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Abstract

Multivariate autoregressive models with exogenous variables (VARX) are often used in

econometric applications. Many properties of the basic statistics for this class of models rely

on the assumption of independent errors. Using results of Hong (Econometrica 64 (1996) 837),

we propose a new test statistic for checking the hypothesis of non-correlation or independence

in the Gaussian case. The test statistic is obtained by comparing the spectral density of the

errors under the null hypothesis of independence with a kernel-based spectral density

estimator. The asymptotic distribution of the statistic is derived under the null hypothesis.

This test generalizes the portmanteau test of Hosking (J. Amer. Statist. Assoc. 75 (1980) 602).

The consistency of the test is established for a general class of static regression models with

autocorrelated errors. Its asymptotic slope is derived and the asymptotic relative efficiency

within the class of possible kernels is also investigated. Finally, the level and power of the

resulting tests are also studied by simulation.
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1. Introduction

Vector autoregressive with explanatory variables (VARX) models are used in
many fields of study. In the econometric literature, they are also called dynamic
simultaneous equation models and then, the dependent variables are said to be
endogenous while the explanatory variables are called exogenous. These models
generalize multivariate linear regression models in the sense that the explanatory
variables may include lagged values of the endogenous variables. When there are no
explanatory variables, we retrieve the popular class of vector autoregressive (VAR)
models. Dictated by theoretical or empirical considerations, these models
allow us to describe situations where causal relationships between stochastic
economic variables may exist, that is, the present values of the dependent variables
can be influenced by present and past states of the variables in the system. These
models were studied by many authors and are discussed for example in Judge et al.
[16], Hannan and Deistler [9], Lütkepohl [18]. A key assumption for obtaining
consistent estimators of the coefficients in VARX models and for deriving their
asymptotic covariance structure is the independence or at least the non-correlation
of the errors, see for example Lütkepohl [18, Section 10.3] or Hannan and Deistler
[9, Section 4.2].
In the univariate case, Hong [12] proposed several classes of consistent tests for

checking the null hypothesis that the errors in an ARX model constitute a white
noise against serial correlation of unknown form. His work is motivated by the fact
that any form of serial correlation in the errors term will render the least-squares
(LS) estimators inconsistent. His approach consists in comparing a residual kernel-
based spectral density estimator and the spectral density of the noise under the null
hypothesis, using different norms. With the quadratic norm, Hong’s statistic for
series of length n can be written as

M1n ¼
n
Pn�1

j¼1 k2ð j=pnÞ #r2ð jÞ � MnðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VnðkÞ

p ;

where #rð jÞ ¼ Cûð jÞ=Cûð0Þ is the residual autocorrelation at lag j and Cûð jÞ ¼
n�1Pn

t¼j jjþ1 ûtût�j jj is the residual autocovariance at lag j: The function k is a kernel

or a lag window in the spectral analysis terminology and

MnðkÞ ¼
Xn�1
j¼1

ð1� j=nÞk2ð j=pnÞ; ð1Þ

VnðkÞ ¼
Xn�2
j¼1

ð1� j=nÞð1� ð j þ 1Þ=nÞk4ð j=pnÞ: ð2Þ

The sequence pn is a sequence of truncation values.
Using a different approach, Paparoditis [19] considered goodness-of-fit tests for

univariate time series models. The power properties of these tests are investigated in
Paparoditis [20]. His test statistic relies on a distance measure between a kernel

ARTICLE IN PRESS
P. Duchesne, R. Roy / Journal of Multivariate Analysis 89 (2004) 148–180 149



estimator of the ratio between the true and hypothesized spectral density and
the expected value of the estimator under the null hypothesis. A multivariate ver-
sion of this test for vector autoregressive moving average models is studied in
Paparoditis [21].
The main objective of this paper is to extend Hong’s approach to VARX models.

Using a normalized version of the quadratic distance between two multivariate
spectral densities, we introduce a kernel-based statistic for a d-dimensional process y
that allows us to retrieve Hong’s statistic M1n when d ¼ 1: In a static regression
model, the corresponding tests are also consistent for the null hypothesis of
multivariate white noise against any alternative of serial correlation of arbitrary
form. With the truncated uniform or rectangular kernel, we obtain a normalized
version of the multivariate portmanteau statistic for VARMA processes that
generalizes the well-known Box and Pierce [3] statistic for univariate ARMA
processes. The multivariate portmanteau statistic was studied by many authors,
namely by Chitturi [5], Hosking [13,14] and Li and McLeod [17]. The flexible
weighting of our test procedure allows us to assign different weights to the various
lags. Often in practice, only the low-order autocorrelations are of interest. With an
appropriate kernel, our test procedure will assign more weight to low lags and
should, therefore, lead to a greater power.
The organization of the paper is as follows. In Section 2, we give some

preliminaries. The new test statistic is introduced in Section 3. It is shown that its
asymptotic distribution under a correctly specified VARX model is Nð0; 1Þ when the
estimators of the model parameters are

ffiffiffi
n

p
-consistent. This result contrasts strongly

with the multivariate portmanteau statistic whose chi-squared asymptotic distribu-
tion depends on the estimated VARMA model. The power properties of the test are
discussed in Section 4. The consistency and the asymptotic slope are studied for an
arbitrary fixed alternative in a static regression model. Furthermore, the asymptotic
relative efficiency in the Bahadur sense ðAREBÞ of one kernel with respect to another
is also presented. Many of the currently used kernels in spectral density estimation
lead to an AREB greater than one with respect to the truncated uniform kernel. In
Section 5, we present the results of a small Monte Carlo experiment conducted in
order to study the exact level and power of the test for finite samples and to analyse
the impact of the kernel on the power. In particular, it is observed that with the
considered model, Hosking’s test and its normalized version defined from our
statistic with the truncated uniform kernel are in general less powerful than the new
statistic computed with other kernels than the uniform one. We conclude with some
remarks and the appendix contains the proof of our main results.

2. Preliminaries

Let y ¼ fyt: tAZg and x ¼ fxt: tAZg be two multivariate second-order stationary
processes of dimension d and m; respectively. Without loss of generality, we assume
that x is of mean 0:
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Definition 1. The process y is a multivariate autoregressive process with explanatory
variables, noted VARXðr; sÞ; if there exists matrices Kj of dimension d � d;

j ¼ 0;y; r; and matrices Vj; of dimension d � m; j ¼ 0;y; s; such that Kra0;

Vsa0; and

KðBÞyt ¼ cþ VðBÞxt þ ut; tAZ; ð3Þ

where c is the constant term, KðBÞ ¼ K0 �
Pr

j¼1 KjB
j; VðBÞ ¼

Ps
j¼0 VjB

j; B being

the usual backward shift operator and u ¼ fut: tAZg a strong white noise of

dimension d; where ut ¼ ðutð1Þ;y; utðdÞÞ0; that is the ut are independent random
vectors with mean 0 and regular covariance matrix Ru: We suppose that all the roots
of detKðzÞ are outside the unit disk, where det denotes the determinant of a square
matrix and z is a complex variable.

In economics, representation (3) is often called the structural form of the model
when it represents the instantaneous and lagged effects of the endogenous variables
as suggested by the economic theory. However, from a statistical point of view,
representation (3) is unidentifiable without a priori information since the
premultiplication of the two members of (3) by any d � d regular matrix leads to
an equivalent (identical covariance structure) VARX representation of the process y:

Since detKð0Þ ¼ detK0a0 by assumption, we can premultiply (3) by K�1
0 and we

obtain an equivalent VARX representation in which Kð0Þ ¼ K0 ¼ Id ; the d � d

identity matrix; it is called the reduced form of the model. Hereafter, we will suppose
that representation (3) is in reduced form, which is more convenient for LS
estimation [18, Chapter 10]. Also, predictions of future values of the endogenous
variables are usually made from the reduced form [10, pp. 352–353].
The spectral density fðoÞ of an arbitrary second-order stationary process a ¼

fat; tAZg with mean 0 is defined by

fðoÞ ¼ 1

2p

XN
h¼�N

CaðhÞe�ioh; oA½�p; p�; ð4Þ

where Cað jÞ ¼ ½Ga;pqð jÞ�dp;q¼1 ¼ Eðata
0
t�jÞ; jAZ; denoted the autocovariance at lag j

and we assume that
P

N

j¼0 jGa;pqð jÞjoN; p; q ¼ 1;y; d: The fourth-order moments

of a will be denoted by m4ð p; q; r; sÞ ¼ Eðatð pÞatðqÞatðrÞatðsÞÞ and the fourth-order
cumulants by kpqrsði; j; k; lÞ ¼ cumðaið pÞ; ajðqÞ; akðrÞ; alðsÞÞ; where p; q; r; s ¼ 1;y; d

and i; j; k; l; tAZ:
The generalized least-squares (GLS) method is popular [18, Chapter 10.3] for

estimating the parameters of a VARX model. Often, there are linear constraints on
the parameters, for example parameter values that are fixed to zero. Therefore, we
suppose that the parameters satisfy the relation b ¼ vecðK;V;V0Þ ¼ Rc; where K ¼
ðK1;K2;y;KrÞ; V ¼ ðV1;V2;y;VsÞ; and R is a known matrix of linear constraints.

In GLS, we first estimate c; say by #c; and #b ¼ R#c:We make the following assumption

on the estimator #b:
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Assumption A. The estimator #b of b in the VARX model satisfies #b � b ¼ Opðn�1=2Þ:

Another method is maximum likelihood estimation (MLE), which is described in

detail in Hannan and Deistler [9, Chapter 4]. Both MLE and GLS lead to
ffiffiffi
n

p
-

consistent estimators of b:
Once a VARX model is estimated, the residual #ut; t ¼ 1;y; n; can be computed. A

residual non-parametric spectral density estimator #fnðoÞ is given by

#fnðoÞ ¼
1

2p

Xn�1
j¼�nþ1

kð j=pnÞCûð jÞe�ioj; ð5Þ

where the residual autocovariance at lag j is Cûð jÞ ¼ n�1Pn
t¼jþ1 #ut #u

0
t�j; j ¼

0; 1;y; n � 1; and Cûð jÞ ¼ C0
ûð�jÞ if j ¼ �1;y;�n þ 1: The function kð�Þ is a

kernel or a lag window. The parameter pn is a truncation point (smoothing
parameter) when the kernel is of compact support (unbounded support). We suppose
that pn-N and pn=n-0: The usual assumptions on the kernel are summarized as
follows.

Assumption B. The kernel k :R-½�1; 1� is a symmetric function, continuous at 0,
having at most a finite number of discontinuity points, such that kð0Þ ¼ 1 andR
N

�N
k2ðzÞ dzoN:

Using the rectangular or truncated uniform kernel kTðzÞ ¼ I ½jzjp1�; where
IðAÞ is the indicator function of the set A; we retrieve the familiar truncated
periodogram. Other kernels frequently used in time series analysis are given in
Priestley [22, Section 6.2.3].

3. The test statistic and its asymptotic null distribution

The hypothesis of interest is that the error process u is, as in Definition 1, a white-
noise process against the alternative of serial correlation of arbitrary form. More
formally, it can be written as

H0: Cuð jÞ ¼ 0; 8ja0; against

H1: Cuð jÞa0; for at least one ja0:

In terms of the spectral density fðoÞ of u; H0 can be written as fðoÞ ¼ f0ðoÞ;
oA½�p; p�; where f0ðoÞ ¼ Cuð0Þ=ð2pÞ; oA½�p; p�:
Our test statistic will be defined as a global distance measure between f0 and #fn:

For two multivariate spectral densities f1 and f2; a distance measure between f1 and
f2 such that Dðf1; f2ÞX0 and Dðf1; f2Þ ¼ 0 if and only if f1 ¼ f2 is the following. In
this work, the triangular inequality is not needed. For a given covariance matrix
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Cuð0Þ; let us consider the following normalized quadratic distance:

Q2ðf1; f2Þ ¼ 2p
Z p

�p
vec½%f1ðoÞ � %f2ðoÞ�0C�1

u ð0Þ#C�1
u ð0Þ vec½f1ðoÞ � f2ðoÞ� do

¼ 2p
Z p

�p
tr½ðf1ðoÞ � f2ðoÞÞ�C�1

u ð0Þðf1ðoÞ � f2ðoÞÞC�1
u ð0Þ� do

¼ 2p
Z p

�p
tr½C�1

u ð0Þðf1ðoÞ � f2ðoÞÞ�C�1
u ð0Þðf1ðoÞ � f2ðoÞÞ� do: ð6Þ

For a matrix A; A� denotes the transposed conjugate of A; that is A� ¼ %A0: The
second equality is obtained from the following result on matrix calculus [11,
Theorem 16.2.2]:

trðA0BCD0Þ ¼ ðvecðAÞÞ0ðD#BÞðvecðCÞÞ

for any matrices A; B; C and D for which the above product is defined. For a given
frequency o;

Q2
oðf1; f2Þ ¼ vecðf1ðoÞ � f2ðoÞÞ�ðC�1

u ð0Þ#C�1
u ð0ÞÞ vecðf1ðoÞ � f2ðoÞÞ

is a normalized distance between the two matrices f1ðoÞ and f2ðoÞ: The global

distance Q2ðf1; f2Þ is obtained by integrating Q2
oðf1; f2Þ over all possible frequencies

in ½�p; p�: When we compare the true spectral density f of u with the spectral density
f0 of u under H0; we get the following result.

Proposition 1. Let Q2ðf; f0Þ be the distance measure given by (6), where f is defined by

(4) and f0 ¼ Cuð0Þ=ð2pÞ: Then, we have

Q2ðf; f0Þ ¼ 2
XN
h¼1

tr½CuðhÞC�1
u ð0ÞCuðhÞ0C�1

u ð0Þ�: ð7Þ

Proof. If we reapply the argument followed to obtain (6), we can write Q2
oðf; f0Þ ¼

tr½C�1
u ð0Þð%fðoÞ � %f0ðoÞÞ0C�1

u ð0ÞðfðoÞ � f0ðoÞÞ�: Since Cuð0Þ is positive definite, by the
Cholesky factorization, a lower triangular matrix L exists such that C�1

u ð0Þ ¼ LL0

and we have

Q2
oðf; f0Þ ¼ tr½ðL0ðfðoÞ � f0ðoÞÞLÞðL0ðfðoÞ � f0ðoÞÞLÞ��

¼ tr½ðfL � Id=ð2pÞÞðfL � Id=ð2pÞÞ��;

where fL ¼ L0fL: Integrating Q2
oðf; f0Þ; we find that

Q2ðf; f0Þ ¼ 2p
Z p

�p
Q2

oðf; f0Þ do ¼
XN

h¼�N

tr½CuðhÞC�1
u ð0ÞCuðhÞ0C�1

u ð0Þ� � d

¼ 2
XN
h¼1

tr½CuðhÞC�1
u ð0ÞCuðhÞ0C�1

u ð0Þ�:
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We see from (7) that Q2 is a global measure that takes into account all lags. With

similar calculations, we can show that when f is replaced by #fn; we have

Q2ð#fn; f0Þ ¼
X

jpjn�1j
k2ð j=pnÞ tr½C0

ûð jÞC�1
u ð0ÞCûð jÞC�1

u ð0Þ�

� 2 tr½C�1
u ð0ÞC0

ûð0Þ� þ d

¼ 2
Xn�1
j¼1

k2ð j=pnÞ tr½C0
ûð jÞC�1

u ð0ÞCûð jÞC�1
u ð0Þ�

þ tr½C0
ûð0ÞC�1

u ð0ÞCûð0ÞC�1
u ð0Þ� � 2 tr½C�1

u ð0ÞC0
ûð0Þ� þ d: ð8Þ

Now if we substitute Cuð0Þ for Cuð0Þ in (8), it follows from (A.12) and (A.14) in the
appendix that

Q2ð#fn; f0Þ ¼ 2
Xn�1
j¼1

k2ð j=pnÞ tr½C0
ûð jÞC�1

û ð0ÞCûð jÞC�1
û ð0Þ� þ opð

ffiffiffiffiffi
pn

p
=nÞ: ð9Þ

The proposed test statistic is essentially a standardized version of Q2ð#fn; f0Þ and is
defined by

Tn ¼
n
Pn�1

j¼1 k2ð j=pnÞ tr½C0
ûð jÞC�1

û ð0ÞCûð jÞC�1
û ð0Þ� � d2MnðkÞ

½2d2VnðkÞ�1=2
; ð10Þ

where MnðkÞ and VnðkÞ are given by (1) and (2). If pn-N and pn=n-0; we can

show that p�1
n MnðkÞ-MðkÞ ¼

R
N

0 k2ðzÞ dz and p�1
n VnðkÞ-VðkÞ ¼

R
N

0 k4ðzÞ dz:

Under some additional assumptions on k and/or pn [24, p. 73], p�1
n MnðkÞ ¼

MðkÞ þ oð p
�1=2
n Þ: In particular, MnðkÞ and VnðkÞ are both of the order Oð pnÞ: It is

not difficult to see that

Tn ¼
n
2

Q2ð#fn; f0Þ � d2MnðkÞ
½2d2VnðkÞ�1=2

þ opð1Þ: ð11Þ

Also, in (10), we can replace MnðkÞ and VnðkÞ by pnMðkÞ and pnVðkÞ without
modifying the asymptotic distribution. However, they may lead to better finite
sample approximations.
Using kT and replacing MnðkÞ and VnðkÞ by pnMðkÞ ¼ pn and pnVðkÞ ¼ pn; we

obtain

Tn ¼ Hpn
� d2pn

½2d2pn�1=2
; ð12Þ

where

Hpn
¼ n

Xpn

j¼1
tr½C0

ûð jÞC�1
û ð0ÞCûð jÞC�1

û ð0Þ�: ð13Þ

When pn ¼ M is fixed with respect to n; HM is Hosking’s [13] multivariate version of
the Box–Pierce statistic. In Hosking [14], it is shown that HM is equivalent to the
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multivariate portmanteau statistics proposed by Chitturi [5] and by Li and McLeod
[17]. Also, Hosking [15] described how the statistic HM may be viewed as a Lagrange
multiplier test statistic for zero constraints on VAR coefficients. Thus, Tn leads to a
standardized version of HM whose asymptotic Nð0; 1Þ distribution is independent of
the estimated model whilst the asymptotic chi-square distribution of HM depends on
the orders of the estimated VARMA model.
Our approach differs slightly from Hong’s approach since he compared a

standardized spectral density based on the autocorrelation function using for
example a quadratic norm. In the multivariate case, we decided to work with the
usual (unnormalized) multivariate spectral density (based on the matrix autocovar-
iance function), and we compare the spectral densities using a standardized norm. It
is possible to extend the univariate approach in different ways, and to define a
normalized spectral density using for example the pseudo-autocorrelation functions

fCuðkÞC�1
u ð0Þ; kAZg considered in Chitturi [5], and the unstandardized quadratic

norm. However, to avoid complications, we preferred to work with the usual
unnormalized spectral density.
We now state our main result. The symbol -L stands for convergence in law.

Theorem 1. Suppose that y is a VARXðr; sÞ process as in Definition 1 and that the

fourth-order moments of u exist. Under assumptions A; B; and if pn-N with pn=n-0;
the statistic Tn defined by (10) has an asymptotic normal distribution, that is

Tn-LNð0; 1Þ:

The test statistic Tn can be used to test for independent errors when u is Gaussian or
to check for the hypothesis H0 of no serial correlation. Note that in Theorem 1, we do
not assume that the innovations are Gaussian. Also, for a multivariate white noise, the
asymptotic covariance structure of the sample autocovariances involve fourth-order
cumulants and several authors suppose that they are zero in order to avoid
complications. Here, we do not need to assume that the fourth-order cumulants vanish,
the main reason being that our proof does not make use of the asymptotic distributions
of the sample autocovariances. The proof of Theorem 1 is written in two parts:

Part 1.

T̃n ¼
n
Pn�1

j¼1 k2ð j=pnÞ tr½C�1
u ð0ÞCuð jÞC�1

u ð0ÞC0
uð jÞ� � d2MnðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2d2VnðkÞ
p -LNð0; 1Þ:

ð14Þ

Part 2.

Xn�1
j¼1

k2ð j=pnÞftr½C�1
u ð0ÞCuð jÞC�1

u ð0ÞC0
uð jÞ� � tr½C�1

û ð0ÞCûð jÞC�1
û ð0ÞC0

ûð jÞ�g

¼ opð
ffiffiffiffiffi
pn

p
=nÞ: ð15Þ
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In the first part, we establish the asymptotic normality of a version T̃n of Tn; which
is based on the unobservable process u: The VARX model does not intervene in this

part since T̃n is completely defined by the innovation series u1;y; un: The asymptotic
normality is derived from the central limit theorem (CLT) for martingale differences
of Brown [4]. The observed data and the model are taken into account in the second

part. Since T̃n � Tn is opð1Þ from Part 2, Theorem 1 follows. The detailed proof is

presented in the appendix.

4. Consistency of the generalized test

We now investigate the power properties of the new test statistic Tn under fixed
alternatives. We consider a fixed alternative HA of serial correlation of the error u in
the VARX model (3) that satisfies the following properties.

Assumption C. Let the correlation structure of the process u be such that Cuð jÞa0

for at least one value of ja0;
P

j jjCuð jÞjj2oN; and that the following cumulant

condition is satisfied:

X
i

X
j

X
l

jkpqrsðt; t þ i; t þ j; t þ lÞjoN;

where p; q; r; sAf1;y; dg:

When the process u is Gaussian the fourth-order cumulants are zero and
the cumulant condition is trivially satisfied. Linear processes which are
fourth-order stationary with absolutely summable coefficients and innovations
whose fourth-order moments exist satisfy also the cumulant condition. See Hannan
[8, p. 211].
For simplicity we restrict ourselves to the subclass of (3) in which there are no

lagged values of the dependent variables, that is, the following static regression
model:

yt ¼ cþ VðBÞxt þ ut; tAZ: ð16Þ

Note that when the errors are serially correlated, the usual estimators of the
coefficients in the VARX model (3) are in general inconsistent, but not in the static

regression model where #b is still consistent for b; but potentially inefficient. In this
framework, we obtain the following result.

Theorem 2. Let us consider model (16), let Tn be the test statistic defined by (10) and

suppose that Assumptions A and B are satisfied. Then, under a fixed serial correlation

alternative for the error process u satisfying Assumption C, say HA; if pn-N with
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pn=n-0; we have that

p
1=2
n

n
Tn-P

1

2
Q2ðf; f0Þ=½2d2VðkÞ�1=2; ð17Þ

where f is the spectral density of u under HA:

The proof is in the appendix. This result is a multivariate version of a part of
Theorem 6 in Hong [12]. For any fixed alternative HA satisfying Assumption C,

Q2ðf; f0Þ40 and it follows from (17) that the statistics Tn is consistent. The rate of

convergence of Tn toward infinity is given by n=p
1=2
n : Therefore, the slower pn tends to

infinity, the faster Tn will approach infinity and the resulting test should be more
powerful.
For a given kernel k; let TnðkÞ be the corresponding Tn statistic. Since TnðkÞ is

asymptotically normal under H0; the concept of asymptotic slope introduced by
Bahadur [2] can be used to compare two kernels k1 and k2 for a given alternative HA:
Bahadur’s criterion is based on the rate at which the asymptotic p-value converges to
zero as the sample size n-N: For the test TnðkiÞ; the asymptotic p-value is given by
aTnðkiÞ ¼ 1� FðTnðkiÞÞ; where Fð�Þ is the cumulative distribution function of the

Nð0; 1Þ probability law. Now define SnðkiÞ ¼ �2 log½aTnðkiÞ�: Using the relation

logð1� FðaÞÞ ¼ �a2=2½1þ oð1Þ� for large a as shown in Bahadur [2], we have from
(17) that

pn

n2
SnðkiÞ-P

1

4
Q4ðf; f0Þ=ð2d2VðkiÞÞ; ð18Þ

under a fixed alternative as n-N; pn=n-0: The Bahadur’s asymptotic relative
efficiency ðAREBÞ of Tnðk1Þ with respect to Tnðk2Þ is by definition the limit ratio of
the two sample sizes n1 and n2 required by the two test statistics Tnðk1Þ and Tnðk2Þ;
respectively, to attain the same asymptotic significance level under the alternative
HA: Therefore, Snðk1Þ=Snðk2Þ-P1 as n1; n2-N and if we take pni

¼ cnn
i ; nAð0; 1Þ; it

is easily shown by standard arguments that

AREBðTnðk2Þ;Tnðk1ÞÞ ¼ lim
n1;n2-N

n1

n2
¼ ½Vðk1Þ=Vðk2Þ�1=ð2�nÞ: ð19Þ

For example, AREBðkB; kTÞ42:23; where kB and kT are, respectively, the Bartlett’
and the truncated uniform kernels (the different kernels used in that work are defined
in Table 1 of Section 5).
Many of the most popular kernels used in spectral density estimation deliver an

AREB greater than one with respect to the truncated uniform kernel. A test with a
greater asymptotic slope may be expected to have a greater power for a fixed
alternative than one with a smaller asymptotic slope. However, as pointed out by
Geweke [7], there is no clear analytical relationship between the asymptotic slope of
a test and its power function. Therefore, for a given alternative, we cannot conclude
that a test with a greater asymptotic slope should be automatically preferred to one
with a smaller asymptotic slope without investigating further the finite sample
properties of the two statistics for the alternatives of interest. For example, with an
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alternative of the form Cuð j0Þa0 and Cuð jÞ � 0; j40 and jaj0; it is likely that
TnðkTÞ will be more powerful than TnðkBÞ with very small values of pn since the
kernel kB might assign a too small weight to the lag j0: However, with low-order
autoregressive models, Cuð jÞ decreases rapidly to zero as j-N; and another kernel
than kT should be preferable in such situations. This point is illustrated in Section 5.
Result (19) which was derived under the assumption that the same value of pn is

employed for the two kernels provides interesting comparisons of different kernels.
However, it is easily shown that if for the first kernel we use pn;1; while for the second
one we choose pn;2; and if these two sequences satisfy the relation pn;1 ¼ oð pn;2Þ; then
the AREB of the second kernel relatively to the first one will be zero, meaning that
we should always prefer k1 in such a situation. This is an additional argument
suggesting that we should use a sequence pn going to infinity at a slower rate.

5. Simulation results

In the previous sections, we have studied a new class of test statistics which have
interesting asymptotic properties. However, from a practitioner point of view, it is
natural to inquire for their finite sample properties, in particular their exact level and
power. To partially answer that question, we have conducted a small Monte Carlo
experiment. For a given bivariate VARX model described below, the new test
statistics are studied empirically and compared with Hosking’s [13] multivariate
portmanteau statistic defined by (13) and the modified version:

H�
pn
¼ n2

Xpn

j¼1
ðn � jÞ�1 tr½C0

ûð jÞC�1
û ð0ÞCûð jÞC�1

û ð0Þ�:
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Table 1

Kernels used in the calculation of the test statistic Tn defined by (10)

Truncated uniform (TR):
kðzÞ ¼ 1; jzjp1;

0; otherwise

�

Bartlett (BAR):
kðzÞ ¼ 1� jzj; jzjp1;

0; otherwise

�

Daniell (DAN):
kðzÞ ¼ sinðpzÞ

pz
; zAR

Parzen (PAR):

kðzÞ ¼
1� 6ðpz=6Þ2 þ 6jpz=6j3; jzjp3=p;
2ð1� jpz=6jÞ3; 3=ppjzjp6=p;
0; otherwise

8><
>:

Bartlett–Priestley (BP):
kðzÞ ¼ 9

5p2z2
sinðp

ffiffiffiffiffiffiffiffi
5=3

p
zÞ

p
ffiffiffiffiffiffiffiffi
5=3

p
z

� cosðp
ffiffiffiffiffiffiffiffi
5=3

p
zÞ

( )
; zAR:
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In VARMA models, the statistic H�
pn
is expected to have better level properties. See

Hosking [13] and Lüthepohl [18, p. 152]. Although Hosking’s test was developed for
VARMA models, it is tempting to use it for VARX models even if its validity is not
yet established. For that reason, we included it in our simulation study. The power
values obtained with the asymptotical critical points are not necessarily valid but
those computed with the exact (empirical) points are correct and allows sound
comparison with the new tests.

5.1. Description of the experiment

The following VARX(1,1) model was used:

yt ¼ cþ K1yt�1 þ V0xt þ V1xt�1 þ at; ð20Þ

xt ¼ Uxxt�1 þ bt: ð21Þ

The process fbtg is a Gaussian white noise N2ð0;RbÞ: Two cases were considered for
the error term at: (a) at ¼ et and (b) at ¼ et � Hdet�1; where fetg is another white
noise N2ð0;ReÞ independent of fbtg: The first case allowed us to study the level whilst
the second one was chosen in order to study the power. The correlation structure of
the at’s depends on a parameter d: The values of the parameters in (20) and (21) used
in the experiment are:

c ¼
3:0

2:0

� �
; K1 ¼

�0:5 0:5

�1:4 �0:2

� �
;

V0 ¼
0:0 0:3

0:1 0:6

� �
; V1 ¼

0:7 0:0

0:0 0:0

� �
;

Ux ¼
�1:5 1:2

�0:9 0:5

� �
; Hd ¼

0:18d 0:04d

0:0 0:02d

� �
;

Re ¼
1:0 0:75

0:75 1:0

� �
; Rb ¼

1:0 0:5

0:5 1:0

� �
:

In the level study, 10 000 independent realizations were generated from model (20)
and (21) for three series lengths (n=50, 100 and 200) and the computations were
made in the following way. First, the Gaussian white noise fatg and fbtg were
generated independently using the subroutine G05EZF from the NAG library. The
initial values fx0g and fy0g were generated from the exact distribution of the

stationary Gaussian process fðy0t; x0tÞ
0g using Ansley’s [1] algorithm. Then, the values

xt; yt; t ¼ 1;y; n; were obtained by solving the difference equations (20) and (21).
For each realization, the true model (20) was estimated by generalized least squares
as described in Section 2. The zero-valued parameters in V0 and V1 were taken into
account by properly defining the constraint matrix R: The residuals #at; t ¼ 1;y; n;
were obtained. With each residual series, the test statistic Tn was computed for five
different kernels that are described in Table 1 at three nominal levels (1%, 5% and
10%). For each kernel, six different values of pn were considered. We have used
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pn ¼ 2; 3 and the three rates pn ¼ ½logðnÞ�; pn ¼ ½3:5n0:2� and pn ¼ ½3n0:3�: Similar rates
are discussed in Hong [12]. They lead, respectively, to the values pn ¼ 4; 8; 10 for
n ¼ 50; pn ¼ 5; 9; 12 for n ¼ 100 and finally to pn ¼ 6; 10; 15 for n ¼ 200: The
multivariate version of Robinson’s [23] cross-validation procedure for determining
the bandwidth of a kernel spectrum estimator in univariate time series was also
employed. Besides establishing the consistency of the procedure for non-Gaussian
time series, Robinson also discusses a multivariate generalization and gives practical
solutions. In our simulation, we retained for pn the value of m that minimizes the

pseudo-log-likelihood defined by
Pn

j¼1 ½log det #fm
ð jÞðljÞ þ trfIðljÞ#fm

ð jÞðljÞ�1g�; where
Ið�Þ represents the periodogram, #fm

ð jÞð�Þ a leave-two-out-type smooth periodogram

and lj ¼ 2pj=n; j ¼ 1;y; n are the Fourier frequencies. The optimization was

performed for the values m ¼ 2; 3;y; 20: Note that we cannot use kT with the cross-
validation procedure, since Robinson’s procedure necessitates positive definite
kernels. Finally, for each series of length n; for each kernel, for each value of pn and
for each nominal level, we obtained from the 10 000 realizations the empirical
frequencies of rejection of the null hypothesis of independence. The results in per
cent are reported in Table 2. The standard error of the empirical levels is 0.099% for
the nominal level 1%, 0.218% for 5% and 0.300% for 10%.
The power analysis was conducted in a similar way. The two main differences rely

in the number of realizations (2000 rather than 10 000) and the process fatg is MA(1)
rather than white noise. Three sets of parameter values were considered for the
MA(1) model.

5.2. Discussion of the level study

Results from the level study are presented in Table 2. As expected, the
approximation of the exact distribution by the asymptotic one improves in general
as the series length n increases. The approximation is reasonably good at the 5% and
10% levels but the proposed test considerably over-rejects at the 1% level. That
situation occurs since the finite sample distribution of the test statistic seems to be
skew with a long right tail. Hosking’s [13] test H and its modified version HM clearly
over-reject for small pn; and it seems that an additional adjustment is needed with
models containing exogenous variables. The H test gives better size results than HM
for large values of pn: Since the new tests have good level properties at 5% and 10%
levels, the rest of the discussion focuses on these nominal levels. Globally, the various
kernels and truncation values lead to similar results except for TR which over-rejects
slightly more when n ¼ 50:
At the 5% level, all kernels (with pn fixed) lead to rejection rates close to 7% when

n ¼ 50; between 5.5 and 6.3 when n ¼ 100: For n ¼ 200; all rejection rates are within
two standard errors of 5% for pn ¼ 6; 10; 15: The cross-validation leads in general to
rejection rates that are slightly higher than those obtained with the fixed values of pn

and the over-rejection tendency does not seem to decrease as n increases. At the 10%
level, the rejection rates are much closer to the nominal level when n ¼ 50 or 100 but
the test under-rejects at n ¼ 200: When n ¼ 100 with fixed pn; all kernels lead to
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Table 2

Empirical levels (in percentage) of Hosking’s test and of the test statistic Tn defined by (10) for different kernels, different truncation values, when the data are

generated from model (20) and (21)

a ¼ 0:01 a ¼ 0:05 a ¼ 0:10

pn BP BAR DAN PAR TR H HM BP BAR DAN PAR TR H HM BP BAR DAN PAR TR H HM

n ¼ 50

2 2.7 2.7 2.7 2.7 2.3 8.5 9.8 6.4 6.4 6.5 6.4 6.5 28.0 30.3 10.3 10.3 10.4 10.2 10.4 44.6 47.2

3 2.5 2.6 2.6 2.5 2.3 4.9 6.2 6.5 6.4 6.5 6.4 6.4 18.7 21.7 10.2 10.2 10.3 10.1 10.7 30.8 35.1

4 2.4 2.5 2.4 2.4 2.4 3.4 5.0 6.5 6.5 6.6 6.6 6.5 14.0 18.3 10.2 10.1 10.2 10.3 11.0 25.3 30.7

8 2.3 2.5 2.4 2.4 2.8 1.8 4.2 6.8 6.7 6.8 6.9 7.4 7.0 14.0 10.9 10.9 11.1 11.1 12.3 13.1 23.2

10 2.5 2.4 2.6 2.6 3.0 1.3 4.1 7.0 6.9 6.8 7.2 8.0 5.1 13.1 11.3 11.1 11.4 11.6 12.4 9.8 21.9

CV 2.9 3.2 2.9 2.8 NA NA NA 7.3 7.7 7.2 7.2 NA NA NA 11.5 12.2 11.6 11.5 NA NA NA

n ¼ 100

2 2.3 2.3 2.3 2.4 2.2 8.4 8.9 6.0 6.0 6.0 5.9 5.8 27.1 28.2 9.7 9.7 9.7 9.7 9.5 42.6 43.8

3 2.3 2.3 2.3 2.2 2.1 5.1 5.8 5.9 5.9 5.9 5.8 5.9 18.2 19.9 9.4 9.5 9.5 9.4 9.8 30.8 32.8

5 2.2 2.2 2.2 2.1 2.1 3.2 4.0 5.7 5.7 5.7 5.7 5.7 12.1 14.4 9.6 9.4 9.6 9.6 9.8 21.3 24.3

9 2.2 2.2 2.2 2.3 2.2 2.1 3.4 5.6 5.6 5.5 5.7 6.1 7.5 11.0 9.7 9.7 9.6 9.5 10.1 14.6 19.3

12 2.2 2.2 2.3 2.2 2.2 1.4 3.2 5.8 5.7 5.9 5.9 6.3 5.7 10.6 9.9 9.7 9.9 10.1 10.5 10.9 18.0

CV 2.7 3.0 2.7 2.7 NA NA NA 6.7 7.5 6.6 7.1 NA NA NA 10.8 11.9 10.7 11.6 NA NA NA

n ¼ 200

2 2.6 2.6 2.6 2.6 2.2 8.0 8.2 6.1 6.1 6.0 6.1 5.4 26.5 27.1 9.4 9.4 9.4 9.3 8.7 41.2 41.8

3 2.5 2.6 2.6 2.4 1.9 4.8 5.0 5.9 5.9 5.9 5.8 5.1 17.8 18.4 9.1 9.1 9.0 9.0 8.5 29.3 30.2

6 2.1 2.3 2.1 2.1 1.8 2.8 3.2 5.3 5.4 5.2 5.2 5.1 10.7 12.0 8.6 8.7 8.5 8.5 9.0 19.3 21.1

10 1.8 1.8 1.9 1.9 1.7 1.9 2.7 5.1 5.4 5.2 5.1 5.3 7.8 9.9 8.8 8.7 8.8 8.7 9.2 14.7 17.7

15 1.8 1.8 1.8 1.7 1.9 1.5 2.5 5.2 5.0 5.3 5.3 5.8 6.1 9.2 8.8 8.6 8.8 8.9 9.8 11.2 15.9

CV 2.9 3.4 2.8 3.0 NA NA NA 6.7 7.7 6.5 7.4 NA NA NA 10.6 11.6 10.3 11.8 NA NA NA
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rejection rates that are within two standard errors of 10%. The cross-validation
method tends to slightly over-reject at n ¼ 50 but works reasonably well when n ¼
100 or 200.

5.3. Discussion of the power study

When the error term satisfies at ¼ et � Hdet�1; for da0; the errors are serially
correlated. For large values of d; the correlation is stronger and the test is more
powerful. We made simulations with several values of d40; but we only reproduce
the results for d ¼ 1:0: We computed the power using the asymptotic critical values
and the exact (empirical) critical values obtained from the level study. The results are
presented in Table 3 for n ¼ 100; 200 and the two nominal levels 5% and 10%. The
powers based on empirical critical values are given in parentheses.

ARTICLE IN PRESS

Table 3

Power based on the asymptotic and empirical (in parentheses) critical values of Hosking’s test and of the

test Tn for different kernels and truncation values when the data are generated from model (20) and (21)

with MA(1) errors

a ¼ 0:05 a ¼ 0:10

pn BP BAR DAN PAR TR H HM BP BAR DAN PAR TR H HM

n ¼ 100

2 51.8 52.0 51.7 51.6 37.7 74.2 74.8 60.3 60.4 60.1 60.6 47.6 84.9 85.5

(49.5) (49.5) (50.0) (49.4) (35.1) (35.1) (35.0) (60.9) (61.1) (60.5) (61.1) (48.9) (48.9) (48.6)

3 50.3 50.6 50.6 49.0 30.0 56.0 57.9 59.5 59.9 59.8 58.3 40.3 70.7 72.1

(48.3) (48.4) (48.0) (47.1) (28.1) (28.1) (27.5) (60.4) (60.8) (60.8) (59.4) (40.6) (40.6) (40.3)

5 43.4 45.0 43.6 41.6 24.2 37.1 40.1 52.6 54.7 52.6 50.5 32.8 52.8 56.2

(41.2) (43.3) (41.5) (40.0) (22.2) (22.2) (21.8) (53.6) (55.6) (53.8) (51.4) (33.1) (33.1) (32.6)

9 33.0 37.7 33.1 31.2 20.1 22.9 29.0 43.1 47.3 43.0 41.6 27.7 34.4 41.8

(30.2) (34.9) (30.7) (29.1) (16.9) (16.9) (16.6) (43.8) (47.8) (44.2) (42.4) (27.5) (27.5) (27.0)

12 28.5 32.7 28.8 27.1 17.9 16.6 24.3 37.8 43.5 37.6 36.2 25.2 25.8 38.3

(25.9) (31.1) (25.7) (24.3) (15.2) (15.2) (14.7) (37.9) (43.8) (37.8) (36.1) (24.7) (24.7) (23.8)

CV 52.2 53.9 51.0 49.0 NA NA NA 61.1 62.3 60.1 60.5 NA NA NA

(48.5) (47.5) (47.3) (43.4) NA NA NA (59.6) (59.7) (58.7) (57.0) NA NA NA

n ¼ 200

2 87.8 88.0 87.4 87.8 75.7 94.9 95.1 91.2 91.3 91.1 91.3 82.8 97.8 97.8

(85.4) (85.3) (85.2) (85.4) (74.5) (74.4) (74.3) (91.6) (91.6) (91.7) (91.7) (84.5) (84.5) (84.5)

3 86.6 86.8 86.6 85.7 66.0 85.8 86.4 90.9 91.2 90.9 90.2 76.0 92.7 93.1

(85.4) (85.5) (85.3) (83.9) (65.7) (65.7) (65.7) (91.7) (91.6) (91.8) (91.2) (78.2) (78.2) (78.1)

6 77.2 80.1 77.4 75.4 47.7 63.5 64.9 83.9 86.4 84.1 82.4 58.8 75.5 77.0

(76.4) (79.1) (76.4) (74.5) (47.4) (47.4) (46.9) (86.1) (88.0) (86.5) (84.5) (61.2) (61.2) (60.6)

10 66.2 71.7 66.5 63.4 37.7 43.8 47.6 74.3 79.6 74.5 72.2 46.8 58.1 61.6

(65.7) (70.3) (65.6) (63.4) (36.6) (36.6) (35.9) (76.8) (81.7) (76.8) (74.5) (49.0) (49.0) (47.8)

15 54.5 63.7 55.0 52.2 31.2 32.2 40.0 65.1 72.7 65.6 63.1 42.1 45.7 53.4

(53.9) (63.6) (53.4) (51.4) (28.2) (28.2) (27.2) (68.1) (74.9) (67.9) (65.6) (42.6) (42.6) (41.2)

CV 87.5 89.4 84.8 85.5 NA NA NA 90.8 92.7 89.8 91.4 NA NA NA

(83.8) (84.1) (81.4) (79.6) NA NA NA (90.7) (91.4) (89.6) (89.7) NA NA NA
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Results in Table 3 show that the power seems to behave in the same manner, for
all kernels, except the truncated one when pn is fixed. Results for DAN, PAR and BP
are similar. When pn is fixed, it seems that the DAN kernel is slightly superior. More
particularly, DAN and BP seem to behave in the same manner, and seem to be more
powerful than PAR. This phenomenon is perceptible with both the asymptotic and
empirical quantiles. We reach a different conclusion with the cross-validation
procedure, where BP seems to be more powerful than DAN and PAR. The BAR
kernel seems to be more powerful than the others. This is in agreement with Hong’s
[12] analysis for univariate ARX models.
For the new tests, the results based on empirical and asymptotic quantiles do not

differ considerably at the 5% and 10% levels. That difference decreases as n

increases, which is not surprising since the level is better controlled for large values of
n: Since Hosking’s test [13] over-rejects under the null hypothesis using the
asymptotic quantiles, we have the false impression that its power is higher for low
values of pn: The results based on the empirical quantiles show that in fact Hosking’s
[13] test has a lower power than the proposed tests. Indeed, the test H and the new
test based on kT lead to the same power, based on the empirical quantiles, since they
are related by a linear transformation. In our study, HM seems to be slightly less
powerful than H.
Since the autocorrelation of the errors is of order one, we expect that the tests

assigning more weight to small lags will be more powerful that those assigning
weights to a large number of lags. This is confirmed by our study since a small value
of pn leads to a greater power. With the considered VARX model, the truncated
uniform kernel is inferior in our simulation for a fixed pn; but the difference among
the kernels is rather small when pn ¼ 2: The cross-validation procedure of Robinson
[23] seems to work very well here since the resulting power is higher than for fixed
values of pn that are moderately large. A very small value of pn gives a slightly better
power than the cross-validation procedure. However, without any knowledge on the
alternative hypothesis, the cross-validation seems to reveal some valuable informa-
tion on the shape of the spectral density, and the resulting power of Tn is quite close
to the one obtained with pn ¼ 2: In practice, the analyst could not want to
systematically use a very low value of pn; since that choice might ignore important
high-order autocorrelations. The cross-validation represents an objective choice and
it leads to a good compromise between errors of types I and II. Finally, in our
experiment, the truncated uniform kernel and Hosking’s tests H and HM are the less
powerful and the use of the new test based on another kernel than the truncated
uniform one seems appropriate, at least for the chosen model.

6. Conclusion

In this paper, new consistent tests of serial correlation are proposed in the VARX
model, when there is no information on the true alternative hypothesis. Our
approach relies on a comparison between a multivariate spectral density estimator
calculated with the kernel method, and the true spectral density under the null
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hypothesis of absence of correlation in the error term. The test generalizes the
multivariate portmanteau statistic of Hosking [13], which can be viewed as a test
based on the truncated uniform kernel.
In the simulation experiment, the properties of the new test were investigated for

several kernels and several values of the truncation parameter pn: Since our test
procedure relies on a multivariate kernel-based spectral density estimator, we also
applied the cross-validation method described in Robinson [23] for choosing pn when
the employed kernel is positive definite. For all kernels considered, the level of the
test is reasonably well controlled at the nominal levels 5% and 10% with series of
100 and 200 observations. The data-driven method for choosing pn works quite well
when n ¼ 100 or 200 even if it tends to over-reject slightly at the 5% nominal level.
Bartlett, Daniell, Parzen and Bartlett–Priestley kernels lead to similar powers which
are systematically higher that the one obtained with the truncated uniform kernel, in
our experiment. Finally, the cross-validation procedure for choosing pn works well
here since the resulting power is high. That procedure provides an objective choice of
the smoothing parameter which takes into account the form of the spectral density
specified by the alternative hypothesis. In practical situations, the new test based on
Bartlett or Daniell kernels with pn chosen by cross-validation should be
appropriate.
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Appendix

Proof of Theorem 1. The following notations are adopted. The scalar product of

xt; xsARn is denoted by /xt; xsS ¼ x0txs and the Euclidian norm of xt by jjxtjj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/xt; xtS

p
: The Euclidian matrix norm defined by jjAjj2E ¼ trðAA0Þ ¼

Pn
i¼1
Pn

j¼1 a2ij ;

where A ¼ ðaijÞn�n is also used. The notations Op and op are the usual notations for

orders in probability. Let knj ¼ kð j=pnÞ; vt ¼ R�1=2
u ut and Ru ¼ Cuð0Þ: The process

v ¼ fvt: tAZg has mean 0 and variance Id :
We will intensively use Cauchy–Schwarz type inequalities involving the trace (tr)

operator. The most useful are presented here. More details are given in Harville
(Chapters 5 and 6). Let A; B and C be arbitrary matrices, D and E be symmetric
positive definite matrices. Then we have

jtrðAB0Þjp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðAA0Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðBB0Þ

q
; ðA:1Þ

trðD2ÞpðtrðDÞÞ2; ðA:2Þ
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trðDEÞptrðDÞ trðEÞ; ðA:3Þ

trðADÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðAA0Þ

q
trðDÞ; ðA:4Þ

jtrðA0BABÞjptrðA0AÞ trðB0BÞ; ðA:5Þ

tr½ðAþ Bþ CÞðAþ Bþ CÞ0�p4½trðAA0Þ þ trðBB0Þ þ trðCC0Þ�: ðA:6Þ

We now prove part 1. First note that Cuð0Þ � Ru ¼ Opðn�1=2Þ since EðCu;ijð0Þ � sijÞ ¼
0 and varðCu;ijð0ÞÞ ¼ n�1ðmði; i; j; jÞ � s2ijÞ: Then it follows that C�1

u ð0Þ � R�1
u

¼ Opðn�1=2Þ: We will show that asymptotically, Cuð0Þ can be replaced by Ru

in (14).

Result A.1.

Xn�1
j¼1

k2
njftr½C�1

u ð0ÞCuð jÞC�1
u ð0ÞC0

uð jÞ� � tr½R�1
u Cuð jÞR�1

u C0
uð jÞ�g

¼ opð
ffiffiffiffiffi
pn

p
=nÞ:

To prove this latter result, the following lemma is needed.

Lemma A.1.
Pn�1

j¼1 k2ð j=pnÞCvð jÞC0
vð jÞ ¼ Opð pn=nÞ:

Proof. We have

Cvð jÞC0
vð jÞ ¼ n�2

Xn

t¼jþ1
jjvt�jjj2vtv

0
t þ n�2

Xn

t¼jþ2

Xt�1
s¼jþ1

vtv
0
t�jvs�jv

0
s

þ n�2
Xn�1

t¼jþ1

Xn

s¼tþ1
vtv

0
t�jvs�jv

0
s:

Taking expected values on both sides, it is easily seen that E½Cvð jÞC0
vð jÞ� ¼

n�2ðn� jÞdId :We have that E½
Pn�1

j¼1 k2
jnCvð jÞC0

vð jÞ� ¼ n�1d
Pn�1

j¼1 ð1� j=nÞk2ð j=pnÞId

¼ Oð pn=nÞ: Lemma A.1 follows with a judicious choice of Xn since for an arbitrary

random matrix Xn; EðXnX
0
nÞ ¼ OðanÞ implies that XnX

0
n ¼ OpðanÞ: &

To show Result A.1, note that

C0
uð jÞC�1

u ð0ÞCuð jÞC�1
u ð0Þ ¼C0

uð jÞR�1
u Cuð jÞR�1

u þ C0
uð jÞDunCuð jÞR�1

u

þ C0
uð jÞR�1

u Cuð jÞDun þ C0
uð jÞDunCuð jÞDun;

where C�1
u ð0Þ � R�1

u ¼ Dun: Then it is sufficient to multiply by k2ð j=pnÞ; to sum on j;
to apply the tr operator, use (A.4) and (A.5), pn=n-0 and Lemma A.1. &
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We now decompose
Pn�1

j¼1 k2ð j=pnÞ tr½R�1
u Cuð jÞR�1

u C0
uð jÞ� into two parts A1n and

A2n:

Xn�1
j¼1

k2
nj tr½C0

uð jÞR�1
u Cuð jÞR�1

u � ¼ n�2
Xn�1
j¼1

k2
nj

Xn

t¼jþ1
Z2

jt

( )

þ n�2
Xn�2
j¼1

k2
nj

Xn

t¼jþ2

Xt�1
s¼jþ1

wjts

( )

¼ n�1ðA1n þ A2nÞ;

where Zjt ¼ jjvt�jjj � jjvtjj and wjts ¼ 2/vs�j; vt�jS/vt; vsS:

Result A.2. p
�1=2
n ðA1n � d2MnðkÞÞ-P0:

To show Result A.2, note that EðA1nÞ ¼ d2MnðkÞ; varðA1nÞ ¼ Oð p2n=nÞ; and using
Lemma A.2, varðA1nÞpn�2f

Pn�1
j¼1 k2

nj ½Eð
Pn

t¼jþ1 ðZ2
jt � d2ÞÞ2�1=2g2 ¼ Oð p2n=nÞ:

Lemma A.2. E½
Pn

t¼jþ1 ðZ2
jt � d2Þ�2 ¼ OðnÞ:

Proof. First note that ð
Pn

t¼jþ1 ðZ2
jt � d2ÞÞ2 ¼

Pn
t¼jþ1 ðZ2

jt � d2Þ2 þ
2
Pn

t¼jþ2
Pt�1

s¼jþ1 ðZ2
jt � d2ÞðZ2

js � d2Þ: Then Lemma A.2 follows since E½ðZ2
jt � d2Þ2�

¼ Eðjjv1jj4Þ2 � d4; and

EðZ2
jt � d2ÞðZ2

js � d2Þ ¼ ðEðjjv1jj4Þ � d2Þd2 if s ¼ t � j;

0 elsewhere: &

(

This shows Result A.2. &

To complete the proof of Part 1, we have to show that ð2d2VnðkÞÞ�1=2A2n

-LNð0; 1Þ: To prove that result, let ln be such that ln=pn-N and ln=n-0: We

decompose A2n as A2n ¼ Bn þ
P4

i¼1 Cin; where

Bn ¼ n�1
Xln

j¼1
k2

nj

Xn

t¼2lnþ3

Xt�ln�1

s¼lnþ2
wjts

( )
;

C1n ¼ n�1
Xn�2

j¼lnþ1
k2

nj

Xn

t¼jþ2

Xt�1
s¼jþ1

wjts

( )
;

C2n ¼ n�1
Xln

j¼1
k2

nj

Xn

t¼2lnþ3

Xt�1
s¼t�ln

wjts

( )
;
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C3n ¼ n�1
Xln

j¼1
k2

nj

X2lnþ2

t¼lnþ3

Xt�1
s¼lnþ2

wjts

( )
;

C4n ¼ n�1
Xln

j¼1
k2

nj

Xlnþ1
t¼jþ1

Xn

s¼tþ1
wjts

( )
:

The following lemma is useful. It generalizes a result in Hong [12] that we
corrected very slightly since in his paper, he did not distinguish the two cases j1aj2
and j1 ¼ j2:

Lemma A.3. Let wl1l2l3l4
j1t1s1

¼ 2vt1ðl1Þvs1ðl2Þvt1�j1ðl3Þvs1�j1ðl4Þ: Then we have that

Eðwl1l2l3l4
j1t1s1

wm1m2m3m4

j2t2s2
Þ ¼

Eðwl1l2l3l4
j1t1s1

wm1m2m3m4

j2t2s2
Þdt1;t2ds1;t1�j2ds2;t1�j1 ; j1aj2;

Eðwl1l2l3l4
j1t1s1

wm1m2m3m4

j2t2s2
Þdt1;t2ds1;s2 ; j1 ¼ j2:

(

Proof. The proof can be done case by case and is tedious but straightforward. We do
not reproduce it here. &

We then show the following result.

Result A.3. p
�1=2
n Cin ¼ opð1Þ; i ¼ 1; 2; 3; 4:

Proof. For C1n; it is sufficient to show that EðC2
1nÞ ¼ oð pnÞ: Squaring C1n; breaking

the sum according to j1 ¼ j2 and j1aj2; taking the expected value and using Lemma
A.3, we can show that

EðC2
1nÞp4d2m4ðjjvjjÞ

Xn�2
j¼lnþ1

k4
nj

 !
þ 8d

n

Xn�2
lnþ2

k2
nj

 !2

¼ oð pnÞ;

since p�1
n

Pn�2
j¼lnþ1 k4

nj-0 and pn=n-0: Similarly, EðC2
2nÞ ¼ Oðlnpn

n
þ p2n

n
Þ; EðC2

3nÞ ¼
Oðl2n pn

n2
þ p2nln

n2
Þ and EðC2

4nÞ ¼ Oðlnpn

n
þ p2n

n
Þ: &

Result A.3 shows that the only important term in the asymptotic distribution
of A2n is Bn: The proof of the first step will be completed if we can show

that s�2ðnÞBn-LNð0; 1Þ; where s2ðnÞ ¼ EðB2
nÞ: We will show later that EðB2

nÞ
¼ 2d2pnVðkÞ½1þ oð1Þ�: The term Bn can be written as the following average:

Bn ¼ n�1Pn
t¼2lnþ3 Bnt; where Bnt ¼ 2v0tf

Pln
j¼1 k2

njHj;t�ln�1vt�jg; and Hj;t�ln�1 ¼Pt�ln�1
s¼lnþ2 vsv

0
s�j: Note that fBnt;Ft�1g is a martingale difference since EðBntÞ ¼ 0

and EðBntjFt�1Þ ¼ 0; where Ft�1 is the s-algebra generated by vs; spt:

Lemma A.4. EðB2
ntÞ ¼ 4d2ðt � 2ln � 2Þ

Pln
i¼1 k4

ni:
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Proof. EðB2
ntÞ ¼ 4 tr½

Pln
i;j¼1 k2

nik
2
njEðvt�jv

0
t�iÞEðH 0

i;t�ln�1Hj;t�ln�1Þ� since vt�i is inde-

pendent of Hj;t�ln�1; 1pi; jpln: The result follows by evaluating the latter sum. &

From the previous lemma, we obtain that EðB2
nÞ ¼ n�2Pn

t¼2lnþ3 EðB2
ntÞ ¼

2d2pnVðkÞ½1þ oð1Þ�:

Result A.4. s�1ðnÞBn-LNð0; 1Þ:

Proof. To apply the CLT of Brown [4], we have to verify the following two
conditions:

(a) s�2ðnÞn�2Pn
t¼2lnþ3 EðB2

ntI ½jBntj4ensðnÞ�Þ-0; 8e40;

(b) s�2ðnÞn�2Pn
t¼2lnþ3 B̈2

nt-P1;

where B̈2
nt ¼ EðB2

ntjFt�1Þ:
We begin with (a). It suffices to show that Lyapounov condition is verified.

We have that jBntjp2jjvtjj � jj
Pln

j¼1 k2
njHj;t�ln�1vt�jjj; and we obtain EðB4

ntÞp
16m4ðjjvjjÞEðjj

Pln
j¼1 k2

njHj;t�ln�1vt�jjj4Þ since vt�i is independent of Hj;t�ln�1;

1pi; jpln: Note that Eðjjxjj4Þpd
Pd

i¼1 E½x4ðiÞ�; where x ¼ ðxð1Þ;y; xðdÞÞ0 is a

vector of dimension d: Since the lth component of
Pln

j¼1 k2
njHj;t�ln�1vt�j is given byPln

j¼1 k2
nj

Pt�ln�1
s¼lnþ2 vsðlÞ/vs�j ; vt�jS; we will make use of the following lemma.

Lemma A.5. Eð½
Pln

j¼1 k2
nj

Pt�ln�1
s¼lnþ2 vsðlÞ/vs�j; vt�jS�4Þ ¼ Oð p2nt2Þ; independently of l:

Proof. First, by applying Lemma A.6 that follows to the variables

fk2
nj

Pt�ln�1
s¼lnþ2 vsðlÞ/vs�j; vt�jS; j ¼ 1;y; lng; we get

E
Xln

j¼1
k2

nj

Xt�ln�1

s¼lnþ2
vsðlÞ/vs�j ; vt�jS

 !" #4

p3
Xln

j¼1
k4

nj E
Xt�ln�1

s¼lnþ2
vsðlÞ/vs�j; vt�jS

 !4
2
4

3
5
1=2

8><
>:

9>=
>;

2

:

We apply a second time Lemma A.6 to the variables fvsðlÞ/vs�j; vt�jS;

s ¼ ln þ 2;y; t � ln � 1g; and we obtain

E
Xt�ln�1

s¼lnþ2
vsðlÞ/vs�j; vt�jS

" #4
p3

Xt�ln�1

s¼lnþ2
½EðvsðlÞ/vs�j; vt�jSÞ4�1=2

( )2

:

Since EðvsðlÞ/vs�j; vt�jSÞ4pm34ðjjvjjÞ; it follows that E½
Pt�ln�1

s¼lnþ2 vsðlÞ/vs�j; vt�jS�4 ¼
Oðt2Þ; independently of l: &
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Regrouping the various results, we obtain that

EðB4
ntÞp 144dm4ðjjvjjÞ

Xd

l¼1

Xln

j¼1
k4

nj

Xt�ln�1

s¼lnþ2
ðE½vsðlÞ/vs�j; vt�jS�4Þ1=2

( )2

¼Oð p2nt2Þ:

Then, s�4ðnÞn�4Pn
t¼2lnþ3 EðB4

ntÞ ¼ Oðn�1Þ; since s2ðnÞ ¼ Oð pnÞ; and condition (a)

holds.

Lemma A.6. Let X1;y;Xn be random variables such that EðXiÞ ¼ 0; i ¼ 1;y; n:

If E½XigðXj;Xk;XlÞ� ¼ 0; iaj; k; l for any function g; then E½ð
Pn

i¼1 XiÞ4�p
3f
Pn

i¼1 ½EðX 4
i Þ�

1=2g2:

To show (b), it is sufficient to prove that s�4ðnÞEð½B̈2
n � s2ðnÞ�2Þ-0; where B̈2

n ¼
EðB2

njFt�1Þ ¼ n�2Pn
t¼2lnþ3 B̈2

nt: We begin be writing B̈2
nt as B̈2

nt ¼ EðB2
ntÞ þ

4
P4

i¼1 Dint; where

D1nt ¼ 2
Xln

j¼2

Xj�1
i¼1

k2
nik

2
njv

0
t�iH

0
i;t�ln�1Hj;t�ln�1vt�j ;

D2nt ¼ 2
Xln

i¼1
k4

ni

Xt�ln�1

s1¼lnþ3

Xs1�1
s2¼lnþ2

v0t�ivs1�iv
0
s1
vs2v

0
s2�ivt�i;

D3nt ¼
Xln

i¼1
k4

niv
0
t�i

Xt�ln�1

s¼lnþ2
ðvs�iv

0
svsv

0
s�i � dIdÞ

" #
vt�i;

D4nt ¼ dðt � 2ln � 2Þ
Xln

i¼1
k4

niðv0t�ivt�i � dÞ:

We now prove the two following lemmas.

Lemma A.7. EðD2
1ntÞ ¼ Oðt2p2nÞ; EðD2

2ntÞ ¼ Oðt2pn þ tp2nÞ; EðD2
3ntÞ ¼ Oðtp2nÞ;

EðD2
4ntÞ ¼ Oðt2pnÞ:

Proof. For D1nt; we have that EðD2
1ntÞp4

Pd
l1;l2¼1

Pln
j¼2
P j�1

i¼1 k4
nik

4
njfE½a4i ðl1Þ�

E½a4j ðl2Þ�g
1=2; using Cauchy–Schwarz inequality, where aj ¼ Hj;t�ln�1vt�j and aiðlÞ ¼Pt�ln�1

s¼lnþ2vsðlÞ/vs�j; vt�jS: Since E½a4i ðlÞ� ¼ Oðt2Þ; then EðD2
1ntÞ ¼ Oðt2p2nÞ: For D2nt;

first note that

D2nt ¼
Xd

l1;l2¼1

Xln

i¼1
k4

nib
l1l2
t�i

Xt�ln�1

s¼lnþ3

Xs�1
r¼lnþ2

wl1l2
isr ;
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where bl1l2
t ¼ vtðl1Þvtðl2Þ: Thus, we have

D2
2nt ¼

Xd

l1;l2;m1;m2¼1

Xln

i¼1
k8

nib
l1l2
t�ib

m1m2

t�i

Xt�ln�1

s1;s2¼lnþ3

Xs1�1
r1¼lnþ2

Xs2�1
r2¼lnþ2

wl1l2
is1r1

wm1m2

is2r2

þ 2
Xd

l1;l2;m1;m2¼1

Xln

i1¼2

Xi1�1
i2¼1

k4
ni1

k4
ni2

bl1l2
t�i1

bm1m2

t�i2

�
Xt�ln�1

s1;s2¼lnþ3

Xs1�1
r1¼lnþ2

Xs2�1
r2¼lnþ2

wl1l2
i1s1r1

wm1m2

i2s2r2

¼D21nt þ D22nt:

On taking the expected value of D21nt and using Lemma A.3, we show that

EðD21ntÞ ¼ Oð pnt2Þ: Similarly, we can show that EðD22ntÞ ¼ Oðtp2nÞ; and the result

for D2nt follows. For D3nt; let us note that

EðD2
3ntÞp

Xln

i¼1
k4

ni E v0t�i

Xt�ln�1

s¼lnþ2
vs�iv

0
svsv

0
s�i � dId

 !
vt�i

 !2
2
4

3
5
1=2

8><
>:

9>=
>;

2

p m4ðjjvjjÞ
Xln

i¼1
k4

ni E
Xt�ln�1

s¼lnþ2
vs�iv

0
svsv

0
s�i � dId

�����
�����

�����
�����
2

E

0
@

1
A

2
4

3
5
1=2

8><
>:

9>=
>;

2

¼Oðtp2nÞ
using Lemma A.8 that follows.

Lemma A.8. Eðjj
Pt�ln�1

s¼lnþ2 ðvs�iv
0
svsv

0
s�i � dIdÞjj2EÞ ¼ OðtÞ:

Proof. Let clm
si ¼ v0svsvs�iðlÞvs�iðmÞ � ddlm: We have that

E
Xt�ln�1

s¼lnþ2
ðvs�iv

0
svsv

0
s�i � dIdÞ

�����
�����

�����
�����
2

E

0
@

1
A

¼ E
Xd

l;m¼1

Xt�ln�1

s¼lnþ2
ðclm

si Þ
2 þ 2

Xt�ln�1

s¼lnþ3

Xs�1
r¼lnþ2

ðclm
si clm

ri Þ
( )" #

¼ OðtÞ;
since

Eðclm
si Þ

2 ¼ m4ðjjvjjÞm4ðl; l; l; lÞ � d2 if l ¼ m;

m4ðjjvjjÞm4ðl; l;m;mÞ if lam;

�

Eðclm
si clm

ri Þ ¼
d½Eðjjv1jj2v1ðlÞ2Þ � d� if l ¼ m; r ¼ s � i;

0 elsewhere: &

(
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Finally, we show the result for D4nt: Let us note that EðD2
4ntÞ ¼ d2ðt � 2ln �

2Þ2
Pln

i¼1 k8
niEðv0t�ivt�i � dÞ2 ¼ Oðt2pnÞ; since Eðv0t�ivt�i � dÞ2 ¼ m4ðjjvjjÞ � d2: &

The following lemma that is easy to prove will be useful in the sequel.

Lemma A.9. EðD1ntD1nsÞ ¼ 0; t � s4ln:

Then we have that B̈2
n ¼ s2ðnÞ þ 4n�2P4

j¼1
Pn

t¼2lnþ3 Djnt and the validity of con-

dition (b) will be established once it is shown that E½ p�2
n ðn�2Pn

t¼2lnþ3 DjntÞ2�-0;

j ¼ 1; 2; 3; 4: This latter result can be obtained with a reasoning similar to the one
made by Hong [12] for deriving his formulas (A.7)–(A.10). Using Brown’s theorem,
the proof of the first part is completed. &

We now show the second part. To reduce the length of the proof, we restrict ourselves
to the following model:

yt ¼ cþ K1yt�1 þ V0xt þ ut: ðA:7Þ

The proof for the general model (3) is in all points similar, except that the algebraic
developments are heavier.
First, we decompose

Xn�1
j¼1

k2
njðtr½Cv̂ð jÞC0

v̂ð jÞ� � tr½Cvð jÞC0
vð jÞ�Þ: ðA:8Þ

Since trðAA0Þ � trðBB0Þ ¼ tr½ðA� BÞðA� BÞ0� þ 2 tr½BðA� BÞ0�; it suffices to show
the two following results.

Result A.5.
Pn�1

j¼1 k2
nj tr½ðCv̂ð jÞ � Cvð jÞÞðCv̂ð jÞ � Cvð jÞÞ0� ¼ Opðn�1Þ:

Result A.6.
Pn�1

j¼1 k2
nj tr½Cvð jÞðCv̂ð jÞ � Cvð jÞÞ0� ¼ opð

ffiffiffiffiffi
pn

p
=nÞ:

Let #knt ¼ ð#c� cÞ þ ð #K1 � K1Þyt�1 þ ð #V0 � V0Þxt and #cnt ¼ R�1=2
u

#knt: Let also #ut ¼
ut � #knt; and #vt ¼ vt � #cnt: First we prove result Result A.5. We can write

Cv̂ð jÞ � Cvð jÞ ¼ � n�1
Xn

t¼jþ1
#cntv

0
t�j � n�1

Xn

t¼jþ1
vt #c

0
n;t�j

þ n�1
Xn

t¼jþ1
#cnt #c

0
n;t�j: ðA:9Þ

Using (A.6), we have that

Xn�1
j¼1

k2
nj tr½ðCv̂ð jÞ � Cvð jÞÞðCv̂ð jÞ � Cvð jÞÞ0�p4ðE1n þ E2n þ E3nÞ; ðA:10Þ
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where

E1n ¼ n�2
Xn�1
j¼1

k2
nj tr

Xn

t¼jþ1
#cntv

0
t�j

 ! Xn

t¼jþ1
#cntv

0
t�j

 !0" #
;

E2n ¼ n�2
Xn�1
j¼1

k2
nj tr

Xn

t¼jþ1
vt #c

0
n;t�j

 ! Xn

t¼jþ1
vt #c

0
n;t�j

 !0" #
;

E3n ¼ n�2
Xn�1
j¼1

k2
nj tr

Xn

t¼jþ1
#cnt #c

0
n;t�j

 ! Xn

t¼jþ1
#cnt #c

0
n;t�j

 !0" #
:

Then we show the following result:

Result A.7. Ejn ¼ Opðn�1Þ; j ¼ 1; 2; 3:

Proof. Let us begin with E1n that we bound in the following manner using (A.3)
and (A.6):

E1np 4 tr½ð#c� cÞ0R�1
u ð#c� cÞ�F1n þ 4 tr½ð #K1 � K1Þ0R�1

u ð #K1 � K1Þ�F2n

þ 4 tr½ð#c� cÞ0R�1
u ð#c� cÞ�F3n;

where

F1n ¼
Xn�1
j¼1

k2
nj tr n�1

Xn

t¼jþ1
v0t�j

 !
n�1

Xn

t¼jþ1
v0t�j

 !0" #
;

F2n ¼
Xn�1
j¼1

k2
nj tr n�1

Xn

t¼jþ1
yt�1v

0
t�j

 !
n�1

Xn

t¼jþ1
yt�1v

0
t�j

 !0" #
;

F3n ¼
Xn�1
j¼1

k2
nj tr n�1

Xn

t¼jþ1
xtv

0
t�j

 !
n�1

Xn

t¼jþ1
xt v

0
t�j

 !0" #
:

The result for E1n is based on the following lemma.

Lemma A.10. F1n ¼ Opð pn=nÞ; F2n ¼ Opð1Þ; F3n ¼ Opð pn=nÞ:

Proof. The result for F1n is immediate noting that EðjF1njÞ ¼ dn�2Pn�1
j¼1 ðn � jÞk2

nj ¼
Oð pn=nÞ: To show the result for F2n; we write the model (A.7) as yt ¼ c0 þ
WðBÞV0xt þ WðBÞut; where c0 ¼ ðId � K1Þ�1c; WðBÞ ¼ ðId � K1BÞ�1 ¼

P
jX0 K j

1B j ;
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with jjK1jjo1: We have that

n�1
Xn

t¼jþ1
yt�1v

0
t�j ¼ n�1

Xn

t¼jþ1
c0v

0
t�j þ n�1

Xn

t¼jþ1
ðWðBÞV0xt�1Þv0t�j

þ n�1
Xn

t¼jþ1
ðWðBÞut�1Þv0t�j;

and, therefore, F2np4ðG1n þ G2n þ G3nÞ; where

G1n ¼
Xn�1
j¼1

k2
nj tr n�1

Xn

t¼jþ1
c0v

0
t�j

 !
n�1

Xn

t¼jþ1
c0v

0
t�j

 !0" #
;

G2n ¼
Xn�1
j¼1

k2
nj

� tr n�1
Xn

t¼jþ1
ðWðBÞV0xt�1Þv0t�j

 !
n�1

Xn

t¼jþ1
ðWðBÞV0xt�1Þv0t�j

 !0" #
;

G3n ¼
Xn�1
j¼1

k2
nj tr n�1

Xn

t¼jþ1
ðWðBÞut�1Þv0t�j

 !
n�1

Xn

t¼jþ1
ðWðBÞut�1Þv0t�j

 !0" #
:

We note that G1n ¼ Opð pn=nÞ; since c0
Pn

s;t¼jþ1 v
0
t�jvs�jc

0
0 ¼ OpðnÞ:With G2n; we have

that

G2n ¼ n�2
Xn�1
j¼1

k2
nj tr

Xn

t¼jþ1
jjvs�j jj2ððWðBÞV0xt�1Þv0t�jÞððWðBÞV0xt�1Þv0t�jÞ

0
(

þ 2
Xn

s¼jþ1

Xt�1
jþ2

v0t�jvs�jððWðBÞV0xt�1Þv0t�jÞððWðBÞV0xs�1Þv0s�jÞ
0
)
:

It follows that EðjG2njÞ ¼ Oð pn=nÞ and G2n ¼ Opð pn=nÞ: The proof for G3n is based

on the following lemma, that generalizes Lemma A.1 of Hong [12].

Lemma A.11.

E tr
Xn

t¼jþ1
ðWðBÞut�1Þv0t�j

 ! Xn

t¼jþ1
ðWðBÞut�1Þv0t�j

 !0" #( )

pD1n þ D2n
2jjK1jj2ð j�1Þ

E :

ARTICLE IN PRESS
P. Duchesne, R. Roy / Journal of Multivariate Analysis 89 (2004) 148–180 173



Proof. We note that

Xn

t¼jþ1
ðWðBÞut�1Þv0t�j

 ! Xn

t¼jþ1
ðWðBÞut�1Þv0t�j

 !0

¼
Xn

s¼jþ1
jjvs�jjj2jjWðBÞus�1jj2

þ 2
Xn

t¼jþ2

Xt�1
s¼jþ1

/vt�j; vs�jS/WðBÞut�1;WðBÞus�1S:

We note that

/WðBÞut�1;WðBÞus�1S ¼
X
j1X0

u0t�j1�1ðK
j1
1 Þ0ðK j1

1 Þus�j1�1

þ
X
j1aj2

u0t�j1�1ðK
j1
1 Þ0ðK j2

1 Þus�j2�1:

Let us consider the first term. We have that

Eðjjvt�jjj2jjWðBÞut�1jj2Þp
X
j1X0

Eðjjvt�jjj2jjut�j1�1jj
2ÞjjðK j1

1 Þ0ðK j1
1 ÞjjE

p m4ðjjvjjÞjjRujj
X
jX0

jjK1jj2j
EpD1:

Finally, we have that

Eðv0t�jvs�j/WðBÞut�1;WðBÞus�1SÞ

¼
X
j1X0

E½v0t�jvs�ju
0
t�j1�1ðK

j1
1 Þ0ðK j1

1 Þus�j1�1�

þ
X
j1aj2

E½v0t�jvs�ju
0
t�j1�1ðK

j1
1 Þ0ðK j2

1 Þus�j2�1�

p2jjK1jj2ð j�1Þ
E trðRuÞ:

Regrouping the results, we obtain

E tr n�1
Xn

t¼jþ1
ðWðBÞut�1Þv0t�j

 !
n�1

Xn

t¼jþ1
ðWðBÞut�1Þv0t�j

 !0" #( )

p n�1D1 þ D2jjK1jj2ð j�1Þ
E

and the proof of Lemma A.11 is completed. &

Note that it follows from Lemma A.11 that

E tr
Xn

t¼jþ1
yt�1v

0
t�j

 ! Xn

t¼jþ1
yt�1v

0
t�j

 !0" #( )
pD1n þ D2n

2jjK1jj2ð j�1Þ
E : ðA:11Þ
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With Lemma A.11, we can conclude that G3n is bounded in probability. Regrouping
the results for G1n; G2n and G3n; we conclude that F2n ¼ Opð1Þ:
It is easy to verify that EðjF3njÞ ¼ dn�1Eðjjx1jj2Þ

Pn�1
j¼1 ð1� j=nÞk2

nj ¼ Oð pn=nÞ; by
the strict exogeneity of the xt process and the result for F3n follows. &

The proof for E1n is therefore completed. The proof for E2n is similar. It remains to

study E3n: We remark first that jE3njp
Pn�1

j¼1 k2
njðn�1Pn

t¼1 jj#cntjj2Þ2: The following

lemma whose proof is straightforward is needed.

Lemma A.12. n�1Pn
t¼1 jj#cntjj2 ¼ Opðn�1Þ:

This shows that E3n ¼ Opð pn=n2Þ ¼ opðn�1Þ and the proof of Result A.5 is

completed. &

To prove Result A.6, we write
Pn�1

j¼1 k2
nj tr½Cvð jÞðCv̂ð jÞ � Cvð jÞÞ0� ¼ �E4n � E5n þ

E6n; where

E4n ¼
Xn�1
j¼1

k2
nj tr n�1

Xn

t¼jþ1
vtv

0
t�j

 !
n�1

Xn

t¼jþ1
#cntv

0
t�j

 !0" #
;

E5n ¼
Xn�1
j¼1

k2
nj tr n�1

Xn

t¼jþ1
vtv

0
t�j

 !
n�1

Xn

t¼jþ1
vt #c

0
n;t�j

 !0" #
;

E6n ¼
Xn�1
j¼1

k2
nj tr n�1

Xn

t¼jþ1
vtv

0
t�j

 !
n�1

Xn

t¼jþ1
#cnt#c

0
n;t�j

 !0" #
:

We complete the proof by showing that

Result A.8. Ejn ¼ opð
ffiffiffiffiffi
pn

p
=nÞ; j ¼ 4; 5; 6:

Proof. Let us first consider E4n that we decompose it in the following manner:
E4n ¼ F4n þ F5n þ F6n; where

F4n ¼
Xn�1
j¼1

k2
nj tr n�1

Xn

t¼jþ1
vtv

0
t�j

 !
R�1=2

u ð#c� cÞn�1
Xn

t¼jþ1
v0t�j

 !0" #
;

F5n ¼
Xn�1
j¼1

k2
nj tr n�1

Xn

t¼jþ1
vtv

0
t�j

 !
R�1=2

u ð #K1 � K1Þn�1
Xn

t¼jþ1
yt�1v

0
t�j

 !0" #
;

F6n ¼
Xn�1
j¼1

k2
nj tr n�1

Xn

t¼jþ1
vtv

0
t�j

 !
R�1=2

u ð #V0 � V0Þn�1
Xn

t¼jþ1
xtv

0
t�j

 !0" #
:
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Note that

jF4njp n�2ftr½ð#c� cÞ0R�1
u ð#c� cÞ�g1=2

�
Xn�1
j¼1

k2
nj tr

Xn

t¼jþ1
vtv

0
t�j

 ! Xn

t¼jþ1
vtv

0
t�j

 !0" #( )1=2

� tr
Xn

t¼jþ1
v0t�j

 ! Xn

t¼jþ1
v0t�j

 !0" #( )1=2

:

By Cauchy–Schwarz inequality, since Eðtr½ð
Pn

t¼jþ1 vtv
0
t�jÞð

Pn
t¼jþ1vtv

0
t�jÞ

0�Þ ¼ OðnÞ
and since we also have that Eðtr½ð

Pn
t¼jþ1 v

0
t�jÞð

Pn
t¼jþ1 v

0
t�jÞ

0�Þ ¼ OðnÞ; we can

conclude that F4n ¼ Opð pn=n3=2Þ: Similarly, we have that

jF5njp ftr½ð #K1 � K1Þ0R�1
u ð #K1 � K1Þ�g1=2n�2

�
Xn�1
j¼1

k2
nj tr

Xn

t¼jþ1
vtv

0
t�j

 ! Xn

t¼jþ1
vtv

0
t�j

 !0" #( )1=2

� tr
Xn

t¼jþ1
yt�1v

0
t�j

 ! Xn

t¼jþ1
yt�1v

0
t�j

 !0" #( )1=2

:

Since

E
Xn�1
j¼1

k2
nj tr

Xn

t¼jþ1
vtv

0
t�j

 ! Xn

t¼jþ1
vtv

0
t�j

 !0" #( )1=2
2
4

� tr
Xn

t¼jþ1
yt�1v

0
t�j

 ! Xn

t¼jþ1
yt�1v

0
t�j

 !0" #( )1=2
3
5

pD1=2
1 n

Xn�1
j¼1

k2
nj þ n3=2D1=2

2

Xn�1
j¼1

k2
nj jjK1jj j�1

E ;

and using (A.11), we have that F5n ¼ Opð pn=n3=2 þ 1=nÞ: Similarly, using the strict

exogeneity of xt; we can conclude that F6n ¼ Opð pn=n3=2Þ: It follows therefore that
E4n ¼ opð p

1=2
n =nÞ since pn=n-0: For E5n; note that

jE5njp n�2
Xn�1
j¼1

k2
nj tr

Xn

t¼jþ1
vtv

0
t�j

 ! Xn

t¼jþ1
vtv

0
t�j

 !0" #( )1=2

�
Xn�1
j¼1

k2
nj tr

Xn

t¼jþ1
vt #c

0
n;t�j

 ! Xn

t¼jþ1
vt #c

0
n;t�j

 !0" #( )1=2

:
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We can conclude that E5n ¼ opð p
1=2
n =nÞ; since it is easily shown that

Xn�1
j¼1

k2
nj tr n�1

Xn

t¼jþ1
vt #c

0
n;t�j

 !
n�1

Xn

t¼jþ1
vt #c

0
n;t�j

 !0" #
¼ opðn�1Þ:

For E6n; we proceed in a similar way showing that

jE6njp n�2
Xn�1
j¼1

k2
nj tr

Xn

t¼jþ1
vtv

0
t�j

 ! Xn

t¼jþ1
vtv

0
t�j

 !0" #( )1=2

�
Xn�1
j¼1

k2
nj tr

Xn

t¼jþ1
#cnt #c

0
n;t�j

 ! Xn

t¼jþ1
#cnt #c

0
n;t�j

 !0" #( )1=2

:

We can then conclude that E6n ¼ opð p
1=2
n =nÞ: &

By adding and subtracting tr½R�1
u C0

uð jÞR�1
u Cuð jÞ� in the left-hand side of (15) and

by using Result A.1, the proof of part 2 will be completed if we can show that

Xn�1
j¼1

k2
njðtr½C�1

û ð0ÞC0
ûð jÞC�1

û ð0ÞCûð jÞ� � tr½R�1
u C0

uð jÞR�1
u Cuð jÞ�Þ

¼ opð
ffiffiffiffiffi
pn

p
=nÞ: ðA:12Þ

From (A.8), and Results A.5 and A.6, it is sufficient to show that

Xn�1
j¼1

k2
njðtr½C�1

û ð0ÞC0
ûð jÞC�1

û ð0ÞCûð jÞ� � tr½R�1
u C0

ûð jÞR�1
u Cûð jÞ�Þ

¼ opð
ffiffiffiffiffi
pn

p
=nÞ: ðA:13Þ

We already know that Cûð0Þ � Ru ¼ Opðn�1=2Þ; which implies that

C�1
û ð0Þ � R�1

u ¼ Opðn�1=2Þ; ðA:14Þ

and (A.13) follows using inequality (A.1). &

Proof of Theorem 2. We have that Q2ð#fn; f0Þ ¼ 2p
R p
�p tr½C

�1
u ð0Þð#fn � f0Þ�C�1

u ð0Þð#fn �
f0Þ� do: Since #fn � f0 ¼ ð#fn � fÞ þ ðf � f0Þ; a direct calculation leads to

Q2ð#fn; f0Þ ¼Q2ðf; f0Þ þ 4p
Z p

�p
tr½C�1

u ð0Þðf � f0Þ�C�1
u ð0Þð#fn � fÞ� do

þ 2p
Z p

�p
tr½C�1

u ð0Þð#fn � fÞ�C�1
u ð0Þð#fn � fÞ� do:

By showing that
R p
�p tr½C

�1
u ð0Þð#fn � fÞ�C�1

u ð0Þð#fn � fÞ� do ¼ opð1Þ; we obtain from

Cauchy–Schwarz inequality that 4p
R p
�p tr½C

�1
u ð0Þðf � f0Þ�C�1

u ð0Þð#fn � fÞ� do ¼ opð1Þ:

ARTICLE IN PRESS
P. Duchesne, R. Roy / Journal of Multivariate Analysis 89 (2004) 148–180 177



Result A.9.
R p
�p tr½C

�1
u ð0Þð#fn � fÞ�C�1

u ð0Þð#fn � fÞ� do ¼ opð1Þ:

Proof. Since tr½AðBþ CÞ�AðBþ CÞ�p2 tr½AB�AB� þ 2 tr½AC�AC�; where A is

symmetric and non-singular, using the decomposition #fn � f ¼ ð#fn � *fnÞ þ ð*fn � fÞ;
we can write

Z p

�p
tr½C�1

u ð0Þð#fn � fÞ�C�1
u ð0Þð#fn � fÞ� do

p2

Z p

�p
ftr½C�1

u ð0Þð#fn � *fnÞ�C�1
u ð0Þð#fn � *fnÞ�

þ tr½C�1
u ð0Þð*fn � fÞ�C�1

u ð0Þð*fn � fÞ�g do:

Now, Result A.9 follows from the next two lemmas. &

Lemma A.13.
R p
�p tr½C

�1
u ð0Þð#fn � *fnÞ�C�1

u ð0Þð#fn � *fnÞ� do ¼ opð1Þ:

Proof. Using #fn � *fn ¼ 1
2p

Pn�1
j¼�nþ1 knj ½Cûð jÞ � Cuð jÞ�e�ioj; we have that

Z p

�p
tr½C�1

u ð0Þð#fn � *fnÞ�C�1
u ð0Þð#fn � *fnÞ� do

¼ 1

2p

Xn�1
j¼�nþ1

k2
nj tr½ðCv̂ð jÞ � Cvð jÞÞðCv̂ð jÞ � Cvð jÞÞ0�:

Inequality (A.10) provides an upper bound for
Pn�1

j¼1 k2
nj tr½ðCv̂ð jÞ � Cvð jÞÞðCv̂ð jÞ �

Cvð jÞÞ0�: The sum for negative j can be bounded in a similar way and it is
easy to deal with the term corresponding to j ¼ 0: Here, Result A.7 in
the second part of the proof of Theorem 1 does not necessarily hold since
we now are under the alternative hypothesis. More precisely, we have to treat
differently the Ejn’s, j ¼ 1; 2; 3; under the correlation structure given in Assumption

C. However, by Cauchy–Schwarz inequality, we obtain that jE1nj ¼
E1npð

Pn
j¼1 k2

njÞðn�1Pn
j¼1 jjvtjj2Þðn�1Pn

j¼1 jj#cntjj2Þ: But we have n�1Pn
j¼1 jj#cntjj2 ¼

Opðn�1Þ; since

jj#cntjj2p4ð#c� cÞ0R�1
u ð#c� cÞ þ 4 tr½ð #V0 � V0Þ0R�1

u ð #V0 � V0Þ�jjxtjj2;

and in the static model (16) the LS estimators are
ffiffiffi
n

p
-consistent. Thus, we have

E1n ¼ Opð pn=nÞ and the terms E2n and E3n can be dealt with in a similar way. This

completes the proof of Lemma A.13. &

Lemma A.14.
R p
�p tr½C

�1
u ð0Þð*fn � fÞ�C�1

u ð0Þð*fn � fÞ� do ¼ opð1Þ:
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Proof. We can write *fn � f ¼ 1
2p

P
j jjpn�1 ½knjCuð jÞ � Cuð jÞ�e�ijo � 1

2p

P
j jj4n�1

Cuð jÞe�ijo and after integrating, we find thatZ p

�p
tr½C�1

u ð0Þð*fn � fÞ�C�1
u ð0Þð*fn � fÞ� do

¼ 1

2p

X
j jjpn�1

tr½C�1
u ð0ÞðknjCuð jÞ � Cuð jÞÞ0C�1

u ð0ÞðknjCuð jÞ � Cuð jÞÞ�

þ 1

2p

X
j jjXn

tr½C�1
u ð0ÞCuð jÞ0C�1

u ð0ÞCuð jÞ�:

Under Assumption C, we have that
P

j jjXn tr½C�1
u ð0ÞCuð jÞ0C�1

u ð0ÞCuð jÞ� ¼ opð1Þ: It
remains to verify that the first term in the right-hand-side member is also opð1Þ:
However, using knjCuð jÞ � Cuð jÞ ¼ ðknj � 1ÞCuð jÞ þ knjðCuð jÞ � Cuð jÞÞ; we can

show thatX
j jjpn�1

tr½C�1
u ð0ÞðknjCuð jÞ � Cuð jÞÞ0C�1

u ð0ÞðknjCuð jÞ � Cuð jÞÞ�

p2
X

j jjpn�1
ðknj � 1Þ2 tr½C�1

u ð0ÞCuð jÞ0C�1
u ð0ÞCuð jÞ�

þ 2
X

j jjpn�1
k2

nj tr½C�1
u ð0ÞðCuð jÞ � Cuð jÞÞ0C�1

u ð0ÞðCuð jÞ � Cuð jÞÞ�:

By an argument similar to the one used by Hong [12, p. 861], the first term in the right-
hand side is oð1Þ by Lebesgue dominated convergence theorem and Assumption A on the

kernel k: For the other term, note that tr½C�1
u ð0ÞðCuð jÞ � Cuð jÞÞ0C�1

u ð0ÞðCuð jÞ �
Cuð jÞÞ ¼

Pd
t¼1
Pd

s¼1 ðCv;stð jÞ � Gv;stð jÞÞ2; where Cv;stð jÞ and Gv;stð jÞ are the ðs; tÞ-
components of Cvð jÞ and Cvð jÞ; respectively. From a general result for the variance of
cross-covariances, see for example Hannan [8, pp. 208–211] or Chitturi [6]. The variance

of Cv;stð jÞ is given by varðCv;stð jÞÞ ¼ n�1P
jijpn�1 ð1� jij=nÞ½Gv;stði þ jÞGv;stði � jÞ þ

kststð0; j; i; i þ jÞ�: From Assumption C, we have that supjX1 var½Cv;stð jÞ� ¼ Oðn�1Þ:
Therefore,

P
j jjpn�1 k2

nj

Pd
t¼1
Pd

s¼1 ½Cv;stð jÞ � Gv;stð jÞ�2 ¼ Opð pn=nÞ and the proof of

Lemma A.14 is completed. Consequently, Result A.29 holds and Theorem 2 is
proved. &
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