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Abstract

Power line communication (PLC) is an emerging technology for multimedia, broadband Internet access and smart grid appli-
cations. However, the development of PLC has been slowed down by the absence of a generally applicable channel model. The
modelling of PLC channel is very challenge due to a number of reasons such as the harshness and diversity of power networks,
and the difficulties in measurement. Two channel modelling approaches can be found in literature, namely the top-down ap-
proach and the bottom-up approach. These two approaches are summarised and analysed in this paper. Some representative
works are also presented. Several future works, including random channel generation, channel model generalisation and smart
grid channel modelling are suggested.

Keywords: power line communication; channel modelling; top-down approach; bottom-up approach; transmission line
theory; smart grid

1. Introduction

Power line communication (PLC) has attracted a lot of attention in applications like multimedia, broadband
Internet access and smart grid. Because of the existence of power grid all over the world, PLC has a deployment
cost that is comparable to that of wireless communication [1]. This makes it a potential competitor of wireless
communication in the aforementioned applications. However, the development of PLC technologies is not as fast
as that of wireless communication technologies mainly due to the difficulties in channel modelling.

One of the most significant challenge of PLC channel modelling is the harshness of power networks. First,
it is frequency selective due to reflections and transmissions caused by impedance mismatches at discontinuities.
Second, it exhibits high attenuation and strong low-pass behaviour which limits not only the coverage of the
network but also the bandwidth that can be used for communication. Moreover, it is time-varying due to change of
topology, load impedances and cable parameters. Apart from these, PLC systems are further impaired by coloured
background noise and complex impulsive noise. Therefore, extensive studies on these channel characterizations
are necessary for reliable channel models.

The global diversity of power grids and PLC applications further increases the difficulty of PLC channel
modelling. On one hand, the structure of power grid varies from country to country. For example, two-phase
configuration is common in the United States but not in Europe while three-phase configuration is common in
Europe [2]. Additionally, the power grid may have several variations within a country. On the other hand, different
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applications target different network layers and frequency bands. The power grid is usually divided into four
layers, namely high voltage (HV) transmission network, medium voltage (MV) distribution network, low-voltage
(LV) distribution network and the indoor power distribution network in residential and commercial buildings.
Most of the researches focus on the last two layers. The Automatic Metering Infrastructure (AMI) of smart
grid also operates in these two layers as is recommended by many commercial and non-commercial standards,
such as PRIME, G3-PLC, ITU-T G.hnem and IEEE 1901.2. The smart meter collects power consumption data
from appliances through indoor power networks and communicates with utility’s central office via outdoor power
networks. Regarding operating frequency bands, the CENELEC bands (3-500kHz) are recommended by the
aforementioned standards for smart grid applications. Nevertheless, as will be described in this paper, most of
the existing channel models target broadband (1-100MHz) PLC applications. As a result, it is hard to develop a
generally applicable model and there is no such model that can be directly applied to smart grid PLC yet.

Measurement is another challenge aspect of PLC channel modelling. Measurement of PLC channel is usually
dangerous because of the high voltage. Critical isolation of the mains voltage is required for not only protection
but also signal extraction. Apart from safety reasons, the measurement of outdoor distribution network is still chal-
lenge as it is hard to get access to it. Due to this reason, most of the individual researches [3–16] on PLC channel
modelling were based on indoor measurements. In addition, there is a limited number of measurement campaigns
around the world. Some examples are those held by ETSI (the European Telecommunications Standards Institute),
OPERA (the Open PLC European Research Alliance) and OMEGA (Home Gigabit Access) project.

Multiple-input-multiple-output (MIMO) PLC channel modelling is even more complicated than single-input-
single-output (SISO) PLC. On one hand, expensive multi-port equipments and complex coupling circuits have to
be employed for the measurement of MIMO channels. One the other hand, the coupling between different ports
makes the analysis of MIMO channels very challenge.

Two kinds of PLC channel modelling approaches can be found in literature, namely the top-down approach
[3, 12, 14, 15, 17–19] and the bottom-up approach [5–11, 20–25]. A top-down approach attempts to find the
most fitted model from measurements (either impulse responses or frequency responses) by means of data fitting,
while in a bottom-up approach the channel model is derived from transmission line theory without relying on any
measurement. Although various channel models can be found in the literature, a widely accepted channel model
that is generally applicable is still absent since existing models target different network layers and frequency bands,
or they are based on specific measurement results, network topologies and assumptions.

This paper is organised as follows. Section 2 summarises the basic ideas of the two PLC channel modelling
approaches and presents some representative works. Section 3 suggests some future works of PLC channel mod-
elling. Section 4 concludes this paper.

2. PLC Channel Modelling Approaches

2.1. Top-down Approach

Similar to wireless channel modelling, this approach treats the PLC channel as a black box and a large number
of measurements are collected by exciting the channel with a reference signal in either time domain or frequency
domain. Complex fitting algorithms are then applied in order to find a model that fits the measurements well. The
fitting process includes identification of proper parameters and estimation of those parameters. The objective is to
use a few parameters to approximate the channel with high accuracy.

This approach is advantageous in that the developed models are usually easy to use and they allow fast channel
generation. This makes them suitable for running Monte Carlo simulation, where a large number of channel
realisations are required. With the help of the statistical results derived from measurements, the channel and even
system performance may be studied analytically. The most significant disadvantage of this approach is its low
flexibility. The model and its parameters derived for a specific network and frequency band may not be applied
to other networks and frequency bands. Therefore, in order to develop a generalised top-down model, extensive
channel measurements must be done globally. Another disadvantage is that it lacks physical connection with
reality. For example, it is hard to use this model to describe the spatial correlation presented in power networks.
Since power network is a bus system, it is possible that the received channel responses of two neighbouring nodes
have high correlation. Consequently, this approach may not be applied to network-related system modelling.
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Fig. 1. Frequency responses of OPERA reference channels [26]

Many researchers have contributed to this approach with different network locations, topologies, frequency
bands, etc. A well-known top-down model proposed by Zimmermann and Dostert [18] describes the channel
(0.5-20 MHz) based on multipath phenomenon. The multipath nature of PLC channel is due to the presence of
branches and impedance mismatches which cause multiple reflections. The transfer function of the channel can
be expressed as:

H( f ) =
N∑

i=1

gie
−(a0+a1 f k)di e− j2π f (di/vp) (1)

where N is the number of dominant paths, gi is the weight of the ith path determined by reflections and trans-
missions, a0 and a1 represents the attenuation of cable, k determines the dependency of attenuation on frequency
f , di is the length of the ith path, and vp is the phase velocity of the cable.

The model is completed by assigning proper values to the above parameters. Based on their own measure-
ments, Zimmermann and Dostert defined several reference channels in terms of link distances. A set of parameters
were then determined for each channel. Additionally, OPERA project [26] proposed 9 reference channels for LV
and MV networks based on this model. Figure 1 shows the channel transfer function of these reference channels.

A major drawback of this model is that the computational cost for determining the dominant paths and the
corresponding parameters grows with the number of dominant paths. In indoor environments, there are usually
a large number of paths and the attenuation is low due to short path length. As a result, many strong paths may
present, causing a high computational cost.

Many other top-down channel model proposals can be found in literature. Based on extensive measurements,
Tlich et. al. [15] proposed a random channel model (1-100 MHz) in frequency domain by analysing statistical
properties of the magnitude and phase of the measured channel transfer function. On the contrary, the channel
model (1.8-30 MHz) proposed by Galli [17] is based on time domain statistical analysis, such as average channel
gain and RMS delay spread. Galli also compared the statistical results of power lines with other wires such as
twisted-pair and coaxial cable, and found that these wires have similar statistical properties. In [27], Tonello
developed a random channel generator based on Zimmermann’s model and he further refined his model (2-100
MHz) recently [12] by including more statistical results.

There are very few MIMO top-down channel modelling methods in the literature. Some pioneers can be found
in [3, 14]. In [14], measurement and analysis of MIMO inhome PLC channel were performed. A MIMO channel
model was then proposed. This model first generates a SISO channel realisation and then other correlated channels
are generated by assigning a random phase to each path of the SISO channel. However, no theoretical support was
provided for this correlation generation method. Measurement on MIMO inhome channel was also conducted in
[3] and a channel model was developed by statistical analysis, including correlation, of the measurements.
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2.2. Bottom-up Approach

The bottom-up approach is usually based on transmission line theory [28]. This approach requires perfect
knowledge of the targeting power network, including its topology, the used power line cable and load impedances
of terminals. These network elements are modelled mathematically so that they can be incorporated to generate
the channel.

Transmission line theory was originally developed to describe electromagnetic (EM) wave propagation in a
piece of transmission line with a bunch of partial differential equations (PDEs). Voltages along the transmission
line were derived by solving these PDEs and incorporating reflections at line ends. The theory must be modified so
that it can be applied to model signal propagation in a network. Voltage ratio approach [5–9, 20–22, 28], ABCD
matrix [10, 28] and s-parameters [23–25] are three popular methods in literature. Voltage ratio approach and
ABCD matrix are basically the same method in different forms because they all focus on voltages and currents
at network nodes. S-parameters approach is different. It describes wave propagation in a network by utilizing
transmission and reflection coefficients. Although this approach is complicated, it is directly related to signal
propagation in a network. Therefore, it can be easily extended to the situation where different kinds of cables
with different number of conductors are connected together. It is hard for a voltage ratio approach or an ABCD
matrix approach to be applied to this situation. We refer readers to [23] for a good demonstration of this approach.
An exception of bottom-up approach can be found in [11]. This model is basically a multipath model partly
cooperated with transmission line theory.

The advantage of bottom-up approach is that it can be applied to various situations flexibly as long as the
network information is perfectly known. In addition, this approach is closely related to the physics of power
networks since it is derived from the physical interpretation of EM wave propagation in transmission line networks.
Therefore, this approach can be used for network-related system modelling such as multiuser systems and relay
systems. This approach also has several disadvantages. First, this approach is usually computational complex and
the complexity grows with the complexity of the network. Second, this approach may not be practical since it
only considers several key elements of a power network. A practical model should consider many other natural
and artificial interference sources such as weather and radio. Finally, the collection of the aforementioned network
elements (topology, cable, load) is challenge due to a large number of variations of them.

2.2.1. Two-conductor Transmission Line Model
Two-conductor transmission line (2TL) theory [5, 6, 10, 11, 22] is used for power networks connected with

two-conductor transmission lines, such as twisted-pair and coaxial cable. In this section, we are going to briefly
introduce the voltage ratio approach proposed by Tonello and Versolatto [6] and demonstrate a supplement to his
approach.

By solving the wave equations and incorporating reflections at line ends (see chapter 5 of [28]), we can obtain
the voltage at any point along a cable:

V(z) =
1 + ΓLoade−2γLe2γz

1 − ΓS ourceΓLoade−2γL

ZC

ZC + ZS
VS e−γz (2)

where L is the length of cable, z is the position along the cable with z = 0 at source and z = L at load, ZC

and ZS are characteristic impedance and source impedance, VS is the voltage source, γ =
√

ZY is the propagation
constant with Z = r + jωl and Y = g + jωc, Z, Y, r, l, g and c are per-unit-length impedance, admittance,
resistance, inductance, conductance and capacitance respectively, ΓLoad and ΓS ource are reflection coefficients at
load and source with ΓLoad = (ZL −ZC)/(ZL+ZC) and ΓS ource = (ZS −ZC)/(ZS +ZC) and ZL is the load impedance.
It is easy to get the voltage ratio between source and load from Eq. 2.

V(L)
V(0)

=
1 + ΓLoad

eγL + ΓLoade−γL
(3)

Eq. 3 is the key to channel modelling of a network. Chain rule is adopted in Tonello’s model for calculating the
overall channel transfer function between any two nodes of a network. The network is first divided into sections
along the direct path between two nodes and then transfer function of each section is calculated using Eq. 3. In
this equation, the load reflection coefficient is calculated with the input impedance of the next section since the
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Fig. 2. Sample frequency responses generated with Tonello’s model and the modified one

load impedance of one section is equivalent to the input impedance of its next section. By doing so, the terminal
impedance is carried back to the desired node. The input impedance of a cable is calculated by

Zin(0) = ZC
1 + ΓLoade−2γL

1 − ΓLoade−2γL
(4)

In terms of branch, this model treats the branches depart from the same node as parallel circuits represented
by their input impedances. Therefore, it is straightforward to calculate the total input impedance at that node with
Ohm’s law. Finally, all the transfer functions are multiplied together according to the chain rule to obtain the
overall transfer function.

This method has a drawback in that it does not consider the reflection at source. The term ZC/(ZC + ZS ) in
Eq. 2 represents voltage division caused by the source impedance. However, this division was eliminated in Eq. 3
because Eq. 3 is actually the voltage ratio between the voltages at two line ends but not the voltage ratio between
load voltage and source input voltage. Therefore, we modified this method by using Eq. 2 (set VS to unity)
instead of Eq. 3 for the transfer function of the section that is directly connected to the source. No other changes
were made. Figure 2 shows two sample frequency responses generated with Tonello’s model and the modified
one based on the topology in figure 6 of [29] with all load impedances (including source impedance) equal to 50
Ohms. Comparing the two frequency responses, it is easy to see that further attenuation is introduced by source
impedance.

As in Eq. 2, the propagation constant includes the attenuation and phase shift of a cable. This is determined
by the so-called per-unit-length parameters, including resistance, conductance, inductance and capacitance. The
determination of these parameters are very challenge and usually assumptions, such as homogeneous dielectric
and uniform cable, are made to simplify the calculation. Analytical results can be provided for some symmetric
cables such as coaxial cable. The determination of these parameters for asymmetric cables is much more complex.
Further details can be found in [6, 28].

2.2.2. Multi-conductor Transmission Line Model
Multi-conductor transmission line (MTL) theory [7–9, 20, 21, 23–25] is a generalisation of 2TL theory for

more than two conductors. Similar to 2TL theory, a set of PDEs are formulated for voltages and currents on all
conductors. Since more than one voltage and current are presented, all the variables, including voltages, currents
and per-unit-length parameters, are represented in compact matrix forms. The PDEs cannot be solved directly
since coupling between conductors are naturally included in per-unit-length parameters. In chapter 7 of [28],
eigenvalue decomposition is adopted to decouple the PDEs. Because of this coupling, the solution to those PDEs
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is more complex than that to two-conductor transmission lines. In addition, analysis of this kind model is challenge
due to the non-communicative property of matrix and the presence of coupling.

We are not going to present the details of this theory due to space limitation. The derivation can be found
in chapter 7 of [28]. Instead, we will review some good researches here. As an extension of the work in [6],
Versolatto and Tonello proposed a channel modelling method based on MTL theory [20]. The method is almost
the same as the one in [6]. An equation was derived for the voltage ratio between two line ends and chain rule was
adopted for the calculation of the overall transfer function. Source reflection is neither considered in this method.

As mentioned above, the model in [23] is a good MTL model based on s-parameters. The s-parameters models
of cable segments, sources, loads and derivation points are presented. One advantages of this work is that it allows
the connection of different kinds of cables with different number of conductors. However, the complexity of this
model is very high. In [25], Bakhoum proposed an s-parameters based model that is specifically designed for
three-phase systems.

A common problem of the above models is that they are all theoretical models which only consider the cable
structure and network topology, while the practical wiring practices are not considered. For instance, as stated
by Galli [1], grounding has significant influence on channel transfer functions. In [7–9], Galli et.al. proposed a
practical MTL modelling approach that is based on US indoor wiring practices. Similar models can be studied for
other wiring practices in different countries.

Determination of per-unit-length parameters for MTL approach is much more complex than that for 2TL
approach. Analytical solutions can only be provided for cables with certain symmetry (see chapter 6 of [28]). The
solutions for other cables can be very complex and for some asymmetric cables, numerical methods, such as the
one used by Sartenaer in [23], have to be adopted.

3. Future Works

PLC channel modelling is still an open and challenge research topic. There are several good channel modelling
approaches [6, 7, 12, 17, 18, 20, 23] in literature. The focus is now on random channel generation and channel
model generalisation. In addition, channel modelling for Narrowband PLC (NB-PLC) in CENELEC bands (3-500
kHz) will be of paramount importance for the study of smart grid communication systems.

3.1. Random Channel Generation

Random channel generation of a top-down approach is usually directly related to the statistics of channel re-
sponses. In time-domain, statistics of amplitude and time information of a impulse response, such as amplitude
distribution, power delay profile and root mean square (RMS) delay spread, are usually required. In frequency do-
main, there is no standard way of random channel generation. Different kinds of statistics are possible depending
on the parameters defined for the model.

Several works were mentioned in section 2.1. Galli provided a good example of a time domain approach in
[17]. As presented in [15], the statistics of peaks and notches of channel frequency responses were analysed. This
is a possible approach but it has no physical connection with reality. The model of Tonello et.al. [12] is a good
attempt that is based on the physics of signal propagation in a network.

Time variation and spatial correlation are other two important factors that could be included in a top-down ran-
dom channel generator. However, there are few researches on these two factors. A good example on measurement
based time variation study can be found in [16]. Two kinds of spatial correlation can be found in a PLC network,
namely the spatial correlation between conductors and the spatial correlation between users. A study on spatial
correlation between conductors can be found in [13] while no research on spatial correlation between users was
found.

Random channel generation of bottom-up approaches is usually realised by varying network topology and
load impedances. The power line cable can also be changed but usually the same power line cables are used in
an area or a country. Other aspects such as weather and tolerance of a cable can also be included. In addition,
different wiring practices should be considered for more practical channel models.

Few papers regarding the generation of random topology can be found in literature. Tonello and Versolatto [6]
proposed a random topology generator based on in-home European wiring practices and norms. Based on some
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standard power grid system of the US, Wang proposed a novel random topology generator by using graph theory.
This generator also allows looped network.

There is also little information about the distribution of load impedance. Some measurements on the load
impedance variation of indoor devices were done in [16]. It was found load impedances vary periodically with the
mains frequency. A good analysis on the influence of load impedances on channel transfer function can be found
in [30]. However, no statistics of load impedance was provided in both works.

As a conclusion, many aspects regarding random channel generation can be studied, including faster and more
accurate top-down channel generators, more information and analysis on time variation and spatial correlation
of PLC channel, simple random topology generators for the power network of other countries and practical load
impedance generation.

3.2. Channel Model Generalisation

Most of the researches on PLC channel modelling are individual and discrete. These researches are specific
to particular network topologies and frequency bands. In order to develop a top-down channel model that is
generalised to different kinds of network and is valid for a wide frequency band, extensive measurements are
necessary. New top-down channel models may have to be developed for different networks and frequency bands.
The generalisation of a bottom-up approach usually doesn’t require change of the model, but the generality should
be reflected in the generation of network topology, load impedances and power cables.

3.3. Channel Modelling for Smart Grid Communications

The most significant problem of channel modelling for smart grid communications is the lack of narrowband
channel models. As mentioned above, most of the channel models, especially top-down ones, are broadband
channel models in the frequency band of 1-100 MHz. Very few of them focus on or cover the CENELEC bands
(3-500 kHz).

It is very likely that a broadband top-down approach cannot be applied to generate narrowband channel reali-
sations. However, a bottom-up approach is able to generate the frequency response of channel in all frequencies as
long as the frequency dependent parameters such as load impedances and per-unit-length parameters are available
in all frequencies. Nevertheless, measurements are still required for the validation of the model.

The study of outdoor LV distribution network channel modelling is of paramount importance for smart grid
because LV distribution networks will support the communication between smart meters and central offices with
very high reliability.

Spatial correlation can also be a very interesting research direction because a large number of smart meters
and sensors will share the same network. If correlation information between meters and sensors can be utilised,
communication system design may be simplified. In addition, this may also help the design of relay systems.

4. Conclusion

Two PLC channel modelling approaches, namely the top-down approach and the bottom-up approach, are
introduced in this paper. The top-down approach requires extensive channel measurements while the bottom-up
approach is based on transmission line theory. A top-down model proposed by Zimmermann was explained and
several reference channels were illustrated. The bottom-up approach is divided into 2TL and MTL approaches
in terms of the number of conductors in the considered power cable. A 2TL model proposed by Tonello was
described in details. We also pointed out a drawback of this model and provided a modification of it.

Several future works, including random channel generation, channel model generalisation and smart grid
channel modelling, were suggested in this paper. Random channel generation requires extensive study on channel
parameters such as amplitude, delay, time variation, spatial correlation, network topology, load impedances, per-
unit-length parameters, etc. Channel modelling generalisation requires thorough study of power grid across the
world. We also pointed out that the study of narrowband and outdoor channel models are of paramount importance
for smart grid applications.
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