plane depicting stable behavior of the system at p = 0.01, m1 = 0.9.

Fig. 11. Bifurcation diagram with respect to half saturation constant b for (a) HP model, (b) four-dimensional model.

The necessary conditions (29) for the stability of the positive equilibrium point Ex are satisfied for this choice of parameters
which means that the system (2) is locally asymptotically stable around positive equilibrium point Ex . Fig. 2 displays the
stable dynamics of the system. The solution converges to stable interior equilibrium point E∗(0.556,0.125,6.905,2.558)

showing the coexistence of all the four species. Thus, the three species Hastings–Powell food chain which was chaotic
turned out to have stable dynamics when another predator is added to the top prey.

Similar results are obtained for sets of parameters other than (34). It may be interesting to note that the HP food chain
gets major share of food while the additional predator is getting small amount from the top prey.
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Bifurcation diagram is plotted with respect to key parameter m1 for above set of parameters in Fig. 3. The system exhibits
stability up to m1 = 0.5. The system has periodic solution in the region (0.54,0.6). More complex periodic solutions are
observed in the domain (0.6,0.78). A stable window is also visible in the region (0.78,0.81). The system exhibits chaotic
behavior in the region (0.81,1.0).

The system dynamics is further explored for different values of m1 while others parameters kept fixed. The observations
are summarized in Table 1.

Further decreasing the mortality rate p of additional predator may lead to stable coexistence of all the species at higher
value of m1 (lower value of m2). For m1 = 0.9, p = 0.01 system exhibits stable dynamics, see Fig. 10.

Bifurcation diagrams are plotted with respect to half saturation constant b for original HP model (data as (33)) and
proposed four-dimensional model (2) (for data (33) and (34)) in Fig. 11. The HP model (Fig. 11(a)) system exhibits chaos in
the system whereas the complexity is reduced in the proposed model (Fig. 11(b)).

7. Discussion

In the present paper an additional predator to the top prey is introduced in HP model and resulting dynamics of four-
dimensional model has been explored. The top prey is now being shared between the two predators. The parameters m1
and m2 represent the availability of food for the two predators y and u respectively. Hastings and Powell observed various
behaviors like stability, limit cycle and chaos in his proposed food chain at different values of half saturation constant. The
introduction of additional predator to the top prey, changes the dynamics of system. The complexity of HP model is reduced
in the sense that the chaotic behavior of original system may show the limit cycle or stability for suitable combination of
parameters. An interesting thing to be noted is that all the four species may coexist while dependence of additional second
predator on the top prey is very low. The assumption of ignoring additional prey may lead to HP model and the solution is
predicted to be chaotic. This may not be true and inclusion of an additional predator in the system may bring order to the
system in the form of stable coexistence of all the four species. These findings clearly indicate that considering additional
predator for top prey is the key factor for disappearance of chaotic dynamics observed in HP model. This serves as an
explanation to why chaos is not detected frequently in the natural population.
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