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Abstract

Multivariate autoregressive models with exogenous variables (VARX) are often used in
econometric applications. Many properties of the basic statistics for this class of models rely
on the assumption of independent errors. Using results of Hong (Econometrica 64 (1996) 837),
we propose a new test statistic for checking the hypothesis of non-correlation or independence
in the Gaussian case. The test statistic is obtained by comparing the spectral density of the
errors under the null hypothesis of independence with a kernel-based spectral density
estimator. The asymptotic distribution of the statistic is derived under the null hypothesis.
This test generalizes the portmanteau test of Hosking (J. Amer. Statist. Assoc. 75 (1980) 602).
The consistency of the test is established for a general class of static regression models with
autocorrelated errors. Its asymptotic slope is derived and the asymptotic relative efficiency
within the class of possible kernels is also investigated. Finally, the level and power of the
resulting tests are also studied by simulation.
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1. Introduction

Vector autoregressive with explanatory variables (VARX) models are used in
many fields of study. In the econometric literature, they are also called dynamic
simultaneous equation models and then, the dependent variables are said to be
endogenous while the explanatory variables are called exogenous. These models
generalize multivariate linear regression models in the sense that the explanatory
variables may include lagged values of the endogenous variables. When there are no
explanatory variables, we retrieve the popular class of vector autoregressive (VAR)
models. Dictated by theoretical or empirical considerations, these models
allow us to describe situations where causal relationships between stochastic
economic variables may exist, that is, the present values of the dependent variables
can be influenced by present and past states of the variables in the system. These
models were studied by many authors and are discussed for example in Judge et al.
[16], Hannan and Deistler [9], Liitkepohl [18]. A key assumption for obtaining
consistent estimators of the coefficients in VARX models and for deriving their
asymptotic covariance structure is the independence or at least the non-correlation
of the errors, see for example Liitkepohl [18, Section 10.3] or Hannan and Deistler
[9, Section 4.2].

In the univariate case, Hong [12] proposed several classes of consistent tests for
checking the null hypothesis that the errors in an ARX model constitute a white
noise against serial correlation of unknown form. His work is motivated by the fact
that any form of serial correlation in the errors term will render the least-squares
(LS) estimators inconsistent. His approach consists in comparing a residual kernel-
based spectral density estimator and the spectral density of the noise under the null
hypothesis, using different norms. With the quadratic norm, Hong’s statistic for
series of length n can be written as

n ]":11 kz(]/l’n)ﬁz(f) — M, (k)

Mln =
2Vu(k)

)

where 6(j) = C;(j)/Cs(0) is the residual autocorrelation at lagj and C;(j) =
n! Z’szﬂ U2l | is the residual autocovariance at lagj. The function k is a kernel
or a lag window in the spectral analysis terminology and

n—

Mu(k)=p_ (1 —J/mk*(j/pn), (1)

J

S8}

n—

Valk) = (1 =j/m)(1 = (j+ 1) /m)k*(j/pn). (2)

j=1

The sequence p, is a sequence of truncation values.

Using a different approach, Paparoditis [19] considered goodness-of-fit tests for
univariate time series models. The power properties of these tests are investigated in
Paparoditis [20]. His test statistic relies on a distance measure between a kernel
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estimator of the ratio between the true and hypothesized spectral density and
the expected value of the estimator under the null hypothesis. A multivariate ver-
sion of this test for vector autoregressive moving average models is studied in
Paparoditis [21].

The main objective of this paper is to extend Hong’s approach to VARX models.
Using a normalized version of the quadratic distance between two multivariate
spectral densities, we introduce a kernel-based statistic for a d-dimensional process y
that allows us to retrieve Hong’s statistic M}, when d = 1. In a static regression
model, the corresponding tests are also consistent for the null hypothesis of
multivariate white noise against any alternative of serial correlation of arbitrary
form. With the truncated uniform or rectangular kernel, we obtain a normalized
version of the multivariate portmanteau statistic for VARMA processes that
generalizes the well-known Box and Pierce [3] statistic for univariate ARMA
processes. The multivariate portmanteau statistic was studied by many authors,
namely by Chitturi [5], Hosking [13,14] and Li and McLeod [17]. The flexible
weighting of our test procedure allows us to assign different weights to the various
lags. Often in practice, only the low-order autocorrelations are of interest. With an
appropriate kernel, our test procedure will assign more weight to low lags and
should, therefore, lead to a greater power.

The organization of the paper is as follows. In Section 2, we give some
preliminaries. The new test statistic is introduced in Section 3. It is shown that its
asymptotic distribution under a correctly specified VARX model is N (0, 1) when the
estimators of the model parameters are y/n-consistent. This result contrasts strongly
with the multivariate portmanteau statistic whose chi-squared asymptotic distribu-
tion depends on the estimated VARMA model. The power properties of the test are
discussed in Section 4. The consistency and the asymptotic slope are studied for an
arbitrary fixed alternative in a static regression model. Furthermore, the asymptotic
relative efficiency in the Bahadur sense (ARE3g) of one kernel with respect to another
is also presented. Many of the currently used kernels in spectral density estimation
lead to an AREg greater than one with respect to the truncated uniform kernel. In
Section 5, we present the results of a small Monte Carlo experiment conducted in
order to study the exact level and power of the test for finite samples and to analyse
the impact of the kernel on the power. In particular, it is observed that with the
considered model, Hosking’s test and its normalized version defined from our
statistic with the truncated uniform kernel are in general less powerful than the new
statistic computed with other kernels than the uniform one. We conclude with some
remarks and the appendix contains the proof of our main results.

2. Preliminaries

Lety = {y,: teZ} and x = {x,: teZ} be two multivariate second-order stationary
processes of dimension d and m, respectively. Without loss of generality, we assume
that x is of mean 0.
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Definition 1. The process y is a multivariate autoregressive process with explanatory
variables, noted VARX(r,s), if there exists matrices A; of dimension d x d,

j=0,...,r, and matrices V;, of dimension d xm, j=0,...,s, such that A,#0,
V,;#0, and
A(B)y,=c+V(B)x,+u, teZ, (3)

where ¢ is the constant term, A(B) = Ao — >/ A;B/, V(B) = >;_, V;B/, B being
the usual backward shift operator and u = {u,: teZ} a strong white noise of
dimension d, where u, = (u,(1), ..., u;(d))’, that is the u, are independent random
vectors with mean 0 and regular covariance matrix X,. We suppose that all the roots
of det A(z) are outside the unit disk, where det denotes the determinant of a square
matrix and z is a complex variable.

In economics, representation (3) is often called the structural form of the model
when it represents the instantaneous and lagged effects of the endogenous variables
as suggested by the economic theory. However, from a statistical point of view,
representation (3) is unidentifiable without a priori information since the
premultiplication of the two members of (3) by any d x d regular matrix leads to
an equivalent (identical covariance structure) VARX representation of the process y.
Since det A(0) = det Ag#0 by assumption, we can premultiply (3) by A, Iand we
obtain an equivalent VARX representation in which A(0) = Ag =1, the d x d
identity matrix; it is called the reduced form of the model. Hereafter, we will suppose
that representation (3) is in reduced form, which is more convenient for LS
estimation [18, Chapter 10]. Also, predictions of future values of the endogenous
variables are usually made from the reduced form [10, pp. 352-353].

The spectral density f(w) of an arbitrary second-order stationary process a =
{a,,teZ} with mean 0 is defined by

J— :
f(w) = Z h; ra(h)eilwha we [77'[7 T[]v (4)
where I',(j) = [F(,_J,q(_/')};l‘q:l = E(aa;_;), jeZ, denoted the autocovariance at lagj
and we assume that E,ﬁo [Fapg(f)| <0, p,g=1,...,d. The fourth-order moments

of a will be denoted by uy(p,q,r,s) = E(a,( p)a,(q)a,(r)a,(s)) and the fourth-order
cumulants by Kpq(i,/, k, 1) = cam(a;( p),a;(q), ar(r), ai(s)), where p,q,r,s =1, ....d
and i,j,k,[,teZ.

The generalized least-squares (GLS) method is popular [18, Chapter 10.3] for
estimating the parameters of a VARX model. Often, there are linear constraints on
the parameters, for example parameter values that are fixed to zero. Therefore, we
suppose that the parameters satisfy the relation g = vec(A,V, Vy) = Ry, where A =
(A1, A2, ..., A), V=(V{,V;,.... V), and R is a known matrix of linear constraints.
In GLS, we first estimate y, say by %, and p = Rj. We make the following assumption
on the estimator p.
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Assumption A. The estimator f of § in the VARX model satisfies f — § = O, (n~'/?).

Another method is maximum likelihood estimation (MLE), which is described in
detail in Hannan and Deistler [9, Chapter 4]. Both MLE and GLS lead to /n-
consistent estimators of f.

Once a VARX model is estimated, the residual @, £ = 1, ..., n, can be computed. A

residual non-parametric spectral density estimator fn(w) is given by

n—1
@) =5 S KU/mICi)e ", (5

j=—n+1

where the residual autocovariance at lagj is Cu(j) =n"' 3L, @] ;, j=
0,1,...,n—1, and C;(j) = Cj(—j) if j=-1,...,—n+ 1. The function k(-) is a
kernel or a lag window. The parameter p, is a truncation point (smoothing
parameter) when the kernel is of compact support (unbounded support). We suppose
that p, —» oo and p,/n—0. The usual assumptions on the kernel are summarized as
follows.

Assumption B. The kernel k: R—[—1, 1] is a symmetric function, continuous at 0,
having at most a finite number of discontinuity points, such that £(0) =1 and
[7 K (z) dz< 0.

Using the rectangular or truncated uniform kernel kr(z) = I[|z|<1], where
I(A) is the indicator function of the set 4, we retrieve the familiar truncated
periodogram. Other kernels frequently used in time series analysis are given in
Priestley [22, Section 6.2.3].

3. The test statistic and its asymptotic null distribution

The hypothesis of interest is that the error process u is, as in Definition 1, a white-
noise process against the alternative of serial correlation of arbitrary form. More
formally, it can be written as

Hy: T,(j)=0, Vj#0, against
H: T,(j)#0, for at least one j#0.

In terms of the spectral density f(w) of u, Hy can be written as f(w) = fo(w),
we[—mn,n], where fo(w) =T',(0)/(2n), we[—=,x].

Our test statistic will be defined as a global distance measure between f; and f,.
For two multivariate spectral densities f; and f;, a distance measure between f; and
f, such that D(f,;f,) >0 and D(f;;f,) = 0 if and only if f; = f, is the following. In
this work, the triangular inequality is not needed. For a given covariance matrix
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I',(0), let us consider the following normalized quadratic distance:

T

Q*(fy; 1) :2n/ vec[f (@) — F2(w)] T, 1 (0) ®T, ' (0) vec[f; (w) — f2(w)] dw

-7

—n / " () () — £2()) T (0) (1 () — F2(0))T (0)] doo

—n / "l 0)(11 () — £2(0) TS (O)(f1 () — (@) o (6)

n

For a matrix A, A* denotes the transposed conjugate of A, that is A* = A’. The
second equality is obtained from the following result on matrix calculus [l1,
Theorem 16.2.2]:

tr(A'BCD’) = (vec(A)) (D®B)(vec(C))

for any matrices A, B, C and D for which the above product is defined. For a given
frequency w,

0., (f1;12) = vec(f1 (w) — () (T, (0) ®T, ' (0)) vec(f) (w) — f2(w))

is a normalized distance between the two matrices f;(w) and fy(w). The global
distance Q?(fy;f,) is obtained by integrating Q? (f;;f,) over all possible frequencies
in [—m, n]. When we compare the true spectral density f of u with the spectral density
fy of u under H,, we get the following result.

Proposition 1. Let Q*(f;fy) be the distance measure given by (6), where f is defined by
(4) and £y =T,(0)/(2n). Then, we have

Q1) =2 3wl ()T, (0T, ()T, (0)]. )
h=1

Proof. If we reapply the argument followed to obtain (6), we can write Q2 (f;fy) =

tr[[,1(0)(F(w) — fo ()T, 1 (0)(f(w) — fo(w))]. Since I, (0) is positive definite, by the
Cholesky factorization, a lower triangular matrix L exists such that T','(0) = LL/
and we have

02,(f:fo) = tr[(L/ (f() — fo())L) (L' (f() — fo())L)’]
= tr[(fL — Lo/ (2n))(fL — L/ (27))"],
where f; = L'fL. Integrating Q2 (f;f,), we find that

o0

03(f; ) = 2n / QA k) do = 3wl (0T, (O ()T, (0)] — d

h=—0

—2 3 I, ()T (0T, ()T (0)].
h=1



154 P. Duchesne, R. Roy | Journal of Multivariate Analysis 89 (2004) 148—180

We see from (7) that Q? is a global measure that takes into account all lags. With
similar calculations, we can show that when f is replaced by f,, we have
Q*(fuifo) = Y K2(j/pn) r[CL(HT, (0)Ca( )T, (0)]
J<|n=1]

— 2tr[[,1(0)CL(0)] + d

n—1
=2 )" K2(j/pa) t[CH()T,  (0)Ca( )T, (0)]
=1

+ tr[CHO)T, (0)Ca(0)T, 1 (0)] — 2 tr[I, 1 (0)C5(0)] + d. (&)

u

Now if we substitute C,(0) for I',(0) in (8), it follows from (A.12) and (A.14) in the
appendix that

n—

Q*(f:80) =2 > K2(j/pu) tr[CH(/)C7 " (0)Ca(/)C; ' (0)] + 0, (v/Pu/1). 9)

1

~.
I

The proposed test statistic is essentially a standardized version of Q* (fn; fo) and is
defined by

;0 R/ t{CH)C (0)Ca()C7 (0] — d* M (k) (10)
' a2V, (k)2 ’
where M, (k) and Vn(k) are given by (1) and (2). If p,— © and p,,/n—»O we can
show that p,'M,(k)— = [, K*(z)dz and p,'V,(k)— = [ K (z) d=.
Under some additional assumptlons on k and/or p, [24, p. 73], pnan(k) =
M(k)+ o(p;l/z). In particular, M, (k) and V, (k) are both of the order O( p,). It is
not difficult to see that
_ % Qz(fn? fo) — dzMn(k)
22V, (k)]
Also, in (10), we can replace M, (k) and V,(k) by p,M(k) and p,V (k) without
modifying the asymptotic distribution. However, they may lead to better finite
sample approximations.
Using kr and replacing M,(k) and V,(k) by p,M (k) = p, and p,V (k) = p,, we
obtain

+0,(1). (11)

_H),, — d’p,
where
p!l
Hy, =n Z (/)7 (0)C()C5 (0)] (13)

When p, = M is fixed with respect to n, Hy, is Hosking’s [13] multivariate version of
the Box—Pierce statistic. In Hosking [14], it is shown that H,, is equivalent to the
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multivariate portmanteau statistics proposed by Chitturi [5] and by Li and McLeod
[17]. Also, Hosking [15] described how the statistic H,; may be viewed as a Lagrange
multiplier test statistic for zero constraints on VAR coefficients. Thus, 7}, leads to a
standardized version of Hjy, whose asymptotic N(0, 1) distribution is independent of
the estimated model whilst the asymptotic chi-square distribution of Hj; depends on
the orders of the estimated VARMA model.

Our approach differs slightly from Hong’s approach since he compared a
standardized spectral density based on the autocorrelation function using for
example a quadratic norm. In the multivariate case, we decided to work with the
usual (unnormalized) multivariate spectral density (based on the matrix autocovar-
iance function), and we compare the spectral densities using a standardized norm. It
is possible to extend the univariate approach in different ways, and to define a
normalized spectral density using for example the pseudo-autocorrelation functions
{T,(k)T;'(0), keZ} considered in Chitturi [5], and the unstandardized quadratic
norm. However, to avoid complications, we preferred to work with the usual
unnormalized spectral density.

We now state our main result. The symbol — | stands for convergence in law.

Theorem 1. Suppose that 'y is a VARX(r,s) process as in Definition 1 and that the
Sfourth-order moments of w exist. Under assumptions A, B, and if p, — oo with p,/n—0,
the statistic T, defined by (10) has an asymptotic normal distribution, that is
T.,—LN(0,1).

The test statistic 7, can be used to test for independent errors when u is Gaussian or
to check for the hypothesis H, of no serial correlation. Note that in Theorem 1, we do
not assume that the innovations are Gaussian. Also, for a multivariate white noise, the
asymptotic covariance structure of the sample autocovariances involve fourth-order
cumulants and several authors suppose that they are zero in order to avoid
complications. Here, we do not need to assume that the fourth-order cumulants vanish,
the main reason being that our proof does not make use of the asymptotic distributions
of the sample autocovariances. The proof of Theorem 1 is written in two parts:

Part 1.
L n Y R pa) 1N 0)CU(J)CH(0)CL( )] — d> M, (k
7, = 2] (J/pn) tr[ (;dﬂ(/i)(k) (0)C, (/)] ()—>LN(0,1).
(14)
Part 2.

Z (/P {tr]C (0)Cu()C, (0)C, ()] — [ (0)Ca()C7 (0) TN}

= 0p(\/Pa/1). (15)
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In the first part, we establish the asymptotic normality of a version 7, of T},, which
is based on the unobservable process u. The VARX model does not intervene in this
part since T}, is completely defined by the innovation series uy, ..., u,. The asymptotic
normality is derived from the central limit theorem (CLT) for martingale differences
of Brown [4]. The observed data and the model are taken into account in the second
part. Since T, — T}, is 0p(1) from Part 2, Theorem 1 follows. The detailed proof is
presented in the appendix.

4. Consistency of the generalized test

We now investigate the power properties of the new test statistic 7, under fixed
alternatives. We consider a fixed alternative Ha of serial correlation of the error u in
the VARX model (3) that satisfies the following properties.

Assumption C. Let the correlation structure of the process u be such that I',()#0
for at least one value of j#0, 3, IIT.(/)||*< 0, and that the following cumulant
condition is satisfied:

SO kpanslt i+ j i+ D] < o0,
i j /

where p,q,r,se{l,...,d}.

When the process u is Gaussian the fourth-order cumulants are zero and
the cumulant condition is trivially satisfied. Linear processes which are
fourth-order stationary with absolutely summable coefficients and innovations
whose fourth-order moments exist satisfy also the cumulant condition. See Hannan
[8, p. 211].

For simplicity we restrict ourselves to the subclass of (3) in which there are no
lagged values of the dependent variables, that is, the following static regression
model:

y,=c+V(B)X, +u, teZ (16)

Note that when the errors are serially correlated, the usual estimators of the
coefficients in the VARX model (3) are in general inconsistent, but not in the static
regression model where ﬁ is still consistent for f, but potentially inefficient. In this
framework, we obtain the following result.

Theorem 2. Let us consider model (16), let T, be the test statistic defined by (10) and
suppose that Assumptions A and B are satisfied. Then, under a fixed serial correlation
alternative for the error process u satisfying Assumption C, say Hp, if p,— oo with
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pn/n—0, we have that
pl/z 1
T py Q(F40)/ 247V (K)]2, (17)

where f is the spectral density of u under Hp .

The proof is in the appendix. This result is a multivariate version of a part of
Theorem 6 in Hong [12]. For any fixed alternative Hx satisfying Assumption C,
Q*(f,f9)>0 and it follows from (17) that the statistics 7}, is consistent. The rate of

convergence of 7, toward infinity is given by n/ p,l,/ ?. Therefore, the slower pn tends to
infinity, the faster 7, will approach infinity and the resulting test should be more
powerful.

For a given kernel k, let T,(k) be the corresponding T, statistic. Since T,(k) is
asymptotically normal under Hj, the concept of asymptotic slope introduced by
Bahadur [2] can be used to compare two kernels k; and k; for a given alternative Hy .
Bahadur’s criterion is based on the rate at which the asymptotic p-value converges to
zero as the sample size n— oo. For the test 7,(k;), the asymptotic p-value is given by
ar, i) = 1 — @(T,(k;)), where &(-) is the cumulative distribution function of the
N(0,1) probability law. Now define S,(k;) = —2log[ar,,]. Using the relation
log(1 — @(a)) = —a?/2[1 + o(1)] for large a as shown in Bahadur [2], we have from
(17) that

%Sn(kl)—)P%Qé‘(f, f())/(zsz(k,)), (18)

under a fixed alternative as n— oo, p,/n—0. The Bahadur’s asymptotic relative
efficiency (AREg) of T,(k;) with respect to T}, (k2) is by definition the limit ratio of
the two sample sizes n; and n, required by the two test statistics 7,(k;) and T),(k»),
respectively, to attain the same asymptotic significance level under the alternative
Hpy. Therefore, S, (k1)/Sn(k2) — pl as ny,ny — co and if we take p,, = cn!, ve (0, 1), it
is easily shown by standard arguments that

AREy(T,(ko). T, (ki) = lim Z—; — [V (k) V (k2)] /. (19)
For example, AREg(kg; kr)>2.23, where kg and kr are, respectively, the Bartlett’
and the truncated uniform kernels (the different kernels used in that work are defined
in Table 1 of Section 5).

Many of the most popular kernels used in spectral density estimation deliver an
AREjg greater than one with respect to the truncated uniform kernel. A test with a
greater asymptotic slope may be expected to have a greater power for a fixed
alternative than one with a smaller asymptotic slope. However, as pointed out by
Geweke [7], there is no clear analytical relationship between the asymptotic slope of
a test and its power function. Therefore, for a given alternative, we cannot conclude
that a test with a greater asymptotic slope should be automatically preferred to one
with a smaller asymptotic slope without investigating further the finite sample
properties of the two statistics for the alternatives of interest. For example, with an
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Table 1
Kernels used in the calculation of the test statistic 7, defined by (10)

Truncated uniform (TR): 1, |zI<1,

k(z) = {O, otherwise

Bartlett (BAR): k() = { 11z}, |z]<1,

0, otherwise
Daniell (DAN): k(z) = sm(nz)7 -eR
Tz
Parzen (PAR): 1 —6(nz/6)* + 6|nz/6°, |z|<3/m,
k(z) =< 2(1 — |nz/6])°, 3/n<|z|<6/7,
0, otherwise
Bartlett—Priestley (BP): 9 i \/5/3z
k(z) = sin(ry/5/32) cos(my/5/3z) p, zeR.
sm222 | ny/5/3z

alternative of the form I',(jo)#0 and I',(j) =0, j>0 and j#jy, it is likely that
T, (k1) will be more powerful than T,(kp) with very small values of p, since the
kernel kg might assign a too small weight to the lagj,. However, with low-order
autoregressive models, I',( j) decreases rapidly to zero as j— co, and another kernel
than kt should be preferable in such situations. This point is illustrated in Section 5.
Result (19) which was derived under the assumption that the same value of p, is
employed for the two kernels provides interesting comparisons of different kernels.
However, it is easily shown that if for the first kernel we use p,;, while for the second
one we choose p,,», and if these two sequences satisfy the relation p, | = o( pn2), then
the AREjg of the second kernel relatively to the first one will be zero, meaning that
we should always prefer k; in such a situation. This is an additional argument
suggesting that we should use a sequence p, going to infinity at a slower rate.

5. Simulation results

In the previous sections, we have studied a new class of test statistics which have
interesting asymptotic properties. However, from a practitioner point of view, it is
natural to inquire for their finite sample properties, in particular their exact level and
power. To partially answer that question, we have conducted a small Monte Carlo
experiment. For a given bivariate VARX model described below, the new test
statistics are studied empirically and compared with Hosking’s [13] multivariate
portmanteau statistic defined by (13) and the modified version:

Pn

Hy =n Z (n =)~ tr[CL(/) 7 (0)Ca(/)C; ' (0).
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In VARMA models, the statistic H, is expected to have better level properties. See
Hosking [13] and Liithepohl [18, p. 152]. Although Hosking’s test was developed for
VARMA models, it is tempting to use it for VARX models even if its validity is not
yet established. For that reason, we included it in our simulation study. The power
values obtained with the asymptotical critical points are not necessarily valid but
those computed with the exact (empirical) points are correct and allows sound
comparison with the new tests.

5.1. Description of the experiment

The following VARX(1,1) model was used:
Yi=c+ Ay, 1+ Vox; + Vix,1 +ay, (20)

X, - (I)XXf,I + b,. (21)

The process {b,} is a Gaussian white noise N»(0,X;). Two cases were considered for
the error term a,: (a) a, = e, and (b) a, = ¢, — @se,_;, where {e,} is another white
noise N,(0,X,) independent of {b,}. The first case allowed us to study the level whilst
the second one was chosen in order to study the power. The correlation structure of
the a,’s depends on a parameter 0. The values of the parameters in (20) and (21) used
in the experiment are:

3.0 -0.5 0.5
C= 5 Al = )
2.0 —-14 -0.2
00 0.3 0.7 0.0
Vo= , Vi= ,
0.1 0.6 0.0 0.0

-1.5 12 0.180 0.046
(Dx = s 95 = ’
-09 0.5 0.0 0.026

1.0 0.75 1.0 0.5
e () 2= (21)

0.75 1.0 0.5 1.0
In the level study, 10000 independent realizations were generated from model (20)
and (21) for three series lengths (n=150, 100 and 200) and the computations were
made in the following way. First, the Gaussian white noise {a,} and {b,} were
generated independently using the subroutine GOSEZF from the NAG library. The
initial values {x¢} and {y,} were generated from the exact distribution of the
stationary Gaussian process {(y/,x!)'} using Ansley’s [1] algorithm. Then, the values
X:, ¥t =1,...,n, were obtained by solving the difference equations (20) and (21).
For each realization, the true model (20) was estimated by generalized least squares
as described in Section 2. The zero-valued parameters in Vy and V| were taken into
account by properly defining the constraint matrix R. The residuals a,, t =1, ...,n,
were obtained. With each residual series, the test statistic 7,, was computed for five

different kernels that are described in Table 1 at three nominal levels (1%, 5% and
10%). For each kernel, six different values of p, were considered. We have used
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pn = 2,3 and the three rates p, = [log(n)], p, = [3.57°2] and p,, = [3n°3]. Similar rates
are discussed in Hong [12]. They lead, respectively, to the values p, = 4,8, 10 for
n=2>50, p,=5,9,12 for n=100 and finally to p, =6,10,15 for n=200. The
multivariate version of Robinson’s [23] cross-validation procedure for determining
the bandwidth of a kernel spectrum estimator in univariate time series was also
employed. Besides establishing the consistency of the procedure for non-Gaussian
time series, Robinson also discusses a multivariate generalization and gives practical
solutions. In our simulation, we retained for p, the value of m that minimizes the
pseudo-log-likelihood defined by 377 [log det f’(”j)(i_/) thr{l(ij)f’(”j)(}»j)*l}], where
I(:) represents the periodogram, f’(’b(-) a leave-two-out-type smooth periodogram
and A; =2mj/n, j=1,...,n are the Fourier frequencies. The optimization was
performed for the values m = 2,3, ..., 20. Note that we cannot use kt with the cross-
validation procedure, since Robinson’s procedure necessitates positive definite
kernels. Finally, for each series of length n, for each kernel, for each value of p, and
for each nominal level, we obtained from the 10000 realizations the empirical
frequencies of rejection of the null hypothesis of independence. The results in per
cent are reported in Table 2. The standard error of the empirical levels is 0.099% for
the nominal level 1%, 0.218% for 5% and 0.300% for 10%.

The power analysis was conducted in a similar way. The two main differences rely
in the number of realizations (2000 rather than 10 000) and the process {a,} is MA(1)
rather than white noise. Three sets of parameter values were considered for the
MA(1) model.

5.2. Discussion of the level study

Results from the level study are presented in Table 2. As expected, the
approximation of the exact distribution by the asymptotic one improves in general
as the series length » increases. The approximation is reasonably good at the 5% and
10% levels but the proposed test considerably over-rejects at the 1% level. That
situation occurs since the finite sample distribution of the test statistic seems to be
skew with a long right tail. Hosking’s [13] test H and its modified version HM clearly
over-reject for small p,, and it seems that an additional adjustment is needed with
models containing exogenous variables. The H test gives better size results than HM
for large values of p,. Since the new tests have good level properties at 5% and 10%
levels, the rest of the discussion focuses on these nominal levels. Globally, the various
kernels and truncation values lead to similar results except for TR which over-rejects
slightly more when n = 50.

At the 5% level, all kernels (with p, fixed) lead to rejection rates close to 7% when
n = 50, between 5.5 and 6.3 when n = 100. For n = 200, all rejection rates are within
two standard errors of 5% for p, = 6,10, 15. The cross-validation leads in general to
rejection rates that are slightly higher than those obtained with the fixed values of p,
and the over-rejection tendency does not seem to decrease as n increases. At the 10%
level, the rejection rates are much closer to the nominal level when n = 50 or 100 but
the test under-rejects at n = 200. When n = 100 with fixed p,, all kernels lead to



Table 2
Empirical levels (in percentage) of Hosking’s test and of the test statistic 7, defined by (10) for different kernels, different truncation values, when the data are
generated from model (20) and (21)

o =0.01 o =0.05 o=0.10

p» BP BAR DAN PAR TR H HM BP BAR DAN PAR TR H HM BP BAR DAN PAR TR H HM

n=>50
2 27 27 2.7 2.7 23 85 98 64 64 6.5 6.4 6.5 28.0 30.3 103 103 10.4 10.2 104 446 472
3 25 26 2.6 2.5 23 49 62 65 64 6.5 6.4 64 187 21.7 102 102 103 10.1  10.7 30.8 35.1
4 24 25 2.4 2.4 24 34 50 6.5 6.5 6.6 6.6 6.5 140 18.3 10.2 10.1 10.2 10.3 11.0 253 30.7
8 23 25 2.4 2.4 2.8 1.8 42 6.8 6.7 6.8 6.9 7.4 7.0 140 109 10.9 11.1 11.1 123 13.1 232
10 25 24 2.6 2.6 3.0 1.3 4.1 7.0 69 6.8 7.2 8.0 5.1 13.1 11.3 11.1 11.4 11.6 124 9.8 21.9
CvV 29 32 2.9 2.8 NA NA NA 73 7.7 7.2 7.2 NA NA NA 11.5 122 11.6 11.5 NA NA NA

n =100
2 23 23 2.3 2.4 22 84 89 60 6.0 6.0 59 58 271 282 97 9.7 9.7 9.7 9.5 426 438
3 23 23 2.3 2.2 21 51 58 59 59 5.9 5.8 59 182 199 94 95 9.5 9.4 9.8 30.8 328
5 22 22 2.2 2.1 21 32 40 57 57 5.7 5.7 57 121 144 96 94 9.6 9.6 9.8 213 243
9 22 22 2.2 2.3 22 21 34 56 56 5.5 5.7 6.1 75 11.0 97 97 9.6 9.5 10.1 146 193
12 22 22 2.3 2.2 22 14 32 58 57 59 59 63 57 106 99 97 9.9 10.1 105 109 18.0
Cv 27 3.0 2.7 2.7 NA NA NA 67 75 6.6 7.1 NA NA NA 108 119 10.7 1.6 NA NA NA

n =200
2 26 26 2.6 2.6 22 80 82 6.1 6.1 6.0 6.1 54 265 271 94 94 9.4 9.3 8.7 412 418
3 25 26 2.6 2.4 1.9 48 50 59 59 59 5.8 51 178 184 9.1 9.1 9.0 9.0 85 293 302
6 21 23 2.1 2.1 1.8 28 32 53 54 5.2 52 51 107 120 86 8.7 8.5 8.5 9.0 193 2I.1
10 1.8 1.8 1.9 1.9 1.7 1.9 27 51 54 5.2 5.1 53 78 99 88 87 8.8 8.7 9.2 147 177
15 18 1.8 1.8 1.7 19 15 25 52 50 5.3 5.3 58 6.1 92 88 8.6 8.8 8.9 9.8 11.2 159
Cv 29 34 2.8 3.0 NA NA NA 67 177 6.5 7.4 NA NA NA 106 11.6 103 1.8 NA NA NA

081-8%1 ($00Z) 68 SisAipuy agpLmanngy o pumop | Loy ¥ ‘dusayon d

191
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rejection rates that are within two standard errors of 10%. The cross-validation
method tends to slightly over-reject at n = 50 but works reasonably well when n =
100 or 200.

5.3. Discussion of the power study

When the error term satisfies a, = e, — @ge,_1, for §#0, the errors are serially
correlated. For large values of o, the correlation is stronger and the test is more
powerful. We made simulations with several values of 6 >0, but we only reproduce
the results for 6 = 1.0. We computed the power using the asymptotic critical values
and the exact (empirical) critical values obtained from the level study. The results are
presented in Table 3 for n = 100,200 and the two nominal levels 5% and 10%. The
powers based on empirical critical values are given in parentheses.

Table 3

Power based on the asymptotic and empirical (in parentheses) critical values of Hosking’s test and of the
test 7, for different kernels and truncation values when the data are generated from model (20) and (21)
with MA(1) errors

o =0.05 o =0.10

p» BP  BAR DAN PAR TR H HM BP BAR DAN PAR TR H HM

n =100
2 51.8 52.0 517 516 37.7 742 748 603 604 60.1 606 476 849 855
(49.5) (49.5) (50.0) (49.4) (35.1) (35.1) (35.0) (60.9) (61.1) (60.5) (61.1) (48.9) (48.9) (48.6)
3 503 50.6 50.6 49.0 300 560 579 59.5 599 59.8 583 403 70.7 721
(48.3) (48.4) (48.0) (47.1) (28.1) (28.1) (27.5) (60.4) (60.8) (60.8) (59.4) (40.6) (40.6) (40.3)
5 434 450 43.6 416 242 37.1 40.1 52.6 547 52,6 50.5 328 528 56.2
(41.2) (43.3) (41.5) (40.0) (22.2) (22.2) (21.8) (53.6) (55.6) (53.8) (51.4) (33.1) (33.1) (32.6)
9 330 37.7 331 312 20.1 229 29.0 43.1 473 43.0 416 277 344 418
(30.2) (34.9) (30.7) (29.1) (16.9) (16.9) (16.6) (43.8) (47.8) (44.2) (42.4) (27.5) (27.5) (27.0)
12 285 327 288 271 179 16.6 243 378 435 376 362 252 258 383
(25.9) (31.1) (25.7) (24.3) (15.2) (15.2) (14.7) (37.9) (43.8) (37.8) (36.1) (24.7) (24.7) (23.8)
CV 522 539 51.0 49.0 NA NA NA 61.1 623 60.1 60.5 NA NA NA
(48.5) (47.5) (47.3) (43.4) NA NA NA  (59.6) (59.7) (58.7) (57.0) NA NA NA

n =200
2 87.8 88.0 874 87.8 757 949 951 912 91.3 91.1 913 828 978 978
(85.4) (85.3) (85.2) (85.4) (74.5) (74.4) (74.3) (91.6) (91.6) (91.7) (91.7) (84.5) (84.5) (84.5)
3 86.6 86.8 86.6 857 660 858 864 909 912 909 90.2 76.0 92.7 93.1
(85.4) (85.5) (85.3) (83.9) (65.7) (65.7) (65.7) (91.7) (91.6) (91.8) (91.2) (78.2) (78.2) (78.1)
6 772 80.1 774 754 477 63.5 649 839 864 841 824 588 755 77.0
(76.4) (79.1) (76.4) (74.5) (47.4) (47.4) (46.9) (86.1) (88.0) (86.5) (84.5) (61.2) (61.2) (60.6)
10 66.2 71.7 66.5 634 37.7 438 476 743 79.6 745 722 468 58.1 61.6
(65.7) (70.3) (65.6) (63.4) (36.6) (36.6) (35.9) (76.8) (81.7) (76.8) (74.5) (49.0) (49.0) (47.8)
15 545 637 550 522 312 322 400 651 727 656 63.1 421 457 534
(53.9) (63.6) (53.4) (51.4) (28.2) (28.2) (27.2) (68.1) (74.9) (67.9) (65.6) (42.6) (42.6) (41.2)
CV 875 894 848 855 NA NA NA 90.8 92.7 89.8 914 NA NA NA
(83.8) (84.1) (81.4) (79.6) NA NA NA  (90.7) (91.4) (89.6) (89.7) NA NA NA
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Results in Table 3 show that the power seems to behave in the same manner, for
all kernels, except the truncated one when p,, is fixed. Results for DAN, PAR and BP
are similar. When p,, is fixed, it seems that the DAN kernel is slightly superior. More
particularly, DAN and BP seem to behave in the same manner, and seem to be more
powerful than PAR. This phenomenon is perceptible with both the asymptotic and
empirical quantiles. We reach a different conclusion with the cross-validation
procedure, where BP seems to be more powerful than DAN and PAR. The BAR
kernel seems to be more powerful than the others. This is in agreement with Hong’s
[12] analysis for univariate ARX models.

For the new tests, the results based on empirical and asymptotic quantiles do not
differ considerably at the 5% and 10% levels. That difference decreases as n
increases, which is not surprising since the level is better controlled for large values of
n. Since Hosking’s test [13] over-rejects under the null hypothesis using the
asymptotic quantiles, we have the false impression that its power is higher for low
values of p,,. The results based on the empirical quantiles show that in fact Hosking’s
[13] test has a lower power than the proposed tests. Indeed, the test H and the new
test based on kt lead to the same power, based on the empirical quantiles, since they
are related by a linear transformation. In our study, HM seems to be slightly less
powerful than H.

Since the autocorrelation of the errors is of order one, we expect that the tests
assigning more weight to small lags will be more powerful that those assigning
weights to a large number of lags. This is confirmed by our study since a small value
of p, leads to a greater power. With the considered VARX model, the truncated
uniform kernel is inferior in our simulation for a fixed p,, but the difference among
the kernels is rather small when p,, = 2. The cross-validation procedure of Robinson
[23] seems to work very well here since the resulting power is higher than for fixed
values of p, that are moderately large. A very small value of p, gives a slightly better
power than the cross-validation procedure. However, without any knowledge on the
alternative hypothesis, the cross-validation seems to reveal some valuable informa-
tion on the shape of the spectral density, and the resulting power of T, is quite close
to the one obtained with p, = 2. In practice, the analyst could not want to
systematically use a very low value of p,, since that choice might ignore important
high-order autocorrelations. The cross-validation represents an objective choice and
it leads to a good compromise between errors of types I and II. Finally, in our
experiment, the truncated uniform kernel and Hosking’s tests H and HM are the less
powerful and the use of the new test based on another kernel than the truncated
uniform one seems appropriate, at least for the chosen model.

6. Conclusion

In this paper, new consistent tests of serial correlation are proposed in the VARX
model, when there is no information on the true alternative hypothesis. Our
approach relies on a comparison between a multivariate spectral density estimator
calculated with the kernel method, and the true spectral density under the null
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hypothesis of absence of correlation in the error term. The test generalizes the
multivariate portmanteau statistic of Hosking [13], which can be viewed as a test
based on the truncated uniform kernel.

In the simulation experiment, the properties of the new test were investigated for
several kernels and several values of the truncation parameter p,. Since our test
procedure relies on a multivariate kernel-based spectral density estimator, we also
applied the cross-validation method described in Robinson [23] for choosing p, when
the employed kernel is positive definite. For all kernels considered, the level of the
test is reasonably well controlled at the nominal levels 5% and 10% with series of
100 and 200 observations. The data-driven method for choosing p, works quite well
when n = 100 or 200 even if it tends to over-reject slightly at the 5% nominal level.
Bartlett, Daniell, Parzen and Bartlett—Priestley kernels lead to similar powers which
are systematically higher that the one obtained with the truncated uniform kernel, in
our experiment. Finally, the cross-validation procedure for choosing p, works well
here since the resulting power is high. That procedure provides an objective choice of
the smoothing parameter which takes into account the form of the spectral density
specified by the alternative hypothesis. In practical situations, the new test based on
Bartlett or Daniell kernels with p, chosen by cross-validation should be
appropriate.
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Appendix

Proof of Theorem 1. The following notations are adopted. The scalar product of
X;, Xs€R" is denoted by {x,,X,) = X)X, and the Euclidian norm of x, by ||x,|| =
V{X;,X;y. The Euclidian matrix norm defined by ||A[|z = tr(AA) = S a4
where A = (a;),, is also used. The notations O, and o, are the usual notations for
orders in probability. Let k,; = k(j/p,), v: = £, "*u, and X, = T',(0). The process
v = {v,;: teZ} has mean 0 and variance 1.

We will intensively use Cauchy—Schwarz type inequalities involving the trace (tr)
operator. The most useful are presented here. More details are given in Harville
(Chapters 5 and 6). Let A, B and C be arbitrary matrices, D and E be symmetric
positive definite matrices. Then we have

tr(AB)| </tr(AA") | /1r(BBY), (A1)

tr(D?) < (tr(D))?, (A.2)
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tr(DE) < tr(D) tr(E), (A3)
tr(AD) < \/tr(AA’) tr(D), (A4)
|tr(A'BAB)|<tr(A’A) tr(B'B), (A5)
tr[(A + B + C)(A + B+ C)'| <4[tr(AA") + tr(BB') + tr(CC')]. (A.6)

We now prove part 1. First note that C,(0) — £, = O0,(n~"/?) since E(C,;(0) — 6) =

0 and var(C,;(0)) = n~'(u(i,i,j,j) — 03). Then it follows that C,'(0)—X,"

= 0,(n"'/?). We will show that asymptotically, C,(0) can be replaced by X,
in (14).

Result A.1.
Z AC (0)CL ()T, (0)C, ()] — tr[E, ' Cu()E, " CL ()]}
= 0p(\/Pn/n).

To prove this latter result, the following lemma is needed.

Lemma A.1. Z" 1k2(]/Pn)Cv(j)C;(j) = Op(pu/n).

Proof. We have

C.()HC.(j)=n"? Z Vel Pvevs + 172 Z Z ViV Vs Vs

t=j+1 1=j+2 s=j+1
n—1 n
-2 ! /
+n E g ViV, VsV
t=j+1 s=t+1

Taking expected values on both sides, it is easily seen that E[C,())C,())] =
n=2(n— j)dly. We have that E[Z;:ll ke, Co(J)CL ()] = n~td Y7 (1 = j/m)k*(j/ pa)la
= O( pn/n). Lemma A.1 follows with a judicious choice of X,, since for an arbitrary
random matrix X,,, E(X,X],) = O(a,) implies that X, X|, = O,(a,). O

To show Result A.1, note that
C,(NC, (0)Cu(/)C, " (0) = C,(/)E, Cul NE; + CLNAnCul NE,
+ C(NE, " Cul ) Aun + C()) AunCu() Aun,

where C,'(0) — X! = 4,,. Then it is sufficient to multiply by k>(j/p,), to sum on j,
to apply the tr operator, use (A.4) and (A.5), p,/n—0 and Lemma A.1. O
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We now decompose Z;:]l K2(j/pn) tr[E, ' Cu(/)E, 'CL (/)] into two parts Aj, and
Aznl

n—1 n
5w we e - § kﬁ,{ > 4}
J=

1=+1

+ 722]( {Z Z W,,Y}
j=1 t=j+2 s=j+1

=n (Aln + A2n)a

where Zj; = ||v,;|| % ||v¢|| and wj,s = 2V, v > Vi, Vg )
Result A.2. p,'*(A1, — d*M,(k))— p0.

To show Result A.2, note that E(4,,) = d*M, (k) var(Ay,) = O(p2/n), and using
Lemma A2, var(du) <n {50 kylE(Si0 (Z5 = ))'7) = O(p3 /).

Lemma A.2. E[}"L, | (Z; —d)* = o(n).

Proof. First note that (Cr (22— d?) =0 (22— d*) +
23 i Yo =it (Z;, — d*)(Z;, — d*). Then Lemma A.2 follows since E[(Zf, —d?)7]
= E(|w||H* = a*, and

E(|w|[Y) = d»)d*> if s=1—],
E(ijt_dz)(zlgs_dz) _ (E([v[) ) J
0 elsewhere. [

This shows Result A.2. O

To complete the proof of Part 1, we have to show that (2d2V,,(k))71/2A2,,
—1N(0,1). To prove that result, let /, be such that /,/p,— co0 and [,/n—0. We

decompose Ay, as Ay, = B, + Z?:] Cin, where

I n t—1,—1
-1 2
=nt Y kg D2 D was g
j=1

=243 s=l,+2

n—2 n t—1
Cln:n_1 Z kﬁj{z Z ths};

j=l+1 (=42 s=j+1

1=20,+3 s=t—1I,

1 n —1
Cop=n’"! E:kﬁ/{ DS Wm}’
J=1
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I, 2,42 -1
-1 2
Cy=n § knj § § Wits 05
=1

t=l,+3 s=I,+2

l,+1 n
Cap=n"" Z knj{ Z Z wj,s}.

(=1 s=1+1

The following lemma is useful. It generalizes a result in Hong [12] that we
corrected very slightly since in his paper, he did not distinguish the two cases j| #/»
and ji = ja.

Lemma A.3. Let w%’]/;ll“ =20, (1) vy, ()vs,—j, (I3)vs,—j, (14). Then we have that
LBl mymymym, . .
) - { E(Wj:t];‘lw}'ztlzszz ’ 4)51‘1-,1‘255'1Jl*jzéé‘z-ﬁ*jl7 J1#)2,

111213[4 MMMz my L.
E(letm szrzsz )511;12551@2’ J1 =J2-

l] 1213[4 mymomsmy
E(Wilflsl 21252

Proof. The proof can be done case by case and is tedious but straightforward. We do
not reproduce it here. [

We then show the following result.
Result A.3. p,'>Ciy = 0,(1), i =1,2,3,4.

Proof. For Cy,, it is sufficient to show that E(Clzn) = o( pn). Squaring C},, breaking
the sum according to j; = j, and jj #,, taking the expected value and using Lemma
A.3, we can show that

n—2
E(C},) <4d’uy(| V) ( $ ) (Z k2> — o(py),

J=l+1 I+2

since p, ' > 12+1 k* -0 and p,/n—0. Similarly, E(C3) = 0(1”%—#”7%), E(C3) =

2 2
O + i) and E(cgn) =0ty O

Result A.3 shows that the only important term in the asymptotic distribution
of Ay, is B,. The proof of the first step will be completed if we can show
that ¢=2(n)B,—»1N(0,1), where o¢*(n) = E(B?). We will show later that E(B2)
=2d’p,V(k)[1 +0(1)]. The term B, can be written as the following average:

B, =n" Zt 20,43 By, where B, = 2vlt{ZJl'”:1 k;%jHjﬁf—ln—lvl—j}v and Hj, 1 =
Z’ b1 . Note that {B,,#,1} is a martingale difference since E(B,) =0

s= /,1+2
and E( n,|./H) =0, where & ,_; is the g-algebra generated by vy, s<t.

Lemma A.4. E(B2) = 4d*(1 — 21, —2) Y K
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Proof. E(B2,) =4 tr[zu | lende E(e v E(H],_,  Hj, 1)) since v, ; is inde-
pendent of H;,_; 1, 1<i,j</,. The result follows by evaluating the latter sum. [

From the previous lemma, we obtain that E(B;)=n Y, 3E(B;)=
2, V()1 + o(1)].

Result A.4. ¢~'(n)B,—LN(0,1).

Proof. To apply the CLT of Brown [4], we have to verify the following two
conditions:

@) o2 (m)n 2 37y, 3 E(BL (| Bu| > ena(n)]) >0, Ve>0,

(b) 072(“71)”72 Z?:2l,,+3 Bit - pl,

where B2, = E(B2,|7 -1).

We begin with (a). It suffices to show that Lyapounov condition is verified.
We have that |Bn,|<2||v,\|>< HZ nj Hj,j-1v.—j|l, and we obtain E(B})<
L6uy(||VI)E (||Zj vk i1V ]|| ) since v,; is independent of Hj, 1,
1<i,j</,. Note that E(\|x|| )Sdzlil E[x*(i)], where x = (x(1),...,x(d)) is a
vector of dimension d. Since the /th component of Z;”:l kﬁjij,,/”,lvt,j is given by

Zj” e 250 1,;; (1) {¥y—j,vi—j >, we will make use of the following lemma.

Lemma A.5. E([Zf”zl k2> §”+2 (D) Vs Vi i DY) = O(p2e2), independently of 1.

Proof. First by applying Lemma A.6 that follows to the variables
{k Zb 1+z vs(D) Vs Ve J =1, ..., L}, we get

£>(8

, b 4
Ur <Vr jy Vi— 1>
= v:l,,+2

I t—1,—1
<3 Z k:/ E( Z U‘v(l)<vs—jyvt—j>>
J=1

12
s=1,+2

We apply a second time Lemma A.6 to the variables {v,(/)<{v,;,v,.—;),
s=1,+2,...,t — I, — 1}, and we obtain

—l,— 4 —l—1 2
Z vs(1) s —j») Vi j>1 { Z [E(US(Z)<VS]'7V!J'>)4}1/2} :

s=l,+2 s=1l,+2

Since E(vs(l)<vx_j,v,_j>)4<,ui(||v||), it follows that E[> '~ ﬁ”ﬁ 5 (1 )(vq_j,v,_,>]
O(#?), independently of /. [
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Regrouping the various results, we obtain that

d t—1l,—1

2
E(B,) < 144dy(|IvI) Z{Z > (E (l><vsj,v,j>]“>”2}
I=1 = s=l,+2
=0(p,t).
Then, o~ *(n)n~* Y/, 3 E(B),) = O(n™"), since o*(n) = O(p,), and condition (a)
holds.

Lemma A.6. Let X, ..., X, be random variables such that E(X;)=0,i=1,...,n.
If EXig(X;,Xi,X))] =0, i#j,k,| for any function g, then E[>; 1X)]<

3(C E(XG)] Y

To show (b), it is sufficient to prove that ¢~*(n)E([B2 — 6%(n)]*) >0, where B> =
E(By| 7, 1) =n"*Y1_ 3B, We begin be writing B;, as B; = E(B;)+
4 Z?:l Dj,,, where

1, j—1
§ : § : 212/ /
Dlm =2 kmknjv —i i‘t—/,,—lI_IjJ*Inflvf*j?
=2 =1
1, t—1,—1 s1—1
— 4 ! v / .
Doy =2 E km‘ E , E Ve iVs1=iVg, V2 Vg, i Vi—is
i=1 s1=l,+3 s2=I,+2
t—1,—
D3m = E k § Vs lV V;VS i dld) A\
i=1 s=1,+2

]
Dy =d(t =2l =2) > k(v vii — d).

i=1

B

We now prove the two following lemmas.

Lemma A7 E(D,) = 0(°p;), E(D3,) = O(Cp,+1ip,), E(D3,)=0(ip;),

E(Dézlm) = 0( pn)-

Proof. For Dy, we have that E(D},)<4X), S, S/ kkkt{Eal(h)]
Ela 4([2)]}1/2, using Cauchy—Schwarz inequality, where a; = Hj,_;,_1v;—; and a;(/) =

D é"jrév (1){¥s—j,Vi—;>. Since Ela}(l)] = O(£), then E(D},,) = O(*p?). For Dy,

first note that

t—l,—1  s5—1

D2m— Z Zk4b1112 Z Z W21177

L,hLb=1 i=1 s=l,+3 r=l,+2
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where b = v,(I,)v,(l). Thus, we have
d 1, t—1,—1 si—1 so—1
2 8 1.hih m1m7 Ll mlmz
D2nt § E :knzb b Wlslrl isary
[],lz,ml,mzzl i=1 st=bL+3 rn=L+2 r=0+2
1,, ll 1
4 74 phbh pmm;
+2 E E : § knzlknnbt zlbt ir
L,bhymyma=1 i1=2 i=1
t—I,—1 s1—1 sp—1
Ll 1711)112
x Z Z Z W'lslrl 2822
s1,9=0+3 r=L+2 r=0+2
= Do1pt + Daops-

On taking the expected value of D,;,, and using Lemma A.3, we show that

E(Ds1,) = O(put?). Similarly, we can show that E(Dyy,) = O(tp?), and the result
for Dy, follows. For Dj,,, let us note that

1/2
t=l,—1 Y
Vv Io of
311[ E :k Viei E : Vs—iVsVsVs_i —dlg | Vi
s=l,+2
1/2
t—1I,—1 /
||V|| E :km E Vs— IV VsV S— ,_dld
s=l,+2

= O(tp;)
using Lemma A.8 that follows.

Lemma A.8. E(||>'~" i s (Ve ivivgV_ — d1y)|[}) = O(t).

Proof. Let c{’l" = VivVs_i(l)vs_i(m) — dd;,. We have that

1=l,—1 2
E E (VouiVivsV._ — dlIy)
s=l,+2 E
d t—1,—1 t—1,— s—1
_ lm lm lm
=E E : E : +2 st n
Im=1 s=1,+2 s=1,+3 ):/,l+2

= O(l)v

since

2 : _
E(Ci:n)2 {,u (HVH) (l L1, l) d %f l=m
ta([[V[Dpa(l, 1, m,m) if 1#m,

Sl II

lm lm { ||V1H Ul )2)—d] lfl:m’ F=s—1

elsewhere. [
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Finally, we show the result for Du,. Let us note that E(Dj,)=d*(t —2l, —
22 Sl K EW,_ v, i — d) = O(Ppy), since E(V,_ v, —d)> = uy(IIv])) — &> O

The following lemma that is easy to prove will be useful in the sequel.

Lemma A.9. E(Dy,Dy,5) =0, t —s>1,.

Then we have that B2 = o*(n) +4n2 Y1 | S/, 3 Dy and the validity of con-

dition (b) will be established once it is shown that E[p,?(n~2 Y1y, .3 Dju)’] -0,
j=1,2,3,4. This latter result can be obtained with a reasoning similar to the one
made by Hong [12] for deriving his formulas (A.7)—(A.10). Using Brown’s theorem,
the proof of the first part is completed. [

We now show the second part. To reduce the length of the proof, we restrict ourselves
to the following model:

Y. =c+ Ay, |+ Vox; +u,. (A.7)

The proof for the general model (3) is in all points similar, except that the algebraic
developments are heavier.
First, we decompose
n—1

Y ky(tCa(NCH()] = tr[CuNCL ()] (A.8)

=1

~,

Since tr(AA’) — tr(BB') = tr[(A — B)(A — B)'] + 2 tr[B(A — B)'], it suffices to show
the two following results.

Result A.5. 3777 ke tr(Co( ) — Co())(Cal /) = Col)))'] = Op(n™).
Result A.6. Y777 ky; tr[Co(/)(C( ) — Cul(1))] = 0p(y/Pu/m).

Let 4, = (e—c)+ (f\l Ay, + (\70 —Vo)x, and §,, = E;l/zim. Let also o, =
u, — ;In,, and v, = v, — },,. First we prove result Result A.5. We can write

n n
Cs(j) = Co(j) = —n”! Z ?ntvlrfj —n! Z V’j};,tfj

=j+1 =j+1

n
Y (A.9)

t=j+1

Using (A.6), we have that

Z e tr[( — C.()N(Cs()) = Co( ) <4(Ey, + Ery + E3,), (A.10)
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where

n—1 B n n 4
Ewwdzﬁm(znmJ(ZwM)]
j=1 L

=j+1 =j+1

n—1 B n n 4
z%w*zam(ZWmJ(zw%J]
=1 I

=j+1 =j+1

n—1 i n n !
Ey=n> lotr (Z m;,,,-) (Z m;,,j> ]
J=1 L

=j+1 =j+1
Then we show the following result:
Result A.7. Ej, = O,(n"), j=1,2,3.

Proof. Let us begin with E}, that we bound in the following manner using (A.3)
and (A.6):

Eu<4t@ — o/, @ — OlF + 4t{(Ar - A)'E (Rs — AP,
+ dtr[(@ — o)L, (& — ¢)|Fsn,

where

n—1 [ n n !
— 2 -1 ! -1 !
Fi,, = E kw» tr| | n Vil |n E Vi ,
Jj=1 L t=j+1 t=j+1

n—1 M n n !
r= S (3 v ) (o 35 v )|
Jj=1 L

t=j+1 t=j+1

n—1 [ n n !
P S| (3w ) (0 3w ) |
Jj=1 L

r=j+1 1=j+1

The result for Ej, is based on the following lemma.
Lemma A.10. Fi, = Oy(pu/n), Fou = Oy(1), F3y = Op(pu/n).

Proof. The result for Fj, is immediate noting that E(|F,|) = dn~? Z;Z]l (n—jky; =
O(p,/n). To show the result for F,, we write the model (A.7) as y, =¢o+
W(B)Vox; + ¥(B)u,, where ¢ = (Iy — Ay) 'c, ¥(B) = (I, — A\B) "' =3, A/ B/,
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with ||A;||< 1. We have that

n

n n
n! Z y,f,lv;fj:n’l Z cov'[,j+n71 Z (Y(B)Vox,-1)v,_;

=j+1 =j+1 =j+1

71
E ut 1 1 —j

—J+1

and, therefore, F>, <4(G1, + Gon + Gs,), where

n—1 n n !
Gy, = Z kﬁj trl(n‘1 Z cov;j> (n_l Z cov’,j> ],
=

=j+1 =i+1
n—1
Gon = Z ke
=
/!
[( ! Z B)Vox;, 1) )( ! Z B)Vox; 1) 1>1
t=j+1 t=j+1

G3n=§ kﬁjtrKn“ > <‘1'<B>u~>v;,») ( > <w<g>.,,1>v;,.> ]
j=1

t=j+1 1=j+1

We note that Gi, = Oy(pn/n), since ¢o 3¢,y v, Vs—j¢p = Op(n). With Gy, we have
that

n—1 n
G =7 3k tr{ > v PP (BVoxi—)v, ) (F(B)Vox,-1)v, )

:j+1

n t—1
+2) 0y V/z__,'ij((‘l’(B)VoxzI)V'z__;)((‘l’(B)VoXs1)V§__;)'}~

s=j+l j+2

It follows that E(|G2,|) = O(pa/n) and G, = O,( p,/n). The proof for G, is based
on the following lemma, that generalizes Lemma A.1 of Hong [12].

Lemma A.11.

E{tr

<Ain+ Ao || A2V,

(i <‘P<B>u,_1>v;,-> (Z (¥(B)u,1)v, )H
t 1

t=j+1 =j+
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Proof. We note that

(ijwwwnwh)<ijwwmmwu>

t=j+1 t=j+1
n 5 )
= > v IPI¥(Bu, ||
s=j+1
+2 Z Z i Vs CP(B)uy, W(B)u_y ).
t=j+2 s=j+1

We note that
<‘P(B)ll[_], ( uS—1> = Z uz —j1— 1 A]l) ( )uS —jh—1

Jj1=0

+ Z u:,j171 (Aljl )/(Aljz)u~V—_f2—l .
J1#)2

Let us consider the first term. We have that

E(|[vij P B)ur1 1)< Y Everl w1l IA] (APl

Jj1=0

5
< pa(IMIDIZL D A <40
>0

Finally, we have that
E(v,_ Vs i <¥(B)u,_1, ¥(B)uy,_1))
= ENV vt (A (A uyy-]

120

+ Z E t]VS /ur —j1— I(A]l) (A )uS—jz 1]
J1#)2

<2fA[FY r(Z).

Regrouping the results, we obtain

{ < 12 Bu,_1) )(nl z": (W(B)u,l)vgjﬂ}

<n A+ Ay | AP

and the proof of Lemma A.11 is completed. [

Note that it follows from Lemma A.11 that

n n ! )
E{tr (Z yrlvlf—/) <Z YIIV;—./) ‘| }<A1n+A2n2||A1||é("—l). (A.ll)

(=j+1 1=j+1
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With Lemma A.11, we can conclude that Gj, is bounded in probability. Regrouping
the results for Gy,, G2, and G3,, we conclude that F, = O,(1).

It is easy to verify that E(|Fs,|) = dn 'E(||x;|* ) > "1 —]/n)
the strict exogeneity of the x, process and the result for Fs, follows.

= O(pn/n),
O

by

The proof for Ej, is therefore completed. The proof for E», is similar. It remains to
study E3,. We remark first that [Es,|<> /" RS )
lemma whose proof is straightforward is needed.

The following

Lemma A.12. n~ ! Y7 O,(n1).

This shows that Ej, = O,(p,/n*) = 0,(n"") and the proof of Result A.5 is
completed. [

~ 2
1 ||)’ntH =

To prove Result A.6, we write Zj’.’;ll k,zl/ tr[C,(/)(Cs(j) — Co( /)]

Eg,, where
0!
E \O\P - ?mV, -
t=j+1 t=j+1

n—1
Ey = Z k;%] tr
=1
r i
n n
—1 / -1 &
3w ) (S i) |
L t=j+1

_E4n - ESn +

n—1
Es, = Z kﬁj tr
=1

t=j+1
" ’
2 -1 -1 Y
Eq, = Z k tr ( Zl Vth J) (l’l Zl ‘}7,1;’)/”7tj> ‘|
=j+ =j+

We complete the proof by showing that
Result A.8. E;, = 0,(\/pu/n), j=4,5,6.

Proof. Let us first consider E4, that we decompose it in the following manner:
Ey, = Fy, + Fs, + Fg,, where

/

mzmd‘zmxm<wzmﬂ

J=1 1=j+1 1=j+1

n—1 B n i
p=S (o 5w ) (50 a0 S|

=1 L 1=j+1 =+l

A
o= S| [ 32w ) (vt 3 ) |
t=j+1 t=j+1
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Note that

|Fanl < n2{tr[(@ — ¢)'Z, (@ — o)}

Sel( )]
Bl )

By Cauchy-Schwarz inequality, since E(tr[(Y7,, vov, )31 vivi))]) = O(n)

and since we also have that E(tr[(30;, v, ;) (>0 v, ;)]) = O(n), we can

1/2

conclude that Fy, = O,( p,/n*/?). Similarly, we have that

|F5n|< {tr[(Al — Al)lz;l([\l _ Al)]}1/2n72

n—1 n n ! 1/2
j=1 t=j+1 t=j+1
n n ! 172
X {tr[< Z yt—lvltj> <Z Yt—1V;j> ] } :
t=j+1 t=j+1

n—1 n n ! 172
E Z kil{tr [( Z vzv,t_j) ( Z Vtv;_j> ‘| }
=1 =1 1=t
n n ! 172
X {tr[<z y{—lvltj> <Z YI—IV;]) ] }
1=j+1 r=j+1

n—1 n—1
<4 Y ey Pal Y G
J=1 J=1

Since

and using (A.11), we have that Fs, = O,(p,/n*/* + 1/n). Similarly, using the strict
exogeneity of x,, we can conclude that Fg, = O,( p,/n*/?). It follows therefore that

Ey, = op(p,l,/z/n) since p,/n—0. For Es,, note that

n—1 n n / 1/2
e (Sl (30 ) (35 0) |}
Jj=1 t=j+1 t=j+1

n—1 n n ! 172
AS | (3 v ) (32 v ) |}
j=1 =j+1 =j+1
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We can conclude that Es, = 0,( p},/ : /n), since it is easily shown that

n—1 n n l
Z kﬁj tr[(n_l Z Vt%,zj) (”_] Z Vri’:,,,j) ] = op(n_]).
=1

1=j+1 1=j+1

For Eg,, we proceed in a similar way showing that

n—1 n n l
et {S gl (30w ) (50 )|
J=1 t=j+1 =j+1

: ) ) N 12
5 o PN
X {Z k”] tr (Z 'Ynt')’%,tj) <Z 'Vnr')’:z,tj) ] } :
= t=j+1 t=j+1

We can then conclude that Eg, = o,,(p,l/z/n). O

1/2

By adding and subtracting tr[E;'C/ (/)X 'C,(/)] in the left-hand side of (15) and
by using Result A.1, the proof of part 2 will be completed if we can show that

3 ki (1€ (0)CH(/) € (0)Ca())] — tr[E, €, (), ' Cul/)])
1

= 0p(\/Pu/n). (A.12)

From (A.8), and Results A.5 and A.6, it is sufficient to show that

~.
Il

Z (€ (0)CH() €7 0)Ca())] = trfE, ' C)E, ' Cal )
= 0p(\/Pu/1). (A.13)

We already know that C;(0) — £, = O,(n~"/?), which implies that
C;'(0)—Z,' = 0,(n'7), (A.14)

and (A.13) follows using inequality (A.1). O

Proof of Theorem 2. We have that Q*(f,;fo) = 2n [™_tr[[;(0)(f, — £0)' T, (0)(, —
fo)] do. Since f, — fo = (f, — f) + (f — fo), a direct calculation leads to

n

O*(bita) =Q*(fifo) + 4n [l O ~ )T, O)(F, ~ 1)) do

-7

+ 2= / ’ tr[C, 1 (0)(f, — )T, 1 (0)(f, — f)] do.

By showing that [ tr[C; 1 (0)(f, — )T (0)(f, — f)] dow = 0,(1), we obtain from
Cauchy-Schwarz inequality that 47 [*_tr[I", ' (0)(f — £o)" T, ' (0)(f, — f)] dw = 0,(1).
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Result A.9. [" tr[[";'(0)(f, — )T, (0)(f, — )] dw = 0,(1).

Proof. Since tr[A(B+ C)"A(B+ C)]<2tr[AB*AB] + 2 tr[AC AC|], where A is
symmetric and non-singular, using the decomposition f, — f = (f —f)+{ —1),
we can write

[l 06 -0 o) - 0 do

2/3mm%m®—hfm%m®—hn
+ [, (0)(F, — )T, (0)(F, — )]} do.

Now, Result A.9 follows from the next two lemmas. O
Lemma A.13. [* tr[[,'(0)(f, — £,)'T, " (0)(f, — £.)] dw = 0,(1).

Proof. Using f, —f, = o kyCa()) — Cu(j)]le ™| we have that

j=—n+1

Inequality (A.10) provides an upper bound for > 7~ k2, tr[(Cs(J7) — Co())(Cy(j) —

j=1"nj
C.(/))']. The sum for negative j can be bounded in a similar way and it is
easy to deal with the term corresponding to j=0. Here, Result A.7 in
the second part of the proof of Theorem 1 does not necessarily hold since
we now are under the alternative hypothesis. More precisely, we have to treat
differently the Ej,’s, j = 1,2, 3, under the correlation structure given in Assumption

C. However, by Cauchy-Schwarz inequality, we obtain that |E},|=

- 2, - - - <2
B < (S5 ) (! Sy VAP (350 3wl [7)- But we have n™! 35 [l =
0,(n"), since

[l | < 4(& = )2, (& =€) + 4 tr[(Vo = Vo)E, " (Vo = Vo)lIxi|I7,

and in the static model (16) the LS estimators are /n-consistent. Thus, we have
E\, = Op( pn/n) and the terms E», and Ej3, can be dealt with in a similar way. This
completes the proof of Lemma A.13. O

Lemma A.14. [* tr[[,'(0)(f, — )°T, " (0)(f, — f)] do = 0,(1).

u
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Proof. We can write f,—f= ﬁZ\anfl (ki Cu(j) — Tu(j)]e 7o — *Z\]pn |
I,(j)e 7® and after integrating, we find that

/ "l O)F, — 0T (0)F, — )] doo

L > a0 (kyCul)) = Tu() Ty (0) (ki Cu(f) = Tl )]

T
|jl<n—1
o > ulry O On)

Under Assumption C, we have that } -, tr[L, 1 (0) (/) T, (0) T ()] = 0,(1). Tt
remains to verify that the first term in the right-hand-side member is also o,(1).
However, using k,;C,(j) — Lu(j) = (knj — DIW(j) + ki (Cu(j) — Lu(j)), we can

show that

tr[, 1 (0) (kwCu( ) — Tu( )T, (0) (ki Cu(j) — Tul))]

[jl<n—1
<2 ) (ky— 1)t (O () T, (0)Tu( /)]
[jl<n—1
+2 ) k0 (0)(Cu()) — (1)) T, (0)(Cu( ) — Tul()))-

[jl<n—1

By an argument similar to the one used by Hong [12, p. 861], the first term in the right-
hand side is o(1) by Lebesgue dominated convergence theorem and Assumption A on the

kernel k. For the other term, note that tr[[",'(0)(C,(j) — Tu(/))'T;, " (0)(Cu(j) —

u
r.(j) = Zt 1 Z (Cos(J) — Fv,st(j))za where C, (/) and I'y5(j) are the (s,1)-
components of C,(j ) and I',( ), respectively. From a general result for the variance of
cross-covariances, see for example Hannan [8, pp. 208-211] or Chitturi [6]. The variance

of Coyu(j) is given by var(Cpu(/)) =n IZ\ il<n—1 (L= il/m)[F o (i + )T o (i = ) +
Kyt (0,/,0,i 4 j)]. From Assumption C, we have that sup;. var[C,u(j)] = O(n™").

Therefore, ngn_l kﬁjztdzl Zle [Cosi(J) = Tpse(J )] = Op(pn/n) and the proof of
Lemma A.14 is completed. Consequently, Result A.29 holds and Theorem 2 is
proved. [J
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