
Formal Semantics of Programming Languages

— An Overview —

Peter D. Mosses1

Department of Computer Science
University of Wales Swansea
Swansea, United Kingdom

Abstract

These notes give an overview of the main frameworks that have been developed for specifying
the formal semantics of programming languages. Some of the pragmatic aspects of semantic de-
scriptions are discussed, including modularity, and potential applicability to visual and modelling
languages. References to the literature provide starting points for further study.

Keywords: semantics, operational semantics, denotational semantics, SOS, MSOS, reduction
semantics, abstract state machines, monadic semantics, axiomatic semantics, action semantics,
programming languages, modelling languages, visual languages

1 Introduction

� A semantics for a programming language models the computational
meaning of each program.

The computational meaning of a program—i.e. what actually happens when
a program is executed on some real computer—is far too complex to be de-
scribed in its entirety. Instead, a semantics for a programming language pro-
vides abstract entities that represent just the relevant features of all possible
executions, and ignores details that have no relevance to the correctness of
implementations. Usually, the only features deemed to be relevant are the
relationship between input and output, and whether the execution terminates

1 Email: p.d.mosses@swansea.ac.uk

Electronic Notes in Theoretical Computer Science 148 (2006) 41–73

1571-0661 © 2006 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.12.012
Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/entcs
mailto:p.d.mosses@swansea.ac.uk
http://creativecommons.org/licenses/by-nc-nd/3.0/

or not. Details specific to implementations, such as the actual machine ad-
dresses where the values of variables are stored, the possibility of ‘garbage
collection’, and the exact running time of the program, may all be ignored in
the semantics.

� The form and structure of programs are determined by their syntax.

Before we can even start to give a semantics to a programming language, we
need a precise definition of the form and structure of the programs allowed
by the language. The syntax of a language determines not only whether a
program is legal or not, but also its internal grouping structure.

� Descriptions are called formal when written in a notation that already has
a precise meaning.

Reference manuals and standards for programming languages usually provide
formal descriptions of program syntax, written in some variant of BNF. Re-
garding the computational meaning of the language, however, the description
in the reference manual is generally completely informal, being expressed only
in natural language which, even when used very pedantically, is inherently
imprecise and open to misinterpretation.

1.1 Syntax

There are several kinds of syntax of programming languages: concrete, ab-
stract, regular, context-free, and context-sensitive.

� Concrete syntax of programming languages involves text and parsing.

Concrete syntax determines which text strings are accepted as programs, and
provides a parse tree for each accepted program, indicating how the text is
supposed to be grouped. Concrete syntax is typically specified by formal
grammars, with productions giving sets of alternatives for each nonterminal
symbol. A grammar for concrete syntax should be unambiguous, so that each
accepted program has a unique parse tree; an alternative approach is to let
the grammar remain ambiguous, and provide precedence rules to select unique
parse trees.

Table 1 shows a fragment of a grammar that might be used to specify a
concrete syntax for ML. The grammar is written in a variant of BNF, using
notation for regular expressions to describe numerals and identifiers. 2

2 Layout characters are implicitly allowed between symbols.

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7342

Table 1
Concrete Syntax

exp --> "if" exp "then" exp "else" exp | ... | infexp

infexp --> atexp ":=" atexp | ... | atexp

atexp --> const | id | ...

const --> bool | int | "()"

bool --> "true" | "false"

int --> [0-9]+

id --> [A-Za-z][A-Za-z0-9]*

� Concrete syntax of modelling languages usually involves a mixture of text
and graphical notation.

Whereas programs are normally written as text, models of software are formu-
lated with extensive use of diagrams involving boxes, lines, and arrows [30].
Such diagrams are created interactively, in a non-serial manner. Each diagram
also has a purely textual serial representation, but this is used primarily as an
exchange format between tools, and not for creating diagrams. The concrete
syntax of diagrams could be specified as a set of rules resembling a textual
grammar, although details concerning attachment points and 2-dimensional
layout have to be made explicit, which complicates matters considerably.

� Modularity and reuse can be useful in connection with descriptions of
concrete syntax.

The Syntax Definition Formalism (SDF) [9] allows a description of concrete
syntax to be divided into modules with explicit dependence. One may expect
that modules specifying various low-level constructs (such as booleans, inte-
gers, and identifiers) can often be reused in the concrete syntax of different
languages. However, modules specifying particular collections of constructs
(e.g., expressions in ML) can in general only be reused without change when
describing an extension of a language.

� Abstract syntax deals only with structure.

Whereas concrete syntax deals with the actual character strings used to write
programs, abstract syntax is concerned only with the ‘deep structure’ of pro-
grams, which is generally represented by trees. In abstract syntax trees, each
node is created by a particular constructor, and has a branch for each ar-
gument of its constructor. Apart from constructors with no arguments, the
leaves of the trees may include sequences of characters corresponding to lex-
ical symbols such as numerals and identifiers; we may also consider so-called
value-added abstract syntax trees where abstract mathematical entities (truth-

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 43

Table 2
Abstract Syntax

Exp ::= cond(Exp, Exp, Exp) | assign(Exp, Exp) | Const | Id | . . .

Const ::= Bool | Int | null

Id ::= String

values, numbers, or even operations such as addition) are allowed as leaves.

� Abstract syntax can be specified in various ways.

The essential aspects of abstract syntax are the constructors for nodes, and
classification of nodes into (possibly overlapping) sets. Exactly how these are
specified is not so important (at least in connection with the use of abstract
syntax in semantic descriptions). For example:

• as datatype definitions (as found in ML), possibly allowing also subtype
definitions (as in Casl [27]);

• using object-oriented techniques and notation (as in UML [30]); or

• by simply indicating the argument and result types of each constructor.

The specification given in Table 2 uses a grammar-like notation similar to that
provided in Casl for datatype definitions. The specified abstract syntax rep-
resents the deep structure of the same expressions that were used to illustrate
concrete syntax in Table 1.

� Abstract syntax can be chosen freely.

Various choices have to be made when specifying abstract syntax, e.g.: which
symbols to use as names for types and constructors; when to group similar
constructs into distinguished types; and whether to leave lexical constructs
represented by sequences of characters, or replace them by the corresponding
mathematical entities. Usually, these choices don’t significantly affect the
process of describing the semantics of a particular language.

However, making the abstract syntax as language-independent as possible
facilitates reuse of parts of the semantic description of one language in that of
another. For instance, the symbols for types and constructors may be chosen
to reflect the normal vocabulary used in informal discussions of programming
constructs, such as expressions (abbr. ‘Exp’) and conditionals (abbr. ‘cond’).
The latter symbol also avoids suggesting any particular concrete syntax for
conditional expressions: had we chosen, say, ‘if then else’ instead of ‘cond’, the
abstract syntax would look quite out of place in a description of a language
such as Java, where the concrete syntax is ‘ ? : ’.

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7344

Table 3
Mapping concrete syntax to abstract syntax in Prolog

exp(cond(E1,E2,E3)) -->

"if", exp(E1), "then", exp(E2), "else", exp(E3).

exp(E) --> infexp(E).

infexp(assign(E1,E2)) --> atexp(E1), ":=", atexp(E2).

...

In Table 2, the standard mathematical sets Bool (consisting of the boolean
truth-values true and false, equipped with negation, conjunction, disjunction,
etc.), Int (the integers) and String are assumed to be given, together with
conventional notation for their operations and relations.

� Abstract syntax is usually much simpler than concrete syntax.

Notice how the distinction between the concrete nonterminal symbols for ex-
pressions exp, infix expressions infexp, and atomic expressions atexp, has
been eliminated in the illustrated abstract syntax. This entails that the struc-
ture of the abstract syntax trees is somewhat more general than that of the
parse trees for the corresponding concrete syntax. Such generalization allows
abstract syntax to be significantly simpler than concrete syntax, and makes it
particularly suitable for use as an interface between syntax and semantics.

� Complete descriptions specify both concrete and abstract syntax.

Complete language descriptions should provide both concrete and abstract
syntax, and specify the intended mapping from program texts to abstract
syntax trees. When using Definite Clause Grammars (as provided by Prolog)
to specify concrete syntax, the construction of the abstract syntax trees can
be specified in the grammar itself, as illustrated in Table 3.

� Abstract syntax trees may be constructed directly.

It is possible (but relatively tedious) for a programmer to construct the ab-
stract syntax tree of a program interactively, in the same way as concrete
diagrams are constructed in modelling languages. But even then, a textual
concrete syntax is still required, for displaying the program. The transforma-
tion from an abstract syntax tree to a textual form is called pretty-printing.
Formal description of pretty-printing is complicated by the pragmatic issue of
where to insert line breaks and indentation.

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 45

� Abstract syntax graphs may be more appropriate when the concrete
syntax is visual.

Abstract syntax of programming languages is firmly based on trees. This
is partly because abstract syntax is derived from parse trees of programs.
However, the declaration and use of identifiers does give rise to an implicit
graph structure, which could be made explicit, if desired.

For languages where the concrete syntax is largely based on diagrams,
such as visual modelling languages, abstract syntax graphs appear to be more
appropriate than trees [3]. This is especially the case when a diagram involves
un-named components: transformation to a tree may then require the creation
of unique labels for these components (e.g., when several arrows lead to an
anonymous junction point [8]).

Note that trees have a considerable theoretical advantage over graphs, in
that (finite) trees admit inductive definitions. This is a crucial feature for
denotational semantics, and significant for proving properties of operational
semantics by structural induction.

� Context-free syntax deals with grouping.

The rules for grouping in programming languages are usually fixed, so that
grouping analysis is context-free. However, some languages (including ML)
allow the precedence of infix and prefix operators to be specified in programs,
and the grouping of expressions in such languages is clearly context-sensitive.
Since abstract syntax trees are constructed only after the grouping has been
determined, abstract syntax is unaffected by issues of grouping analysis.

� Context-sensitive syntax can also deal with constraints.

Well-formedness conditions such as declaration-before-use and type-checking
constraints are inherently context-sensitive, and cannot be specified by context-
free grammars. The abstract syntax of programs satisfying these well-formedness
conditions may be regarded as a subset of the abstract syntax where the con-
ditions are ignored.

1.2 Semantics

There are several levels of semantics: static semantics, dynamic semantics,
and equivalences.

� Static semantics models compile-time checks.

When (abstract) syntax is restricted to be context-free, checking whether pro-
grams satisfy well-formedness constraints necessarily becomes part of seman-

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7346

tics. It is called static semantics, since it concerns only those checks that
can be performed before running the program, e.g. checking that all parts
of the program are type-correct. The only relevant feature of the static se-
mantics of a program is whether the program has passed the checks or not
(although error reports issued by compilers could be modelled when these are
implementation-independent).

� Dynamic semantics models run-time behaviour.

Dynamic semantics concerns the observable behaviour when programs are run.
Here, we may assume that well-formedness of the programs has already been
checked by the static semantics: we do not need to consider the dynamic
semantics of ill-formed programs.

� Equivalences between programs may abstract from details of models.

A formal semantics should give, for each program, an abstract model that
represents just the relevant features of all possible executions of that program.
Then two programs are regarded as semantically equivalent when their models
are the same (up to isomorphism). An alternative approach is to give less
abstract models, and then define a semantic equivalence relation for each
model.

� Complete descriptions include static semantics, dynamic semantics, and
semantic equivalence.

Given a program accepted by a context-free concrete syntax, a static semantics
is needed in order to determine whether the program is well-formed, and
thus executable. The dynamic semantics then provides a model of program
executions. The semantic equivalence relation abstracts from those features
that are irrelevant to implementation correctness. All together this provides
the complete semantics of the given program.

� These notes focus on dynamic semantics, based on context-free abstract
syntax.

There are several main approaches to dynamic semantics:

• operational semantics, where computations are modelled explicitly;

• denotational semantics, where only the contribution of each construct to
the computational meaning of the enclosing program is modelled; and

• axiomatic semantics, which (in effect) models the relationship between pre-
and post-conditions on program variables.

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 47

The operational framework known as Structural Operational Semantics (SOS)
[31] is a good compromise between simplicity and practical applicability, and
it has been widely taught at the undergraduate level [10,29,37,41]. A modular
variant of SOS called MSOS [26] has some significant pragmatic advantages
over the original SOS framework, but otherwise remains conceptually very
close to it. The hybrid framework called Action Semantics [21,28,40]—not to
be confused with the UML Action Semantics—combines features of denota-
tional and operational semantics.

Let us now outline the main semantic frameworks. The aim is, for each
framework, to explain its main principles, to give an impression of how seman-
tic descriptions look in it, and to draw attention to any major drawbacks that
it might have. References to the literature provide starting points for further
study.

2 Structural Operational Semantics

The Structural Operational Semantics (SOS) framework was proposed by
Plotkin in 1981 [31]. The main aim was to provide a simple and direct ap-
proach, allowing concise and comprehensible semantic descriptions based on
elementary mathematics. The basic SOS framework has since been presented
in various textbooks (e.g. [29,41]), and exploited in numerous papers on con-
currency [16]; see also [1]. The big-step form of SOS (also known as Natural
Semantics [15]) was used during the design of Standard ML, as well as to give
the official definition of that language [17].

� SOS uses rules to specify transition relations.

SOS uses rules to give inductive specifications of transition relations on states
that involve both abstract syntax trees and computed values. When describing
a purely functional programming language (or a pure process calculus such as
CCS [16]), SOS rules look very simple. For instance: 3

E1 −→ E ′
1

cond(E1, E2, E3) −→ cond(E′
1, E2, E3)

(1)

cond(true, E2, E3) −→ E2 (2)

3 When illustrating the various semantic frameworks, we shall use a language-independent
notation for abstract syntax. In general, specifications in the literature use notation that
is strongly suggestive of the concrete syntax of the particular language whose semantics is
being described. The difference in style has no technical significance.

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7348

cond(false, E2, E3) −→ E3 (3)

Notice that there are no labels on the transitions in the above SOS rules:
labels are normally used in SOS only in connection with communication and
synchronization between concurrent processes, and don’t occur at all with
transitions for sequential programming constructs. In the next section, we
shall see that labels are more widely exploited in the modular variant of the
SOS framework, MSOS.

� States are not restricted to syntax trees.

In the original SOS framework, syntax is not clearly separated from auxiliary
semantic entities: both syntactic and semantic entities are allowed as compo-
nents of states, as illustrated in connection with bindings and stores below.
In contrast, MSOS insists that states remain purely syntactic, as we shall see
in Sect. 3.

2.1 Bindings

Declarations (and some other constructs) bind identifiers to particular val-
ues. A bindings map or environment gives the current association between
identifiers and their bound values, and generally has a restricted scope.

� Bindings are usually represented by explicit components of states.

In fact the treatment of bindings in SOS is somewhat awkward. Suppose
that the states for expression evaluation include bindings: State = Exp ×
Env. This requires the specification of transitions (E, ρ) −→ (E ′, ρ) where the
environment ρ remains unchanged. Clearly, it would be tedious to have to write
(and read) ρ twice each time a transition is specified, and it is usual practice to
introduce the notation ρ � E −→ E′ as an abbreviation for (E, ρ) −→ (E′, ρ).
Thus when the functional language being described involves bindings, the SOS
rules given above would be reformulated as follows:

ρ � E1 −→ E ′
1

ρ � cond(E1, E2, E3) −→ cond(E ′
1, E2, E3)

(4)

ρ � cond(true, E2, E3) −→ E2 (5)

ρ � cond(false, E2, E3) −→ E3 (6)

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 49

Alternatively, bindings can be eliminated as soon as they have been com-
puted by substituting the bound values for the identifiers throughout the scope
of the bindings. However, an explicit definition of the result [ρ]T of substitu-
tion of ρ throughout T requires the tedious specification of a defining equation
for each non-binding construct T , for instance:

[ρ]cond(E1, E2, E3) = cond([ρ]E1, [ρ]E2, [ρ]E3) (7)

as well as some rather more intricate equations for the binding constructs.

2.2 Stores

Assignments involve (irreversible) changes to particular locations in a store.
Variable identifiers are generally bound to locations, and assignments affects
the values stored at locations, but not the current bindings.

� The separate modelling of binding and assignment allows a simple
treatment of aliasing.

It is best not to confuse binding with assignment. Abstractly, a variable
declaration has the effect of allocating part of the store to hold the value of
the variable, and binds the identifier to some entity, traditionally called a
location, that refers to that part of the store; it may also initialize the value of
the variable. Assignment of a value to the variable affects only the store, not
the binding of the variable identifier. The usefulness of this distinction can
be seen most clearly in languages that allow so-called aliasing, where variable
identifiers are bound to the same location: assigning a new value to one of
them causes the value of the other(s) to change as well.

� Effects on storage are represented by explicit store components of states.

When the described language isn’t purely functional, and expression evalu-
ation can have side-effects, the states for expression evaluation include the
current store as well as the environment: State = Exp × Env × Store. Tran-
sitions between such states are written ρ � E, σ −→ E′, σ′, so the rules given
above would be reformulated as follows:

ρ � E1, σ −→ E ′
1, σ

′

ρ � cond(E1, E2, E3), σ −→ cond(E′
1, E2, E3), σ

′
(8)

ρ � cond(true, E2, E3), σ −→ E2, σ (9)

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7350

ρ � cond(false, E2, E3), σ −→ E3, σ (10)

ρ � E1, σ −→ E ′
1, σ

′

ρ � assign(E1, E2), σ −→ assign(E ′
1, E2), σ

′
(11)

ρ � E2, σ −→ E ′
2, σ

′

ρ � assign(E1, E2), σ −→ assign(E1, E
′
2), σ

′
(12)

ρ � assign(L, V), σ −→ (), σ[L �→ V] (13)

2.3 Communications

� Communication between concurrent processes is represented by labels on
transitions.

Finally, suppose that expression evaluation can involve process creation and
communication. The conventional technique in SOS is here to add labels to
transitions. The SOS rules given above would be reformulated thus:

ρ � E1, σ
L−→ E ′

1, σ
′

ρ � cond(E1, E2, E3), σ
L−→ cond(E′

1, E2, E3), σ
′

(14)

ρ � cond(true, E2, E3), σ
τ−→ E2, σ (15)

ρ � cond(false, E2, E3), σ
τ−→ E3, σ (16)

(τ is some fixed label that indicates a silent, uncommunicative step.)

� Rules require reformulation when components of states or labels on
transitions are added, changed, or removed.

As illustrated above, the formulation of rules in conventional SOS has to
change whenever the components of the model involved in transitions (i.e.
states and labels) are changed. This is in marked contrast to the situation
with MSOS, where the formulation of transitions in rules is stable, allowing the
rules for each programming construct to be given definitively, once-and-for-all,
as we shall see in Sect. 3.

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 51

2.4 Small-Step and Big-Step Styles

� In conventional SOS, the small-step and big-step styles are commonly
regarded as alternatives.

Formally, the big-step style can be regarded as a special case of the small-step
style: computations in the big-step style simply don’t involve any intermedi-
ate states, only initial and final states. Note also that if one has defined a
small-step SOS, the transitive closure of the small-step relation provides the
corresponding big-step relation. In practice, authors of SOS descriptions usu-
ally choose one style or the other—and then stick to it, since changing styles
involves major reformulation. In general, however, it seems better to mix the
small-step and big-step styles, choosing the more appropriate style for each
kind of construct by consideration of the nature of its computations:

Big-step SOS is better for constructs whose computations are pure eval-
uation, with no side-effects, no exceptions, and always terminating—e.g.,
for evaluating decimal numerals to numbers, for matching patterns against
values, and for types;

Small-step SOS is better for all other constructs, since it makes explicit the
order in which the steps of their computations are made, which is usually
significant. Moreover, small-step SOS copes more easily with specifying
interleaving, exception handling, and concurrency than big-step SOS does.

� Big-step SOS can be applicable to modelling languages.

Sometimes, modelling languages are used to specify declarative aspects of
software, such as relationships between classes of objects. The focus is on the
static structure of the model, not on any behavioural interpretation. Although
small-step SOS is inappropriate for specifying static structure, big-step SOS
can be used here to give a formal description of the intended semantics, pro-
vided that the abstract syntax is tree-structured. For instance, the big-step
transition relation between a construct and its computed value may represent
that the value satisfies the construct; an object may be regarded as satisfying
any class to which it belongs. The satisfaction relationship between algebraic
specifications and algebras in Casl is defined using big-step SOS [27, Part III].

� Small-step SOS can be applicable to behavioural semantics of modelling
languages.

For example, the behavioural semantics of the visual modelling language State-
Flow has been specified by transforming diagrams to abstract syntax trees,
and then defining their small-step SOS in a conventional style [8].

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7352

2.5 Informal Conventions

� The official Definition of Standard ML is not entirely formal.

A major example of an SOS in the pure big-step style is the Definition of
Standard ML [17]. The description covers the static and dynamic semantics of
the entire language (both the core and module levels), and has been carefully
written by a group of highly qualified authors. Nevertheless, its degree of
formality still leaves something to be desired—especially in connection with
two “conventions” that were adopted:

The “store convention” allows the store to be left implicit in rules where
it is not being extended, updated, or inspected.

The “exception convention” allows the omission of rules that merely let
unhandled exceptions preempt further sub-expression evaluation.

For instance, consider the following rule for the evaluation of conditional
expressions:

ρ � E1 −→ true ρ � E2 −→ V

ρ � cond(E1, E2, E3) −→ V
(17)

By the above conventions, this rule abbreviates the following three rules:

ρ � E1, σ −→ true, σ′ ρ � E2, σ
′ −→ V, σ′′

ρ � cond(E1, E2, E3), σ −→ V, σ′′
(18)

ρ � E1, σ −→ raised(EX), σ′

ρ � cond(E1, E2, E3), σ −→ raised(EX), σ′
(19)

ρ � E1, σ −→ true, σ′ ρ � E2, σ
′ −→ raised(EX), σ′′

ρ � cond(E1, E2, E3), σ −→ raised(EX), σ′′
(20)

where raised(EX) indicates that the evaluation of a sub-expression has raised
an exception with value EX . Such conventions are completely unnecessary
when using the MSOS approach described in the next section.

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 53

3 Modular SOS

� Modular SOS allows individual constructs to be described once and for all.

As the name suggests, Modular SOS (MSOS) [22,23,25,26] is a variant of SOS
that ensures a high degree of modularity: the rules specifying the MSOS of
individual language constructs can be given once and for all, since their formu-
lation is completely independent of the presence or absence of other constructs
in the described language. When extending a pure functional language with
concurrency primitives and/or references, the MSOS rules for the functional
constructs don’t need even the slightest reformulation.

In denotational semantics, the problem of obtaining good modularity has
received much attention, and has to a large extent been solved by introducing
so-called monad transformers [18]. MSOS provides an analogous (but signifi-
cantly simpler) solution for the structural approach to operational semantics.

� States are purely syntactic in MSOS, and labels are exploited more than
in SOS.

The crucial feature of MSOS is to insist that states are merely abstract syn-
tax and computed values, omitting the usual auxiliary information (such as
environment and stores) that they include in SOS. The only place left for
auxiliary information is in the labels on transitions. This seemingly minor
notational change—coupled with the use of symbolic indices to access the
auxiliary information—is surprisingly beneficial. MSOS rules for many lan-
guage constructs can be specified independently of whatever components la-
bels might have; rules that require particular components can access and set
those components without mentioning other components at all.

� Rules for constructs for control flow are particularly simple.

For instance, the MSOS rules for conditional expressions do not require labels
to have any particular components, and their formulation remains valid re-
gardless of whether expressions are purely functional, have side-effects, raise
exceptions, or interact with concurrent processes:

E1
X−→ E ′

1

cond(E1, E2, E3)
X−→ cond(E′

1, E2, E3)
(21)

cond(true, E2, E3) −→ E2 (22)

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7354

cond(false, E2, E3) −→ E3 (23)

The label X in the first rule above could include the current environment,
the initial and final stores, and any emitted communication signals. When
labels are omitted, as in the second and third rule, the transitions are required
to be unobservable, with no change to the store, and no emitted communication
signals. Labels on adjacent transitions in a computation are required to be
composable: bindings must remain fixed, and the final store of the label on a
transition must be the same as the initial store of the label on the following
transition. 4

� Rules involving auxiliary information in labels refer only to the required
components.

E1
X−→ E ′

1

assign(E1, E2)
X−→ assign(E ′

1, E2)
(24)

E2
X−→ E ′

2

assign(E1, E2)
X−→ assign(E ′

1, E
′
2)

(25)

σ′ = σ[L �→ V], U ∈ Unobs

assign(L, V)
{σ,σ′,U}−−−−−−→ E2

(26)

In the first two rules above, the label X is arbitrary. In the last rule, however,
the relationship between the store σ at the start of the transition and the store
σ′ at the end of the transition is determined, and any other components are
required to be unobservable.

4 Reduction Semantics

This framework was developed by Felleisen and his colleagues towards the end
of the 1980’s [5]. It has been used primarily in theoretical studies, where it is
sometimes preferred to SOS; for instance, Reppy used Reduction Semantics
to define (parts of) Concurrent ML [33].

� States are abstract syntax trees, corresponding to well-formed terms.

States don’t involve abstract mathematical values (numbers, sets, maps, etc.)
at all: they are purely syntactic. For example, numerical expressions compute

4 In fact the labels form a category.

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 55

decimal numerals rather than abstract mathematical numbers. If needed,
however, auxiliary constructs may be added to the abstract syntax (as in
SOS).

� Transitions are term rewriting steps, called reductions.

Term Rewriting is an interesting and well-developed topic in its own right
[4]. A rewriting step is called a reduction (regardless of whether the resulting
term is actually smaller than the previous one or not). The sub-term that gets
rewritten in a reduction is called a redex, and the resulting sub-term is called
a reduct. Reductions may normally be made in any sub-term, and continue
until no more are possible—perhaps never terminating.

� Redexes are restricted to occurrences in evaluation contexts.

When the term being reduced corresponds to the abstract syntax of a program,
the location of the redexes of the reductions should be restricted to follow the
flow of control of the computation (otherwise reductions could be prematurely
made in parts of the program that were not even supposed to be executed,
leading to unintended results).

An evaluation context C : Ctx is a term with a single hole. If t is a term,
C[t] is the result of replacing the hole in C by t. A reduction in a context
C is written C[t] −→ C[t′] (written with a longer arrow), and can be made
whenever there is an ordinary reduction t → t′ (written with a shorter arrow).
In fact C[t] here is generally the entire program context of t, assuming that
there are no further rules that would allow a reduction in a context to be
regarded as an ordinary reduction.

Rules may be given also for rewriting the context as well as the term in
that context: C[t] −→ C ′[t′]; in this case it is not required that t → t′ should
be an ordinary reduction.

The evaluation contexts for use in a reduction semantics are specified by
a context-free grammar.

� Simple SOS rules correspond to reductions.

Comparing SOS with Reduction Semantics, the simple rules of an SOS gener-
ally correspond directly to rules for ordinary reductions. For example, consider
the following reduction rules for continuing with the evaluation of a conditional
expression after its condition has been evaluated:

cond(true, E2, E3) → E2 (27)

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7356

cond(false, E2, E3) → E3 (28)

� Conditional SOS rules correspond to productions for evaluation contexts.

Many conditional SOS rules simply express the flow of control of the compu-
tation, such as indicating which sub-expression is to be evaluated first. These
SOS rules correspond not to reduction rules, but rather to productions in
the grammar for evaluation contexts. For example, the rules for evaluating
the condition of a conditional expression and the two sides of an assignment
expression correspond to the following productions for contexts:

Ctx ::= cond(Ctx, Exp, Exp) | assign(Ctx, Exp) | assign(Exp, Ctx)

The absence of further contexts for conditional expressions prevents the pre-
mature reduction of the branches. The order of evaluation of the subexpres-
sions in an assignment expression is left open above, allowing interleaving;
sequential evaluation would be specified by using assign(Val, Ctx) instead of
assign(Exp, Ctx).

� Reductions that replace the evaluation context do not correspond directly
to SOS rules.

A significant advantage of Reduction Semantics is that it is straightforward
to specify rules that affect the entire context of the sub-expression being eval-
uated. For example, the following rule specifies clearly that when ‘exit’ is
evaluated, the remaining evaluation of the entire program is terminated.

C[exit] −→ null (29)

Exceptions can be specified in a similar way, although to restrict exception
handling to the innermost matching handler requires the introduction of many
new evaluation contexts.

� Computed values are simply canonical terms in normal form.

The computed values in a Reduction Semantics for a language like ML would
include not only numerals and booleans, but also tuples, lists, and records
with values as components. The syntax of values is specified by a context-
free grammar—for example, by taking some of the productions for expressions
Exp from the grammar for the full abstract syntax, and replacing Exp by Val
(except within abstractions).

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 57

� Bindings are represented by substitution, which is itself tedious to specify.

Substitution replaces identifiers by the values to which they are bound, and
can be specified by reduction rules (or defined equationally). In Reduction
Semantics, there is unfortunately no alternative to the use of substitution to
deal with the bindings that arise in the semantics of local declarations.

� Effects on storage are represented by rewriting a store term.

A term representing a store is a sequence of canonical assignments, i.e. assign-
ments where the location and the value have already been evaluated. There
is only one level of store—in contrast to the situation with local bindings—so
it can be kept as a separate component of the entire program context:

ProgCtx ::= prog-ctx(Ctx, Store)

Store ::= skip | seq(Store, update(Loc, Val))

When the left- and right-hand sides of an assignment expression (or statement)
have been evaluated, the effect of the assignment is simply added to the store,
by giving a reduction that replaces the entire context:

prog-ctx(C[assign(L, V)], σ) −→
prog-ctx(C[null], seq(σ, update(L, V)))

(30)

Inspecting the value stored at a particular location also involves the con-
text, but does not change it:

σ = seq(σ′, update(L, V))

prog-ctx(C[stored(L)], σ) −→ prog-ctx(C[V], σ)
(31)

σ = seq(σ′, update(L′, V)), L �= L′,

prog-ctx(C[stored(L)], σ′) −→ prog-ctx(C[V], σ′)

prog-ctx(C[stored(L)], σ) −→ prog-ctx(C[V], σ)

(32)

� Reduction rules for communication involve separate evaluation contexts
for the concurrent processes involved.

For example, suppose that a system of concurrent processes is represented as
a map from thread identifiers to states of threads, then synchronous commu-

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7358

nication can be specified thus:

{I1=C1[send(K, V)]} + {I2=C2[receive(K)]} + TM −→
{I1=C1[null]} + {I2=C2[V]} + TM

(33)

5 Abstract State Machine Semantics

Abstract State Machines (ASM) is an operational semantics framework that
was proposed by Gurevich in the late 1980’s [6,7]. The main aim was to
specify the individual steps of computations at the proper level of abstrac-
tion; issues such as control flow and scopes of bindings were regarded as of
secondary importance. The framework has been applied to several major lan-
guages, including ML and Java. However, the details and general style of ASM
specifications vary considerably between different publications; here, we shall
follow [38], which appears to be competitive with SOS in its accessibility.

� States interpret static and dynamic function symbols.

The interpretation of a function symbol is a map from arguments to results.
The function is called static when the map doesn’t change during a computa-
tion. In contrast, the values of dynamic functions on particular arguments can
be initialized, changed, or made undefined. Static functions of no arguments
correspond to ordinary constants, whereas dynamic functions of no arguments
correspond to simple updatable variables.

For example, functions corresponding to arithmetic operations are static,
and so is the no-argument function body that gives the abstract syntax of
the initial program. In contrast, the dynamic no-argument function pos gives
the position of the phrase currently being executed in the tree representing
what remains to be executed, which is itself represented by the 1-argument
dynamic function restbody : Pos → Phrase, where the set Phrase contains not
only all possible abstract syntax trees, but also computed values, and trees
where some nodes have been replaced by their computed values. 5

� Transitions assign values to functions for particular arguments.

A transition may simultaneously assign values for several functions on various
arguments. Each assignment may be conditional, depending on the values

5 The idea of gradually replacing phrases by their computed values, familiar from SOS,
has only recently been adopted in the ASM framework: in earlier ASM specifications, the
original tree was static, and a separate dynamic function was used to associate computed
values with the nodes of the tree.

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 59

Table 4
ASM semantics of conditional expressions

execJavaExpI = case context(pos) of

. . .

cond(αE1,
βE1,

γE1) → pos := α

cond(�V1,
βE2,

γE3) → if V1 then pos := β else pos := γ

cond(αtrue, �V2,
γE3) → yieldUp(V2)

cond(αfalse, βE2,
�V3) → yieldUp(V3)

. . .

of terms formed from the function symbols. All the terms involved in a si-
multaneous set of assignments are evaluated before any of the assignments
are actually made, so the testing of the conditions and the resulting state
are independent of the order of the assignments. The values of functions on
particular arguments only change due to explicit assignment: their values on
other arguments remain stable.

� ASM specifications often introduce auxiliary notation.

The introduction of appropriate auxiliary notation allows transition rules to be
specified rather concisely. However, ASM specifications of different languages
tend to introduce different auxiliary notation, which leads to quite varied
specifications of the same construct, and makes it difficult to reuse a transition
rule from one ASM directly in another ASM. For example, the auxiliary
notation introduced in the ASM specification of Java [38] includes:

• context(pos), returning either restbody(pos) or restbody(up(pos)); and

• yieldUp(V), abbreviating the transition restbody := restbody [V/up(pos)]
performed simultaneously with pos := up(pos), thus combining the replace-
ment of a phrase by its computed result V with the adjustment of pos .

To “streamline the notation”, positions are indicated directly in patterns for
phrases, the current value of pos being written �. After these preliminaries,
transition rules for evaluating Java’s conditional expressions can be specified
as shown in Table 4.

Note that transitions are specified by assignments written with ‘:=’, and
the ‘→’s above are merely part of the ‘case’ notation for pattern-matching
(which is not itself provided by the ASM framework, but introduced ad hoc)
in [38].

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7360

� Bindings are modelled by stacks of frames in ASM.

The dynamic no-argument function locals : (Id, Val)Map gives maps from
local variable identifiers directly to the values that they are storing. To cope
with redeclaration of local variables and with recursive procedural activation
(both of which may require different values for the same variable identifier
to coexist), a stack of frames is maintained, each frame storing the relevant
locals. Thus the transition for an assignment expression assign(I, �V), where
the new value V has already been computed, can be specified by locals :=
locals[I �→ V], without overwriting the value of other active local variables
having the same identifier I (the notation used for maps in [38] is actually
slightly different).

It might seem more natural to treat locals as a unary dynamic function
from variable identifiers to values, but the ASM framework is first-order, and
doesn’t allow functions themselves to be used as values.

� Exceptions are modelled by propagation.

In the Definition of Standard ML, an informal “exception convention” was
introduced, so that a lot of tedious transition rules could be left implicit. In
the ASM specification of Java, the propagation of raised exceptions is specified
explicitly by introducing a predicate propagatesAbr on phrases, then using a
special pattern phrase(�A) which matches arbitrary phrases that have a raised
exception A as any immediate component.

� Multiple threads can be modelled in various ways.

Separate ASM agents can be set up to execute threads independently, with
access to the same storage. Synchronization between threads can be achieved
using dynamic functions which indicate that particular threads have locked
particular storage areas (since a lock can be both tested and conditionally set
in a single transition).

In the cited ASM for Java, however, a different approach is used—motivated
mainly by the requirement that the model should be executable using a
recently-developed prototyping system called AsmGofer [34]. The idea is that
at every transition during a computation for a multi-threaded Java program,
an active thread is selected arbitrarily, using a so-called choice function, which
is itself left unspecified. In contrast to the situation with Distributed ASMs,
this modelling of threads on a single ASM allows computations that perpetu-
ally switch between threads, without making any actual progress.

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 61

6 Denotational Semantics

The framework of Denotational Semantics was developed by Scott and Stra-
chey at Oxford in the late 1960’s [20,36,39]. One of the main aims was to
provide a proper mathematical foundation for reasoning about programs and
for understanding the fundamental concepts of programming languages. De-
notational Semantics has since been used in teaching [29,35,41] as well as in
research. It has also been used to define the functional programming language
Scheme [32]; attempts to give denotational semantics for larger programming
languages have generally been less successful, although several major descrip-
tions have been given using a notational variant of denotational semantics
called VDM [2].

6.1 Denotations

� The denotation of a part of a program represents its contribution to
overall behaviour.

The denotation of a construct is typically a function of arguments that repre-
sent the information available before its execution, and the result represents
the information available afterwards. The intermediate states during the exe-
cution of the construct are generally of no relevance (except when interleaving
is allowed) and are thus not represented, cf. big-step SOS (Natural Seman-
tics). Usually, nontermination is represented by a special value written ⊥ (the
bottom element in a partial ordering based on information content).

� Denotations are defined inductively.

Semantic functions map constructs to their denotations. For example, let Exp
be the abstract syntax of expressions, and let Den be the set of all (potential)
denotations of expressions. A semantic function for expressions:

E : Exp → Den

is defined inductively by semantic equations such as:

E [[cond(E1 ,E2 ,E3)]] = F (E [[E1]], E [[E2]], E [[E3]]) (34)

� λ-notation is used to specify how the denotations of components are to be
combined.

F : Den3 → Den above is defined using so-called λ-notation, which is a
mathematical notation for function abstraction (a function with argument x

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7362

is written λx .t), application, and composition, extended with a case construct
and a few other useful features. Note that both E and F above are higher-order
functions, assuming that Den is a set of functions.

� Denotations of loops and recursive procedures are least fixed-points of
continuous functions on Scott-domains.

To define the denotation d of a loop, for instance, we need to be able to provide
a well-defined solution to d = F (d), where F (d) is a particular composition of
d with the denotations of the loop condition and body. It turns out that such
an equation always has a solution, and in particular it has a least solution—
provided only that F : Den → Den is continuous in a certain sense on Den,
which has to be a Scott-domain: a cpo (complete partially-ordered set). In
fact F is always continuous when defined using λ-notation, so in practice,
familiarity with the mathematical foundations of Denotational Semantics is
not required.

6.2 Direct and Continuation-Passing Styles

� The denotational semantics of a purely functional language may be in
direct or in continuation-passing style.

Using the direct style, let Den = Val⊥; then the denotations of conditional
expressions can be defined as follow:

E [[cond(E1 ,E2 ,E3)]] =

case E [[E1]] of true ⇒ E [[E2]] |
false ⇒ E [[E3]]

(35)

Note that if the denotation of E1 is ⊥, then so is that of the whole conditional
expression; this reflects that if the evaluation of E1 never terminates, then
neither does that of the enclosing expression. If the evaluation of E1 does
terminate, it should give either tt or ff, which are here the denotations of the
corresponding boolean constants:

E [[true]] = tt E [[false]] = ff (36)

(In Denotational Semantics, one generally avoids use of syntactic phrases such
as true and false in the set of denotations.)

The so-called continuation style of denotational semantics looks rather
different. Here one would take Den = K → A, where K = Val → A and A

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 63

is some set of values representing the possible results of executing complete
programs (e.g. for ML, A would be Val together with some values representing
unhandled exceptions). The idea is that the continuation given as argument
to E [[E1]] is supposed to be applied to the value computed by E1 ; if E1 never
terminates, or terminates exceptionally, the continuation is simply ignored.
The continuation for E1 involves the denotations of E2 and E3 , which are
both given the continuation k provided for the entire conditional expression.

E [[cond(E1 ,E2 ,E3)]] =

λk .E [[E1]](λt .case t of tt ⇒ E [[E2]]k |
ff ⇒ E [[E3]]k)

(37)

If E1 is simply true, its denotation applies the continuation k to the corre-
sponding value:

E [[true]] = λk .k(tt) etc. (38)

� Bindings are represented by explicit arguments of denotations.

Regardless of whether denotations are in the direct style or using continua-
tions, the dependency of the values of identifiers on the bindings provided by
their context is represented by letting denotations be functions of environ-
ments. For instance, let Den = Env → Val⊥; then the direct semantics for
conditional expressions would be formulated as follows:

E [[cond(E1 ,E2 ,E3)]] =

λρ.case E [[E1]]ρ of tt ⇒ E [[E2]]ρ |
ff ⇒ E [[E3]]ρ

(39)

The denotation of an identifier simply applies the environment to the identifier
itself:

E [[I]] = λρ.ρ(I) (40)

� Effects on storage are represented by letting denotations be functions from
stores to stores.

It might seem that the easiest would be to add stores as arguments and results
to the direct-style denotations given above, taking Den = Env → (Store →
(Val× Store)⊥). However, that would lead to the following semantic equation

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7364

for conditional expressions, which is not as perspicuous as one might wish:

E [[cond(E1 ,E2 ,E3)]] =

λρ.λσ.(λ(t , σ′).case t of tt ⇒ E [[E2]]ρ σ′ |
ff ⇒ E [[E3]]ρ σ′)

(E [[E1]]ρ σ)

(41)

So let us instead try adding stores to the denotations used with the continuation-
style semantics. The appropriate set of denotations is then Den = Env → K →
C, where K = Val → C, and C = Store → A, and we may give a relatively
straightforward-looking semantic equation—not even mentioning the stores,
which automatically follow the flow of control in continuation semantics:

E [[cond(E1 ,E2 ,E3)]] =

λρ.λk .E [[E1]]ρ(λt .case t of tt ⇒ E [[E2]]ρ k |
ff ⇒ E [[E3]]ρ k)

(42)

� Nondeterminism and interleaving can be represented by letting
denotations be set-valued functions.

In operational frameworks based on transition relations, the possibility of
nondeterministic computations doesn’t make any difference to how rules are
formulated. In denotational semantics, however, the use of functions as de-
notations means that the ranges of the functions have to be changed to allow
them to return sets of possible results; moreover, other functions that are to
be composed with these set-valued functions have to be extended to functions
that take sets as arguments. As one may imagine, the extra notation required
leads to further complication of the specifications of denotations.

Since interleaving generally entails nondeterminism, its denotational de-
scription obviously requires the use of set-valued functions. However, a further
problem arises: it simply isn’t possible to compose functions that map initial
states to (sets of) final states so as to obtain a function corresponding to their
interleaving at intermediate states. So-called resumptions are needed: these
are functions representing the points at which interleaving can take place, and
correspond closely to the computations used in operational semantics.

� Denotational semantics is applicable to modelling languages.

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 65

The denotation of a model can be taken to be the set of entities that the
model specifies. As with big-step SOS, the abstract syntax of the modelling
language has to be tree-structured.

6.3 Monadic Semantics

� Use of monadic notation gives good modularity.

The straightforward use of λ-notation to specify how denotations are combined
requires awareness of the exact structure of the denotations: whether they are
functions of environments, stores, continuations, etc. When new constructs
are added to a language, it may be necessary to change the structure of the
denotations, and reformulate all the semantic equations that involve those
denotations. Thus it appears that use of λ-notation is a major hindrance to
obtaining modularity in denotational descriptions.

However, suppose that we define some auxiliary notation for combining
denotations, corresponding to fundamental concepts such as sequencing. We
may then be able to specify denotations using the auxiliary notation, without
any dependence on the structure of denotations. If we later change that struc-
ture, we shall also have to change the definition of the auxiliary notation—but
the use of that notation in the semantic equations may remain the same.

Monadic Semantics provides a particular auxiliary notation for use in De-
notational Semantics. It was developed by Moggi at the end of the 1980’s
[18,19], and inspired by category-theoretic concepts. The basic idea is that
denotations compute values of particular types; when two such denotations
are sequenced, the value computed by the first one is made available to the
second one, written ‘let x = d1 in d2 ’ (where d2 usually depends on x). The
only other bit of essential notation is for forming a denotation that simply
computes a particular value v , which is written ‘[v]’. A set of denotations
equipped with this notation may be regarded as a mathematical structure
called a monad. Here is how the semantic equation for conditional expressions
looks in the monadic variant of Denotational Semantics:

E [[cond(E1 ,E2 ,E3)]] =

let t = E [[E1]] in

case t of tt ⇒ E [[E2]] | ff ⇒ E [[E3]]

(43)

Note that as well as being independent of the structure of denotations, the
monadic semantic equation is also more perspicuous and suggestive of the
intended semantics than our previous semantic equations were.

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7366

� Monad transformers add support for further features.

How about further ways of combining denotations that might be needed, but
which are not based on sequencing? Some monad transformers are avail-
able: fundamental ways of adding features to denotations (bindings, effects
on storage, exceptions, nondeterministic choice, interleaving, etc.), together
with appropriate notation. Unfortunately, it isn’t always so straightforward to
combine different monad transformers, and difficulties can arise when trying to
redefine auxiliary notation in connection with applying a monad transformer.
(We shall consider Action Semantics, a hybrid framework that doesn’t suffer
from such problems, in Sect. 8.)

7 Axiomatic Semantics

Axiomatic Semantics was developed primarily by Hoare in the late 1960’s
[11]. The main aim was initially to provide a formal basis for the verification
of abstract algorithms; later, the framework was applied to the definition of
programming languages, and consideration of Axiomatic Semantics influenced
the design of Pascal [12].

� A Hoare Logic gives rules for the relation between assertions about values
of variables before and after execution of each construct

Usually, the constructs concerned are only statements S . Suppose that P and
Q are assertions about the values of particular variables; then the so-called
partial correctness formula P{S}Q states that if P holds at the beginning of
an execution of S and the execution terminates, Q will always hold at the end
of that execution. Notice that P{S}Q does not require S to terminate, nor
does it require Q to hold after an execution of S when P didn’t hold at the
beginning of the execution.

A Hoare Logic specifies the relation P{S}Q inductively by rules, in the
same way that as an SOS specifies a transition relation.

� Expressions are assumed to have no side-effects.

Expressions are used in assertions, so their interpretation has to be purely
mathematical, without effects on storage, exceptions, non-terminating func-
tion calls, etc. For example, consider conditional statements with the following
abstract syntax, where the conditions are restricted to pure boolean-valued
expressions:

Stm ::= cond(Exp, Stm, Stm)

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 67

A typical rule given for this construct is:

(P ∧ E){S1}R, (P ∧ ¬E){S2}R
P{cond(E , S1 , S2)}R

(44)

Notice the use of E as a sub-formula in the assertions, holding when the
expression evaluates to true.

Similarly, the usual rule for assignment is:

P [E/I]{update(I ,E)}P (45)

This involves the substitution P [E/I] of an expression E for an identifier I in
an assertion P .

� Bindings can be represented by explicit environments.

In many presentations of Hoare Logic, bindings are left implicit: the relation
P{S}Q is defined on the basis of a fixed set of bindings. To reflect local dec-
larations, it is necessary to use more elaborate formulae such as 〈ρ | P{S}Q〉,
where the current bindings ρ are made explicit.

� Hoare Logic for concurrent processes involves rules for interleaving.

Hoare Logic is exploited in connection with the development and verification
of concurrent processes. The rules can get rather complicated.

� Predicate transformer semantics is essentially denotational.

In connection with a methodology for developing programs from specifications,
Dijkstra defined, for each statement S and postcondition Q , the weakest pre-
condition P guaranteeing total correctness: if P holds at the beginning of
the execution of S , then S always terminates, and Q holds at the end of the
execution. Although the assertions used here are similar to those in Hoare
Logic, the definition of the weakest precondition P is actually inductive in the
structure of the statement S , and Dijkstra’s semantics is better considered as
denotational (with the denotations being predicate transformers, i.e. functions
on the interpretation of assertions) rather than axiomatic.

8 Action Semantics

The Action Semantics framework was developed by the present author, in
collaboration with Watt, in the second half of the 1980’s [21,28,40]. (The

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7368

UML Action Semantics is to some extent similar in spirit to the original Action
Semantics framework, although there are major technical differences.)

� Action Semantics is a hybrid of denotational and operational semantics.

As in denotational semantics, inductively-defined semantic functions map phrases
to their denotations, only here, the denotations are so-called actions. The no-
tation for actions is itself defined operationally [21,24].

� Action Semantics avoids the use of higher-order functions expressed in
λ-notation.

The universe of pure mathematical functions is so distant from that of (most)
programming languages that the representation of programming concepts in it
is often excessively complex. The foundations of reflexive Scott-domains and
higher-order functions are unfamiliar and inaccessible to many programmers
(although the idea of functions that take other functions as arguments, and
perhaps also return functions as results, is not difficult in itself).

� Action semantics provides a rich action notation with a direct operational
interpretation

The universe of actions involves not only control and data flow, but also scopes
of bindings, effects on storage, and interactive processes, allowing a simple and
direct representation of many programming concepts.

Computed values are given by actions, and the action combination ‘A1 then A2 ’
passes all the values given by A1 to A2 . For example, assuming evaluate :
Exp → Action, the value computed by evaluate E1 is the one tested by the
action ‘given true’ below:

evaluate cond(E1 ,E2 ,E3) =

evaluate E1 then

(given true then evaluate E2

otherwise evaluate E3)

(46)

Bindings are implicitly propagated to the sub-actions of most actions, and
can always be referred to, as illustrated below:

evaluate I = give the val bound to I (47)

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 69

Effects on storage implicitly follow the flow of control:

evaluate assign(E1 ,E2) =

evaluate E1 and evaluate E2

then update(the loc#1 , the val#2)

(48)

Concurrent processes are represented by agents that perform separate ac-
tions, with asynchronous message-passing.

9 Conclusion

In these notes, we have considered the main frameworks for semantic descrip-
tion, giving fragments to illustrate the different styles of specification that are
used there.

Most of the frameworks have significant disadvantages regarding the mod-
ularity of semantic descriptions, severely limiting the possibility of reusing
parts of the specification of one language in the specification of another:

• The original SOS framework may require reformulation of transition rules
when the described language is extended.

• Reduction Semantics has reasonable modularity, but uses substitution to
deal with scopes of bindings, which is tedious to specify.

• Semantic descriptions using Abstract State Machines tend to introduce ad
hoc auxiliary notation to abbreviate the many details (e.g. concerning stacks
of frames), which hinders reuse of transition rules in specifications of differ-
ent languages.

• The direct use of λ-notation in Denotational Semantics requires reformula-
tion of semantic equations when the described language is extended. Use of
monadic notation eliminates this problem, but the foundations of the frame-
work may be regarded as too abstract for use by programmers (despite the
recent popularity of monadic techniques in functional programming).

• Axiomatic Semantics becomes quite complicated when used to describe real
programming languages such as Java, and in any case is a somewhat indirect
way of defining models for programming languages.

MSOS appears to have significant advantages over all the alternative frame-
works, at least regarding the actual specification of semantics. Action Se-
mantics is as modular as MSOS, but it may be regarded as a disadvantage
that it requires familiarity with Action Notation, which has somewhat more
constructs than the notations underlying the other frameworks. A major

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7370

advantage of Action Semantics is that it supports automatic generation of
(reasonably efficient) compilers from semantic descriptions [13,14].

Proving properties of programs and languages is quite demanding in all the
frameworks (apart from in Axiomatic Semantics, which is closely related to the
specification of invariants in programs); the modularity of MSOS and Action
Semantics should allow reuse of proofs of properties between descriptions of
different languages, giving them some advantages over other frameworks in
this respect.

Acknowledgement

The initial version of this paper was written while the author was employed at
the University of Aarhus, Denmark, and supported by BRICS (Basic Research
in Computer Science [www.brics.dk], funded by the Danish National Research
Foundation).

References

[1] L. Aceto, W. Fokkink, and C. Verhoef. Structural operational semantics. In Handbook of
Process Algebra, chapter 3, pages 197–291. Elsevier Science, 2001.

[2] D. Bjørner and C. B. Jones, editors. Formal Specification & Software Development. Prentice-
Hall, 1982.

[3] S. Cook and S. Kent. Language anatomy. In Software Factories, chapter 8. Wiley, 2004.

[4] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of Theoretical Computer
Science, volume B, chapter 6. Elsevier Science Publishers, Amsterdam; and MIT Press, 1990.

[5] M. Felleisen and D. P. Friedman. Control operators, the SECD machine, and the λ-calculus.
In Formal Description of Programming Concepts III, pages 193–217. North-Holland, 1987.

[6] Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor, Specification and
Validation Methods. Oxford University Press, 1995.

[7] Y. Gurevich. May 1997 draft of the ASM Guide. Technical Report CSE-TR-336-97, University
of Michigan EECS Department, 1997.

[8] G. Hamon and J. Rushby. An operational semantics for Stateflow. In FASE 2004, LNCS 2984,
pages 229–243. Springer, 2004.

[9] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism SDF:
Reference manual. ACM SIGPLAN Notices, 24(11):43–75, 1989.

[10] M. Hennessy. The Semantics of Programming Languages: An Elementary Introduction Using
Structural Operational Semantics. Wiley, New York, 1990.

[11] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12:576–580,
1969.

[12] C. A. R. Hoare and N. Wirth. An axiomatic definition of the programming language Pascal.
Acta Inf., 2:335–355, 1973.

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 71

www.brics.dk

[13] J. Iversen. An action compiler targeting Standard ML. In LDTA 2005, Proc. 5th Workshop
on Language Descriptions, Tools and Applications, ENTCS. Elsevier, 2005. To appear.

[14] J. Iversen. Formalisms and Tools Supporting Constructive Action Semantics. PhD thesis,
University of Aarhus, 2005.

[15] G. Kahn. Natural semantics. In STACS’87, LNCS 247, pages 22–39. Springer, 1987.

[16] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[17] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Revised).
The MIT Press, 1997.

[18] E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-90-113,
Computer Science Dept., University of Edinburgh, 1990.

[19] E. Moggi. Notions of computation and monads. Information and Computation, 93:55–92,
1991.

[20] P. D. Mosses. Denotational semantics. In Handbook of Theoretical Computer Science,
volume B, chapter 11. Elsevier Science Publishers, Amsterdam; and MIT Press, 1990.

[21] P. D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1992.

[22] P. D. Mosses. Foundations of modular SOS. BRICS RS-99-54, Dept. of Computer Science,
Univ. of Aarhus, 1999.

[23] P. D. Mosses. Foundations of Modular SOS (extended abstract). In MFCS’99, LNCS 1672,
pages 70–80. Springer, 1999.

[24] P. D. Mosses. A modular SOS for Action Notation (extended abstract). In AS’99, 2nd Intl.
Workshop on Action Semantics, Amsterdam, The Netherlands, Proceedings, BRICS NS-99-3,
pages 131–142. Dept. of Computer Science, Univ. of Aarhus, 1999. Full version available at
http://www.brics.dk/RS/99/56/.

[25] P. D. Mosses. Pragmatics of modular SOS. In AMAST’02, LNCS 2422, pages 21–40. Springer,
2002.

[26] P. D. Mosses. Modular structural operational semantics. J. Logic and Algebraic Programming,
60–61:195–228, 2004. Special issue on SOS.

[27] P. D. Mosses, editor. Casl Reference Manual. LNCS 2960 (IFIP Series). Springer, 2004.

[28] P. D. Mosses and D. A. Watt. The use of action semantics. In Formal Description of
Programming Concepts III, pages 135–166. North-Holland, 1987.

[29] H. R. Nielson and F. Nielson. Semantics with Applications: A Formal Introduction. Wiley,
Chichester, UK, 1992.

[30] OMG. Unified Modeling Language Specification, v1.5 edition, 2001. OMG Document
formal/03-03-01, http://www.omg.org.

[31] G. D. Plotkin. A structural approach to operational semantics. J. Logic and Algebraic
Programming, 60–61:17–139, 2004. Originally published as DAIMI FN-19, Dept. of Computer
Science, Univ. of Aarhus, 1981.

[32] J. Rees, W. Clinger, et al. The revised3 report on the algorithmic language Scheme. ACM
SIGPLAN Notices, 21(12):37–79, 1986.

[33] J. H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.

[34] J. Schmid. Introduction to AsmGofer, 2001. http://www.tydo.de/AsmGofer.

[35] D. A. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn &
Bacon, 1986.

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–7372

http://www.brics.dk/RS/99/56/
http://www.omg.org
http://www.tydo.de/AsmGofer

[36] D. S. Scott and C. Strachey. Toward a mathematical semantics for computer languages. In
Proc. Symp. on Computers and Automata, volume 21 of Microwave Research Institute Symposia
Series. Polytechnic Institute of Brooklyn, 1971.

[37] K. Slonneger and B. L. Kurtz. Formal Syntax and Semantics of Programming Languages: A
Laboratory Based Approach. Addison-Wesley, 1995.

[38] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine. Springer, 2001.

[39] R. D. Tennent. The denotational semantics of programming languages. Commun. ACM,
19:437–453, 1976.

[40] D. A. Watt. Programming Language Syntax and Semantics. Prentice-Hall, 1991.

[41] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT Press,
1993.

P.D. Mosses / Electronic Notes in Theoretical Computer Science 148 (2006) 41–73 73

	Introduction
	Syntax
	Semantics

	Structural Operational Semantics
	Bindings
	Stores
	Communications
	Small-Step and Big-Step Styles
	Informal Conventions

	Modular SOS
	Reduction Semantics
	Abstract State Machine Semantics
	Denotational Semantics
	Denotations
	Direct and Continuation-Passing Styles
	Monadic Semantics

	Axiomatic Semantics
	Action Semantics
	Conclusion
	Acknowledgement
	References

