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We study the evolution of time-dependent fluctuations and particle production in an expanding dS
and contracting AdS universe. Using the functional Schrodinger formalism we are able to probe the
time-dependent regime which is out of the reach of the standard approximations like the Bogolyubov
method. In both cases, the evolution of fluctuations is governed by the harmonic oscillator equation
with time-dependent frequency. In the case of an expanding dS universe we explicitly show that the
frequency of fluctuations produced at a certain moment diminish in time, while the distribution of the
created particles quickly approaches the thermal radiation of the dS space. In the case of a contracting
AdS universe we show that the frequency of fluctuations produced at a certain moment grow in time.
Nominally, the temperature of radiation diverges as the Big Crunch is approaching, however, increasing
oscillations of the spectrum make the temperature poorly defined, which is in agreement with the fact
that AdS space does not have an event horizon which would cause thermal radiation. Unlimited growth of
fluctuations indicates that an eventual tunneling into AdS vacuum would have catastrophic consequences
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1. Introduction

Space-times with the constant vacuum energy density play
very important role in modern cosmology. It is believed that the
primordial inflation was driven by the cosmological constant or a
scalar field vacuum energy density of positive sign. As the recent
observational data indicate, our late time universe may again be
dominated by the (positive) vacuum energy density which drives
the accelerated expansion of the universe. Both primordial and
late time phases of acceleration can be effectively described by de
Sitter (dS) space-time. On the other hand, as indicated by string
theory and other generic considerations [1], it may happen that
the true vacuum energy density of our universe is negative, which
is described by anti-de Sitter (AdS) space. In that case, our uni-
verse will in the future undergo a phase transition from dS to AdS
space.

dS space describes an expanding universe. Time-dependent
gravitation field usually leads to particle production. Particles that
propagate in the background of a time-dependent metric of an
expanding universe get excited and radiation is produced. For ex-
ample, this is the mechanism behind particle production in FRW
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universe. In addition to this, dS space contains an event horizon
(called dS horizon, not to be confused with the particle horizon).
Using an analogy with the event horizons in black hole space-
times, one could expect that the produced radiation of dS space
is thermal with the constant temperature which is proportional to
the value of the cosmological constant A. Indeed, such a result may
be obtained using standard approximations like the Bogolyubov
method or tunneling formalism. However, time-dependent evolu-
tion of radiation is beyond the reach of these standard approxima-
tions. The main goal of this Letter is to study these time-dependent
effects. We will use the recently developed functional Schrédinger
formalism [2] to study a scalar field propagating in the background
of an expanding dS space. We will show that the evolution of
fluctuations (excitations) of the scalar field is governed by the har-
monic oscillator equation with the time-dependent frequency. We
will solve the equations of motion to find the time-dependent
wavefunction for the system. If we set the wavefunction of the
system to be in the ground state at a certain moment of time, the
particle content at some later time will be given by the wavefunc-
tion overlap between the initial and final state. This wavefunction
overlap will give us the time-dependent occupation number of
produced particles. In cosmology one is very often interested in the
power spectrum, i.e. in power contained in a mode of a certain fre-
quency, but this quantity is very closely related to the occupation
number of particles in a given mode [3]. We will show that when
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a mode of ceratin frequency is created it does not automatically
follow a thermal distribution with the temperature proportional to
the value of the Hubble parameter (which is at late times propor-
tional to the cosmological constant 1). Modes whose frequencies
are much larger or much smaller than the Hubble parameter do
not follow a thermal distribution, while those of the order of the
Hubble parameter do. As the high frequency modes get stretched
by expansion, and their frequencies become comparable to the
Hubble parameter, they become thermal.

We will then apply the same technique to AdS space. In the
cosmological context, AdS space may be used to describe a collaps-
ing universe. Unlike dS space, AdS space does not contain an event
horizon, so we do not expect thermal radiation with the constant
temperature. However, a time-dependent metric may again lead to
particle production. The fate of the universe which tunnels into
the true vacuum which is AdS was studied in [4,5]. There, it was
argued that after a short period of expansion, the universe starts
recollapsing and ends up forming a black hole. Here, we study the
time-evolution of the scalar field propagating in the background of
AdS space and our findings support these arguments. Fluctuations
of the scalar field produce more and more modes of high frequency
at late times. The best fit temperature of the produced particles
diverges at the time of the Big Crunch. However, towards the Big
Crunch, oscillations of the spectrum grow in amplitude making the
temperature less and less defined.

2. Friedman-Robertson-Walker space-time

To setup the formalism, we will first consider the standard
Friedman-Robertson-Walker (FRW) space-time. The action for the
scalar field propagating in the curved space-time background
given by the metric tensor g, is

1
S=/d4x«/—g§g‘“8uq§8uq). (1)

Decomposing the (spherically symmetric) scalar field into a com-
plete set of real basis function denoted by {fi(r)}

@ =" a(t) fi(r) ()
k

we want to find a complete set of independent eigenmodes {b}
(which are linear combinations of the original modes {a;}) for
which the Hamiltonian is a simple sum of the independent modes.
The total wavefunction then factorizes and can be found by solving
a time-dependent Schrédinger equation of just one variable.

The metric for the spherically symmetric FRW space-time is

ds? = —dt? +R(t)2< —3 +r2dQ ) (3)
where
d2? = do% + sin® 0 d¢?, (4)

R(t) is the scale factor, while k = —1, 0, 1. Using Eq. (3) and Eq. (1)
we can write
R3(f)

S=2 d drré ———
”/ﬂ/rJ_F R2(0)

Using the mode expansion in Eq. (2), we can rewrite the action

P@W+l @@]6)

das

3
=/dt[—R (t)
2

where a(t) = da(t)/dt, and M and N are matrices that are indepen-
dent of R(t) and are given by

) ) R(®)
a(t)xM a(t)p + Ta(t)kak’a(t)k’] (6)

My =4m | drr? — —=— fifi, (7)

N
Ny = 47 /dr r’V1—kr2 fl fi,. (8)

For our procedure we will use the fact that the matrices M and N
are symmetric, while their exact form will not be needed. From
the action (5) we can find the Hamiltonian, H, and write the
Schrédinger equation

0 (a, t)

H(ay, )y (ag, t) =i ——— ot (9)

The wavefunction ¥ (ag,t) is actually the wavefunctional since
ai(t) is a function itself. Therefore, this procedure is the functional
Schrodinger formalism. Defining ITj, the momentum operator con-
jugate to a(t)y, as

I, = —i 10
k 3a(t)y ( )
the Schrodinger equation can be written as
1 R(t) L0y
————TI (M) [Ty + —at)yNat)y |y =i—. (11
[ T k(M) e + 5 A(OKNkk ()I<:|W T (11)

The principal axis transformation guaranties that M and N can
be simultaneously diagonalized. Therefore, the Schrodinger equa-
tion (11) decouples into an infinite set of decoupled equations. The
single eigenmode Schrodinger equation is

1 92 K W(b t)

— — + —R*O)b? |y (b, t) = iR3(t 12
[Zmabz b 1Y (b, t) =iR° () —— (12)
where m and K denote eigenvalues of M and N, and b is the eigen-
mode (which is a linear combination of the original modes ag).

Re-writing Eq. (12) in the standard harmonic oscillator form
(with the time-dependent frequency) we obtain

19 2 v (b,n)
|32 * 3P0 [y, =17 (13)
where
w*(n) = R4(t>-cooR4<t> (14)
and

; d

t/
_ / e (15)
0

Obviously, wg = \/g is the initial frequency of the mode at the
time of its creation. The exact solution to Eq. (13) is given by [6]

‘ 1/4 . .
v (b, n) =e’°‘(”)<n£p2> exp[?(% + #)bz] (16)

where p, =dp/dn and p is given by the real solution of the ordi-
nary (though non-linear) differential equation

2 1
pn + @ Mp =5 (17)
with initial conditions
1
0 =—. 0 =0. (18
P w0 Pn )
The phase « is given by
1 / dn’
n
an) = / (19)
7 P2’
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Consider an observer with detectors that are designed to reg-
ister particles of different frequencies for the free field &@. Such
an observer will interpret the wavefunction of a given mode b at
some later time in terms of simple harmonic oscillator states, {¢},
at the final frequency, . The initial (t = 0) vacuum state for the
modes is the simple harmonic oscillator ground state

mwo 1/4 2
(p(b) — <T> e—mwob /2' (20)

The number of quanta in eigenmode b can be evaluated by decom-
posing Eq. (16) in terms of the states and evaluating the occupa-
tion number of that mode. Writing the wavefunction for a given
mode in terms of simple harmonic oscillator basis at t = 0 is given

by

Y(b, )= ca(t)gn(b) (21)
where
= [ dbgi .0 (22)

which is an overlap of a Gaussian with the simple harmonic os-
cillator basis functions. The occupation number at eigenfrequency
o (which is the frequency at the final time of the measurement
corresponding to ty), is given by

N(t.@) =Y nlc|*. (23)

The occupation number in the eigenmode b is then given by
(see Appendix A)

- 2 1 2 2
o) (5] e

This occupation number represents the cumulative number of par-
ticles produced by the time t;. To extract the temperature corre-
sponding to the occupation number distribution, we can compare
Eq. (24) with the Planck distribution

1
Np(w) = ofo _1 (25)

where g is the inverse temperature.
3. Particle production in de Sitter space-time

We now consider particle production in the background of dS
space-time. The metric for dS space in static coordinates can be
written as

2 2\ !
ds® = —(1 - 17> de® + (1 - 1_2> dr? +r?de?. (26)
The constant [ is called dS radius. Obviously, at r =1 the metric has
an event horizon. This horizon is not to be confused with a particle
horizon. The particle horizon represents the largest comoving dis-
tance from which light could have reached us by now, while the
event horizon is the largest comoving distance from which light
emitted now can ever reach the observer at any time in the future.
Since black hole solutions with an event horizon are known to pro-
duce thermal radiation, it is expected that dS space can produce
thermal radiation as well (for some counterarguments see [7,8]).
We can also write the metric for dS space in non-static coordi-
nates. For this purpose, we set k =0 in Eq. (3). The solution to the
Einstein’s equations with a positive cosmological constant A ~ 1/I

o"H=234

0.4}
0.3}
0.2}

0.1
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Fig. 1. The occupation number of produced particles, N, as a function of dimension-
less time, tH, for various values of the (final) dimensionless frequency @® /H, in
dS space. The curves are higher for lower values of @® /H (higher wavelengths). At
some finite time, the occupation number reaches the plateau and apart for some
diminishing fluctuations remains constant at late times.

give the expansion factor R(t) ~ exp(Ht), with H (the Hubble pa-
rameter) given late times by

H=./\/3. (27)
Therefore, the time-dependent dS metric is given by
ds? = —dt® + R%(t)(dr? + r? d2?), (28)

with R(t) ~ exp(Ht). From here, we proceed like in Section 2.
Since k = 0, the matrices M and N, Eqgs. (7) and (8) are now

M=47r/drr2fkfk/, (29)

N:4n/drr2f,;f,g,. (30)

The occupation number is given again by Eq. (24).

We comment here on variety of frequencies we use in this
context. A frequency certainly depends on the time evolution pa-
rameter that an observer is using. The Schrodinger equation (13)
is written in terms of 7, so w is the mode frequency with respect
to 1 and not with respect to time t (which we denote with »®).
From Eq. (15) we see that the frequency in t is R(t)~> times the
frequency in 7. Since N is expressed in terms of @, which is the
frequency at the final time corresponding to t¢, we have

@O =e 3l . (31)

From Eq. (14) and Eq. (31) we see that the final frequency of the
harmonic oscillator states is

@O = woeHir, (32)

This means that the frequency of the mode whose initial frequency
was wg decreases with time, as expected. The physical frequency
measured by the detector at some time ty is @®. Expression (32)
says that a ceratin fixed value of ®®©, at some late time, comes
from a mode of much higher original frequency wg, which was
subsequently stretched by the expansion.

In Fig. 1 we plot the occupation number of produced particles,
N, as a function of dimensionless time, tH, for different values of
dimensionless frequency @®/H. The curves are higher for lower
values of ®®/H, which means that the occupation number in
lower frequencies (higher wavelengths) is higher. At some finite
time, the occupation number reaches the plateau and apart for
some diminishing fluctuations remains constant at late times. This
can be explained with the help of Eq. (32). Modes in an infinite
range of frequencies are produced. The modes of any particular
frequency get stretched by the expansion, but they also get con-
stantly replaced by stretched modes whose initial frequency was
smaller.
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Fig. 2. The occupation number of produced particles, N, as a function of the dimen-
sionless frequency @) /H, for various values of dimensionless time, tH, in dS space.
The curves are higher (contain more particles) for later times. The plot shows the
non-thermal features at very low and very high frequencies.

Note that @®/H is the frequency of the harmonic oscillator
at the final time t; at which the occupation number is evaluated.
With fixed ty, in order to vary @©/H we need to vary wp since
@Y = wpe~ M. Thus, different values of @©/H for the fixed t =t,
correspond to different wg which is the original frequency of the
mode at the time of its creation.

In Fig. 2, we numerically evaluated the spectrum, N vs. @©/H,
of mode occupation numbers at several values of tH. The curves
are higher for later times, which means that there are more excited
modes at later times. In agreement with the plot in Fig. 1, at any
fixed time there are more lower frequency modes. As expected,
at later times we have progressively more lower frequency (longer
wavelength) modes produced by the expansion.

Comparing the distribution in Fig. 2 with the thermal Planckian
distribution (25) we can infer that only the modes with frequen-
cies comparable to the inverse Hubble radius follow the thermal
distribution. Those with much lower and much higher frequen-
cies show departure from the thermal distribution. The thermal
distribution in Eq. (25) is divergent at low frequencies while the
distribution in Fig. 2 is not. At high frequencies, the distribution in
Fig. 2 has some non-thermal oscillating features. Short wavelength
modes become thermal when the expansion stretches them to the
scales comparable to the Hubble radius.

In order to fit the temperature that corresponds to the particle
distribution, we first express N(®) in terms of time t. Then we plot
In(1 +1/N) versus ®® /H and find the slope g. Finally, we correct
for the factor in Eq. (31) which implies

T =e M g7 (ty). (33)

This is then the temperature measured at some moment ¢y, seen
by the observer who is using time t as an evolution parameter.

In Fig. 3 we plot In(1 + 1/N) versus @® /H for various values
of tH. Here we see that the curves corresponding to tH = 3 (blue)
and tH =4 (red) are almost indistinguishable. Since In(1 + 1/N)
versus @® /H will give us information about the temperature, this
means that the temperature does not change at late times.

Let us analyze the plot in Fig. 3. We mentioned that only the
modes with frequencies comparable to the Hubble constant (in-
verse Hubble radius) follow the thermal distribution. Therefore,
in order to get the temperature of the produced radiation, we fit
the straight line only in the segment of the plot corresponding
to the neighborhood of @®/H = 1. From Fig. 2 we see that most
of the modes belong to that range (say we sum up the number
of modes within one order of magnitude, from @®/H =0.15 to
@® /H = 1.5). The number of modes of very high frequency is very
low since N(&@®) drops in that regime quickly, while the number
of modes with very low frequency is very low since that regime is
a very short segment on the N(@®) curve. Thus fitting the curve

tH=3,4

Ln(1+1/N)
41
3,
2L
1t

1 2 3 4

o0
6 ¢ /H

Fig. 3. Here we plot In(1+1/N) versus @® /H for the values of tH = 3, 4 for the dS
space. The curves for tH =3 (blue) and tH =4 (red) are almost indistinguishable
which indicates that the temperature does not change with time. Since only the
modes with ®© /H ~ 1 are thermal, we fit the temperature only in that segment
of the plot and find it to be proportional to the Hubble constant. Very high and
very low frequencies are not thermal. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this Letter.)

in the omega @® /H ~ 1 segment would give a pretty realistic re-
sult for the temperature of the produced radiation since most of
the produced particles will be in that regime. Applying Eq. (33),
the fit gives for the slope 8 ~ 1 in units of 1/H which implies

T ~H. (34)

As expected, the temperature of the produced radiation is propor-
tional to the Hubble constant, which is in turn proportional to the
value of the cosmological constant A.

The modes with much lower and much higher frequencies than
the Hubble constant do not follow the thermal distribution. How-
ever, at some later time, modes that were created with short wave-
lengths become thermal when the expansion stretches them to the
scales comparable to the Hubble radius.

4. Particle production in anti-de Sitter space-time

Now we apply the analogous study to AdS space with the neg-
ative cosmological constant, i.e. A < 0. For this purpose, we set
k = —1 in Eq. (3). In that case, the solution for the scale factor
is given by R(t) = H™'cos(Ht) where H is H = /[A]/3. There-
fore the time-dependent AdS metric takes on the same form as
dS metric given in Eq. (28), apart from the different scale factor
R(t). For the decaying segment of cos(Ht), this time-dependent
solution describes a collapsing universe under the influence of the
negative constant vacuum energy density represented by the neg-
ative cosmological constant. The matrices M and N are now given
by Eq. (29) and Eq. (30), with the substitution of k = —1

1
V1412
NW:4n/mﬂ¢1+ﬂﬁﬂh (36)

The occupation number is given again by Eq. (24). Repeating
the procedure from the previous section, we plot N versus tH for
various values of @® /H in Fig. 4. The Figure shows that for dif-
ferent values of dimensionless frequency @®/H, the occupation
number increases in all frequency modes. However, the curves are
higher for higher values of @® /H, which means that the occupa-
tion number in higher frequencies (lower wavelengths) increases
faster at later times. In contrast with dS space where the occupa-
tion number at some fixed final frequency is constant at late times,
the occupation number in AdS space diverges, and it does this in
finite time, indicating the big crunch.

In Fig. 5, we have numerically evaluated the spectrum, N ver-
sus @®/H, for several values of tH. The curves are higher for

My = 47 / drr? ffe (35)
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Fig. 4. The occupation number of produced particles, N, as a function of dimension-
less time, tH, for various values of dimensionless frequency @® /H, in AdS space.
The curves are higher for higher values of @ /H. The occupation number diverges
in finite time, indicating the Big Crunch.

tH=14,145,15

140
120¢
100¢
80
601
40}
20¢

) 0
510 15 20 25 @M

Fig. 5. The occupation number of produced particles, N, as a function of dimension-
less frequency @ /H, for various values of dimensionless time, tH, in AdS space.
The occupation number at all frequencies grows as tH increases, however the high
frequency modes grow at a higher rate.

later times, which means that there are more excited modes at
later times. As expected, at later times we have progressively more
higher frequency modes since the space is collapsing.

We may now try to fit the temperature that corresponds to the
particle distribution. We first express N(w) in terms of time t and
then plot In(1 4+ 1/N) versus @® /H for various values of tH. We
could then fit the straight line through the curves and find the
slope B for each of them. Eq. (15) tells us that the frequency in t
is R(t)> times the frequency in 7, and at time ts, this implies

- H3
o® =

" cos3(Ht) @. (37)

Therefore the temperature seen by the observer whose parameter
of evolution is t should be

3

_ -1
I= cos3(Ht)ﬂ (t5)- (38)

However, following this procedure we find it very difficult to
precisely fit the temperature. Nominally, from Eq. (38), the tem-
perature diverges as tH approaches the time of the Big Crunch.
However, from Fig. 6 we see that as tH increases the oscillations
of the curves increase making the temperature less and less de-
fined toward the Big Crunch. This is in agreement with the fact
that AdS space (unlike dS space) does not have an event horizon
which could cause thermal radiation.

5. Conclusion

In this Letter, we study the time-dependent evolution of the
scalar field propagating in the backgrounds of an expanding dS and

tH=0.5,7/4,1,1.5

Ln(1+1/N)

o/H

0E1040 50 40 50 60

Fig. 6. Here we plot In(1+ 1/N) versus @® /H for various values of tH for the AdS
space. The curves are lower for later times. The slope of the best fit straight line
is supposed to give the temperature of radiation. However, the plot shows that the
oscillations become greater as tH increases, making the temperature less and less
defined toward the Big Crunch.

contracting AdS universe. Using the functional Schrodinger formal-
ism we are able to probe the time-dependent regime which is out
of the reach of the standard approximations like the Bogolyubov
method. In both cases, the evolution of fluctuations is governed by
the harmonic oscillator equation with time-dependent frequency.
In general, the harmonic oscillator equation governs the evolution
of quantum fluctuations and particle production. We solved the
equations of motion and found the time-dependent wavefunction
for the system. The wavefunction overlap between the initial state
(which is the vacuum) and the final state at some arbitrary later
time gave us the time-dependent occupation number of produced
particles.

In the case of an expanding dS universe we explicitly showed
that the frequency of fluctuations produced at a certain moment
diminish in time, while the distribution of the created particles
quickly approaches the thermal radiation of the dS space. In the
case of a contracting AdS universe we showed that the frequency
of fluctuations produced at a certain moment grow in time and the
temperature of radiation diverges as the big crunch is approach-
ing, which is in agreement with earlier studies. We also explicitly
demonstrated that when a mode of a certain frequency is created
in dS space it does not automatically follow a thermal distribu-
tion with the temperature proportional to the value of the Hubble
parameter. Modes whose frequencies are much larger or much
smaller than the Hubble parameter do not follow a thermal distri-
bution, while those of the order of the Hubble parameter do. Very
high frequency modes are not thermal since they were produced
from a non-thermal initial vacuum state and it takes some time for
them to stretch and thermalize. Very low frequency modes which
are larger than a horizon are frozen, and therefore non-thermal.
As the high frequency modes get stretched by expansion, and their
frequency becomes comparable to the Hubble parameter, they be-
come thermal. In AdS case, towards the Big Crunch, though the
temperature nominally diverges, fluctuations of the spectrum grow
and the temperature becomes less and less defined.

The functional Schrédinger formalism we used here is differ-
ent from the standard techniques used so far in similar studies.
In [7], some objections to the standard quantum tunneling treat-
ment (see for example [9-11]) are brought up, while in [8] it was
suggested that the dS space is stable against the Hawking radia-
tion. Our independent approach supports the standard picture of
thermal radiation in dS space.
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Appendix A. Number of particles radiated as a function of time

We use the simple harmonic oscillator basis states but at a fre-
quency @ to keep track of the different w’s in the calculation. To
evaluate the occupation numbers at time t > ty, we need only set
@ =w(ty). So

ma\ V4 g—mab?/2
n(b n(vVmab Al
¢n(b) = ( p > NZDT ———Hn(¥Vmawb) (A1)

where H, are the Hermite polynomials. Then Eq. (22) together
with Eq. (16) gives

1/4
e (L) e de e~ "X 123, (&)
w2op%) /2!

1 14 gia
= I, A.2
<77257),02> VZ”n!n (A.2)
where
i
pP=1-— (p"+ 2). (A3)
o\ p 1Y

To find I, consider the corresponding integral over the generat-
ing function for the Hermite polynomials

12 =/d,§ o~ PE?/2—27 4226

_ [ 2a-yp) (A4)
P
Since
e 2K = Z Hn@) (A5)
—Pg2/2 d"
dée Ho() = — (A.6)
d z=0
Therefore
1—‘/2” 122 n/ZH (0) (A7)
"V op P e :
Since
n/2 oy M — D
Hp(0) =(—1) 2'!————, n=even (A.8)
N

and H,(0) =
ues of n,

_(—1)"/26:10\/71 "2 (- 1y
T @) F( _P> U

For odd n, ¢, =0.

0 for odd n, we find the coefficients ¢, for even val-

(A.9)

We next find the number of particles produced. Let

2
=1——|. A10
X ‘ P‘ (A10)
Then
N @) = Y nlel?
n=even
2 d n-n
=—=— X7 Z — X
\/5“)' dX n=even n”
2 X d 1
VolP| " dx /1= x2
2 x>
= — . (A11)
VaolP| (1—x?)3/2
Inserting the expressions for x and P, leads to
) 2 2
. wp 1 o
N(t,w :—[(l—_—) +<_—> } Al12
= o ” (A12)

In summary, we have found the occupation number of modes
as a function of p which is a function of time as given by the
non-linear differential equation (17).
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