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SUMMARY

Sensory transduction in auditory and vestibular hair
cells requires expression of transmembrane chan-
nel-like (Tmc) 1 and 2 genes, but the function of these
genes is unknown. To investigate the hypothesis that
TMC1 and TMC2 proteins are components of the
mechanosensitive ion channels that convert me-
chanical information into electrical signals, we re-
corded whole-cell and single-channel currents from
mouse hair cells that expressed Tmc1, Tmc2, or
mutant Tmc1. Cells that expressed Tmc2 had high
calcium permeability and large single-channel cur-
rents, while cells with mutant Tmc1 had reduced
calcium permeability and reduced single-channel
currents. Cells that expressed Tmc1 and Tmc2 had
a broad range of single-channel currents, suggesting
multiple heteromeric assemblies of TMC subunits.
The data demonstrate TMC1 and TMC2 are com-
ponents of hair cell transduction channels and
contribute to permeation properties. Gradients in
TMC channel composition may also contribute to
variation in sensory transduction along the tonotopic
axis of the mammalian cochlea.

INTRODUCTION

The perception of sound in the mammalian inner ear begins with

mechanical deflection of an array of 50–100 modified microvilli,

collectively known as the hair bundle. Hair bundles are mecha-

nosensitive organelles that project from the apical surface of in-

ner ear sensory cells. These sensory cells, or hair cells, can

respond to subnanometer hair bundle deflections within a few

microseconds. Hair cell mechanotransduction is well described

by the gating-spring model (Corey and Hudspeth, 1983), which

posits that hair bundle deflection stretches elastic elements

that directly convey mechanical force to gate mechanosensitive

ion channels, located near the tips of hair bundle microvilli (Jar-

amillo and Hudspeth, 1991; Denk et al., 1995; Lumpkin and Hud-

speth, 1995; Beurg et al., 2009).
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Several biophysical properties of hair cell transduction vary

along the length of the mammalian cochlea, including the

conductance of single channels (Beurg et al., 2006) and adapta-

tion of their response to a sustained stimulus (Kennedy et al.,

2003). These gradients in transduction properties parallel the to-

notopic arrangement of the cochlea and may contribute to the

exquisite frequency selectivity of themammalian inner ear. How-

ever, the molecular basis of frequency selectivity within the

mammalian cochlea has not been clarified, in part because

the mechanosensitive ion channels have not been identified at

the molecular level.

Numerous hair cell transduction channel candidates have

emerged over the past 15 years, yet none have withstood

rigorous scientific scrutiny. Recently, we reported that TMC1

and TMC2 are required for hair cell transduction, raising the pos-

sibility that these molecules may be components of the elusive

transduction channel (Kawashima et al., 2011), but the data

are also consistent with at least two alternate hypotheses:

TMC1 and TMC2may be required for trafficking or development

of other hair cell transduction molecules or they may be compo-

nents of the transduction apparatus, mechanically in series with

transduction channels, but not part of the channels themselves

(Kawashima et al., 2011).

Tmc1 and Tmc2 encode six-pass integral membrane proteins

with sequence and topology similar to each other (Labay et al.,

2010); however, they lack sequence similarity with known ion

channels and a pore domain has not been identified. A recent

report suggested that C. elegans tmc-1 forms non-selective

cation channels when expressed in heterologous cells (Chatzi-

georgiou et al., 2013), though it is unclear if this property extends

to other members of the Tmc superfamily. While mutations in

TMC1 cause dominant and recessive deafness in humans and

mice (Kurima et al., 2002; Vreugde et al., 2002), Marcotti et al.

(2006) reported normal mechanotransduction in mouse hair cells

that carried either a semidominant Tmc1 point mutation, known

as Beethoven (Bth), or a recessive in-frame 1.6 kb deletion in

Tmc1, known as deafness (dn). They concluded that Tmc1 is

not required for mechanotransduction and that the hearing

loss was due to failure of proper hair cell maturation. Kawashima

et al. (2011) suggested that expression of a second Tmc gene,

Tmc2, may have accounted for the normal mechanotransduc-

tion current amplitudes in the Tmc1 mutant mice and that the
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Figure 1. Mechanotransduction Currents Recorded from Cochlear Inner Hair Cells

(A) Representative families of currents recorded at�84mV from cells of the genotypes indicated above. Cells were from the apical end of P5–P6 cochleas bathed

in 1.3 mM Ca2+. The scale bar and stimulus protocol apply to all current families.

(B) Data from the same cells shown in panel A bathed in 50 mM Ca2+, a concentration similar to that of endogenous endolymph.

(C) Mean maximal transduction current amplitudes (±1 SEM) plotted as a function of postnatal age for apical inner hair cells from Tmc1D/D;Tmc2+/D (n = 60, �7/

day) and Tmc1+/D;Tmc2D/D (n = 48, �8/day) mice. Data were recorded in 1.3 mM Ca2+ at �84 mV and were fitted with smooth curves.

(D) Mean maximal transduction currents (+1 SEM) recorded from basal inner hair cells (P5–P6, 1.3 mM Ca2+, �84 mV).
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failure of maturation in Tmc1-deficient hair cells was a conse-

quence of a decline in Tmc2 expression after the first postnatal

week. Neither the Marcotti et al. (2006) nor the Kawashima

et al. (2011) data could distinguish between a developmental

role and a direct role in mechanotransduction. Therefore, to

test the hypothesis that TMC1, TMC2, or both are components

of the mammalian hair cell transduction channel, we recorded

whole-cell and single-channel currents from vestibular type II

hair cells and cochlear inner hair cells from mice deficient in

Tmc1, Tmc2, or both, as well as mice that carried the Bthmuta-

tion in Tmc1.

RESULTS AND DISCUSSION

Sensory Transduction in Inner Hair Cells of Tmc Mutant
Mice
The mammalian cochlea includes three rows of outer hair cells

and a single row of inner hair cells. Outer hair cells function to

amplify sound stimuli while inner hair cells convey 95% of the

afferent information to the brain. In a prior study, we found that

Tmc1 and Tmc2 are required for mechanotransduction in outer

hair cells (Kawashima et al., 2011); inner hair cells were not inves-

tigated. To investigate the contributions of Tmc1 and Tmc2 to in-
ner hair cell function we recorded whole-cell mechanotransduc-

tion currents from mice with targeted deletion alleles of Tmc1,

Tmc2, or both. Hair bundle deflections were evoked using stiff

glass probes with tips shaped to fit the concave aspect of bun-

dles of inner hair cell stereocilia. The pipettes were mounted on a

stack of piezoelectric actuators that enabled rapid (�50 ms) de-

flections (Experimental Procedures). We found that inner hair

cells deficient in Tmc1 or Tmc2 had reduced transduction cur-

rent amplitudes relative to wild-type cells (Figure 1A). Inner hair

cells deficient in both Tmc1 and Tmc2 lacked mechanotrans-

duction currents entirely. This was always the case regardless

of cochlear region, developmental stage, or extracellular calcium

concentration (Figures 1A and 1B). We also noted a develop-

mental delay, with the onset of mechanotransduction in inner

hair cells that expressed Tmc1 occurring about two days later

than inner hair cells that expressed Tmc2 (Figure 1C) and

�2 days later than wild-type mouse outer hair cells (Lelli et al.,

2009). The delayed development of mechanotransduction in

hair cells that expressed Tmc1 paralleled the expression pattern

of Tmc1 in wild-type mice (Kawashima et al., 2011). These data

extend the conclusion that Tmc1 and Tmc2 are required for

transduction to include cochlear inner hair cells and confirm

that expression of either gene alone is sufficient for transduction.
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Figure 2. Whole-Cell Mechanotransduction Current-Voltage Rela-

tionships Measured in 100 mM Calcium

(A–C) Representative families of currents recorded at the step potentials

shown below (A) from inner hair cells of the genotypes indicated. Amechanical

stimulus (protocol shown at the bottom of A) that evoked hair bundle de-

flections from�0.6 mm to 0.9 mmwas superimposed on the voltage steps. The

scale bar in (B) applies to (A)–(C).

(D) Mean (± 1 SEM) current-voltage relations taken from the peak transduction

currents shown in (A)–(C) for eight cells of each genotype.

(E) Mean (+ 1 SEM) reversal potentials measured from the x-intercept of in-

dividual I–V curves generated from eight cells of each genotype.

(F) Mean (+ 1 SEM) calcium permeability ratios relative to cesium calculated

using the Goldman-Hodgkin-Katz equation and the reversal potentials shown

in (E).
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Since dominant mutations in TMC1 cause progressive hearing

loss in humans and mice (Kurima et al., 2002), we investigated

hair cell transduction in Bthmice (Vreugde et al., 2002) which ex-

press a Tmc1 point mutation that causes a methionine to lysine

substitution at residue 412 (p.M412K). To test the hypothesis

that Bthmice have normal mechanotransduction during the first

postnatal week (Marcotti et al., 2006) due to expression of Tmc2,

we generated mice with three mutant alleles at the Tmc1 and

Tmc2 loci by crossing Tmc1Bth onto a Tmc1;Tmc2-null back-

ground (Tmc1Bth and wild-type alleles are indicated in bold

throughout the text and figures to emphasize the identities of

the proteins encoded by each genotype). Auditory brainstem re-

sponses indicated that the Tmc1Bth/D;Tmc2D/D mice had pro-

found hearing loss (see Figure S1A available online) at 1 month

of age, the earliest time point tested. Cell counts from

Tmc1Bth/D cochleas at P30–P35 revealed significant inner hair

cell loss regardless of the Tmc2 genotype (Figure S1B). Surpris-

ingly, Tmc1Bth/D;Tmc2D/D hair cells had transduction current

amplitudes at P5–P6 that were significantly larger than those of

Tmc1+/D;Tmc2D/D mice (Figures 1A, 1B, and 1D), while

Tmc1Bth/D;Tmc2+/D hair cells had normal mechanotransduction

during the first postnatal week (Figures 1A, 1B, and 1D). These

data suggest that p.M412K is not a loss-of-function or domi-

nant-negative mutation but must cause deafness due to a gain

or change of function. To further explore the differences between

Tmc1D/D;Tmc2+/D, Tmc1+/D;Tmc2D/D, and Tmc1Bth/D;Tmc2D/D

hair cells, we examined several biophysical properties of hair

cell mechanotransduction, including sensitivity, calcium per-

meability and rate and extent of adaptation. We identified no

significant differences in sensitivity (Figure S2) but found striking

differences in calcium permeability and adaptation.

To assay calcium permeability we used two electrophysiolog-

ical measures: Ca2+ block and reversal potential. Calcium is a

permeant blocker of hair cell transduction channels and reduces

the whole-cell mechanotransduction conductance by �30% in

wild-type rat cochlear hair cells (Beurg et al., 2006). To investigate

calcium block in Tmc1Bth/D;Tmc2D/D hair cells, we plotted peak

transduction currents as a function of voltage and generatedme-

chanotransduction current-voltage (I–V) relations in two different

calcium concentrations. Mechanotransduction slope conduc-

tance was measured at membrane potentials between �124

and�44mV in50mMCa2+, a concentration thatmimics theendo-

lymph fluid bathing hair bundles, and in normal extracellular Ca2+

(1.3 mM). We found an �40% reduction in slope conductance in

Tmc1Bth/D;Tmc2D/D hair cells bathed in 1.3 mM Ca2+ relative to

50 mM Ca2+. The �40% reduction in Tmc1Bth/D;Tmc2D/D cells

(Figure S3) was significantly larger (p < 0.0005) than the

30% reduction measured in Tmc1+/D;Tmc2D/D cells and

Tmc1D/D;Tmc2+/D cells under the same conditions. Thus, the

greater calcium block in the Tmc1Bth/D;Tmc2D/D cells indicates

that the p.M412K mutation affects transduction channel perme-

ation properties in Bth hair cells.

For the secondassay, thecellswerebathed in 100mMexternal

Ca2+ with no other permeant cations. The recording pipette con-

tained 140 mM internal Cs+ which permitted estimation of the

Ca2+/Cs+ permeability ratio. We delivered saturating positive

and negative step deflections (�1.5 mm range) and simultaneous

voltage steps to inner hair cells of the three genotypes (Figures
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2A–2C). Peak transduction currents were plotted as a function

of voltage (Figure 2D). We found a substantial negative shift in

the I-V curve reversal potentials forTmc1Bth/D;Tmc2D/Dhair cells,

relative toTmc1+/D;Tmc2D/Dcells.Reversal potentials,measured

from the x-intercept of the I–V curves, indicated a difference of

�13mV (Figure 2E) betweenhair cells of the twogenotypes. Inner

hair cells of Tmc1D/D;Tmc2+/D mice had more positive reversal

potentials (Figures 2D and 2E) consistent with recent measure-

ments fromouter hair cells ofmice that carried the recessivedeaf-

nessmutation in Tmc1 (Kim and Fettiplace, 2013).

We used our reversal potential data together with the

Goldman-Hodgkin-Katz equation to estimate the calcium

permeability ratio relative to internal cesium. We found that

TMC2-expressing cells had higher calcium selectivity than

TMC1-expressing cells (Figure 2F) consistent with inner hair

cell data from Kim and Fettiplace (2013). Importantly, we found

that the p.M412K point mutation in TMC1Bth -expressing cells



Figure 3. Analysis of Transducer Adaptation in Tmc Mutant Hair

Cells Recorded in 50 mM Ca2+

(A–C) Whole-cell mechanotransduction currents (left) recorded from inner hair

cells of Tmc1D/D;Tmc2+/D (n = 14 cells), Tmc1+/D;Tmc2D/D (n = 16 cells) and

Tmc1Bth/D;Tmc2D/D (n = 11 cells) mice as indicated above. The scale bar

applies to all panels. Traces were selected as the 50% maximal current from

families evoked by mechanical stimuli that spanned the sensitive range for

each cell. Each trace was fitted with a double exponential equation (bottom

right) that yielded fast (t1) and slow (t2) time constants. The extent of adap-

tation was calculated as the residual current at the end of the step divided by

the peak current. All traces shown on the left were averaged to generate the

composite traces on the right (black line) and were fitted with the double

exponential equation. The fit parameters are shown below each trace.

(D) Mean (+1 SEM) fast adaptation time constants measured in 50 mMCa2+ for

the individual current traces shown in (A)–(C).

(E) Mean (+1 SEM) slow adaptation time constants.

(F) Mean (+1 SEM) extent of adaptation measured as the residual current at the

end of a 90-msec step divided by the peak current. Number of cells is shown at
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caused a significant reduction in calcium selectivity relative to

TMC1-expressing cells (Figure 2F). Thus, the p.M412K mutation

in TMC1 alters a core property of themechanically evoked trans-

duction current—its calcium permeability—supporting the hy-

pothesis that TMC1 is an integral component of the hair cell

transduction channel.

Since hair cell adaptation is calcium-sensitive (Eatock et al.,

1987; Assad and Corey, 1992; Ricci and Fettiplace, 1997; Ken-

nedy et al., 2003; Farris et al., 2006) we wondered whether differ-

ences in calcium permeability in Tmc mutant hair cells might

affect adaptation. We measured adaptation time constants

and extent from cells bathed in endolymph calcium concentra-

tions (50 mM; Figure 1B). Current traces with half-maximal peak

amplitudes were fitted with double exponential equations (Fig-

ure 3). The fits extended from the peak of the inward current to

the end of themechanical step (Figures 3A–3C, right, red traces).

We found that the fast component of adaptation was significantly

faster in Tmc1+/D;Tmc2D/D hair cells than in Tmc1D/D;Tmc2+/D or

Tmc1Bth/D;Tmc2D/D cells (Figure 3D). The slow component of

adaptation was slower in Tmc1D/D;Tmc2+/D cells than either

Tmc1+/D;Tmc2D/D or Tmc1Bth/D;Tmc2D/D cells (Figure 3E). The

extent of adaptation also varied among the three genotypes (Fig-

ure 3F). The differences in fast adaptation time constants may be

a consequence of different calcium permeabilities (Figure 2F) or

theymay reflect inherent differences in the adaptation properties

of TMC proteins. Wu et al. (1999) modeled adaptation in auditory

hair cells and suggested that fast adaptation required a calcium

binding site in close proximity to the channel pore. Thus, it is

plausible that amino acid sequence differences between TMC1

and TMC2 may contribute to the different fast adaptation prop-

erties reported here. Because slow adaption is thought to involve

myosin motors (Holt et al., 2002) at a remote location (Wu et al.,

1999), minor changes in calcium entry in cells bathed in 50 mM

calcium may have little impact on the local calcium concentra-

tion at the slow adaptation site due to diffusion and the activity

of calcium pumps and buffers.

Single-Channel Properties of Tmc Mutant Inner Hair
Cells
Another core property of an ion channel is its single-channel

conductance. To examine contributions of TMC proteins to the

properties of single transduction channels we designed a stimu-

lation and recording paradigm. Inner hair cell bundles consist of

an array of loosely organized stereocilia, with few lateral connec-

tions and the tallest row towering above the rest. To exploit this

morphology, we engineered stimulus pipettes that tapered to a

few hundred nanometers in diameter at their distal tips which

we used to deflect single stereocilia (Figure S4). We recorded

the response of single stereocilium deflections in whole-cell

mode at a holding potential of �84 mV. At this potential,

voltage-dependent sodium and calcium channels were deacti-

vated and we substituted Cs+ for K+ in the recording pipette to

block residual potassium currents. The cells were bathed in an

endolymph concentration of calcium, 50 mM, which had the
the bottom. Statistical significance relative to Tmc1+/D;Tmc2D/D is indicated:

***p < 0.001, **p < 0.01, *p < 0.05.
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Figure 4. Single-Channel Events Recorded

from Inner Hair Cells of Tmc Mutant Mice

(A) To evaluate the recording paradigm, the noise

floor was measured at �84 mV from a P4 basal

IHC excised from a Tmc1D/D;Tmc2D/D mouse.

Four representative traces are shown. Dashed

lines indicate the zero current level. The stimulus

protocol is shown at the bottom. The scale bar

applies all current traces. Each trace was used to

generate an event histogram (right, red trace). The

data were fitted with a Gaussian equation which

had a peak at 0.07 pA and awidth of 4.3 pA (black).

(B) Single-channel currents recorded in 50 mM

Ca2+ from a P2 Tmc1D/D;Tmc2+/D basal inner hair

cell. Rapid current steps were frequently noted.

Open and closed states are indicated at the right

of the first of five representative traces. Applica-

tion of 0.2 mM dihydrostreptomycin (DHS) elimi-

nated all single-channel events (bottom). The

ensemble average of 43 traces containing step

transitions show the responses were linked to the

mechanical stimulus. The event histogram (right,

red trace) was fitted with the sum of two Gaussian

curves (black trace) that had peaks at �0.02 pA

and �22.6 pA with widths of 5.0 and 6.7 pA,

respectively.

(C) Five representative traces recorded in 50 mM

Ca2+ from a basal, P4 Tmc1+/D;Tmc2D/D inner hair

cell. 0.2 mM amiloride, an alternate transduction

channel blocker (Rüsch et al., 1994), eliminated all

single-channel events (bottom). An ensemble

average of 50 traces is shown below. The event

histogram (right) was fitted with the sum of two

Gaussians with peaks of 0.1 and �12.3 pA and

widths of 6.6 and 7.6 pA, respectively.

(D) Representative traces recorded in 50 mM Ca2+

from a P5 basal hair cell excised from a

Tmc1Bth/D;Tmc2D/Dmouse. An ensemble average

of 22 traces and the stimulus protocol are shown

at the bottom. Gaussian fits to the event histogram

had peaks at �0.2 and �8.6 pA with widths of 3.7

and 5.9 pA.

(E) Mean (+1 SD) single-channel currents recorded

from 51 inner hair cells from all regions of the

cochlea and developmental stages between

P0 and P9 (n = 19 mice). The stars (***) indicate

highly significant differences relative to

Tmc1+/D;Tmc2D/D cells: p < 1e-10.

(F) Whole-bundle currents recorded in 50 mMCa2+

were divided by the mean single-channel currents

shown in (E) to yield an estimate of the number of

transduction channels for 20 cells. Mean (+ 1 SD)

number of channels/cell for each genotype is

indicated, revealing significantly more functional

channels in the Tmc1Bth/D;Tmc2D/D hair cells.

***p < 0.001, **p < 0.01.

(G) Representative quantitative RT-PCR data for

Tmc1 mRNA selected from three biological repli-

cates each of which yielded similar results.

Messenger RNA was harvested from the apical

and basal portions of P5 mouse cochleas excised

from Tmc1+/D;Tmc2D/D and Tmc1Bth/D;Tmc2D/D

mice. Data were normalized relative to Actb and

Tmc1 levels from the apical Tmc1+/D;Tmc2D/D

sample using the DDCt method. The mean (+1 SD)

of three technical replicates are shown. *p < 0.05.
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dual effect of enhancing transduction current amplitudes relative

to standard extracellular calcium (i.e., minimizing calcium block)

and prolonging channel open times by reducing calcium-depen-

dent adaptation.

We began with a characterization of Tmc1D/D;Tmc2D/D cells

which lacked single-channel currents entirely and thus permitted

evaluation of the recording paradigm in a quiescent background

(Figure 4A). We observed no voltage-dependent or ligand-gated

ion channel activity. Under these conditions the root mean

square (RMS) noise was 2.2 pA, which we reasoned would allow

us to resolve currents with amplitudes greater than 4.4 pA. When

we used this technique to record from Tmc1D/D;Tmc2+/D inner

hair cells, we observed prominent single-channel currents (Fig-

ure 4B) in response to small stereocilium deflections. The sin-

gle-channel events were blocked by application of 0.2 mM dihy-

drostreptomycin (DHS), a hair cell transduction antagonist

(Marcotti et al., 2005). Ensemble averages of 20–50 traces re-

vealed that the unitary currents coincided with stereocilium

step deflections. The data were binned (0.3 pA bin width) into

amplitude histograms which revealed two prominent peaks

centered at the zero current level (closed state) and at �22 pA,

the presumed open channel current for a single transduction

channel.

Tmc1+/D;Tmc2D/D inner hair cells had unitary current steps

that were significantly smaller (Figure 4C). The current

amplitudes were �10 to �12 pA, about half that measured

from Tmc1D/D; Tmc2+/D hair cells. We recorded from 25

Tmc1+/D;Tmc2D/D and nine Tmc1D/D;Tmc2+/D inner hair cells

from all regions of the cochlea, throughout the first postnatal

week and found little variation in current amplitude for a given ge-

notype (Figure 4E). In some recordings, we noticed spontaneous

single-channel events that had amplitudes similar to those of the

mechanically evoked currents (Figures S5A and S5C). Occasion-

ally, we observed current steps that were two (Figure S5B) or

three times the unitary value, possibly reflecting gating of two

or three channels within an intact column of two to three stereo-

cilia (Figure S4B). There were also several recordings in which

adaptation was prominent for both positive and negative deflec-

tions (Figure S6). Ensemble averages revealed single-channel

adaptation that had time courses and extents of adaptation

similar to themacroscopic currents recorded in lowCa2+ from in-

ner hair cells of equivalent Tmc genotypes. Whether the differ-

ences in single-channel adaptation are a consequence of the

different calcium permeability, inherent differences in the prop-

erties of TMC proteins or both is unclear.

Next, we recorded from mutant mice that expressed the

TMC1Bth protein and found that the p.M412K mutation in

TMC1 had a significant effect on the amplitude of the single-

channel currents (Figure 4D). Unitary currents measured from

17 Tmc1Bth/D;Tmc2D/D inner hair cells were reduced by �33%

relative to those recorded from cells with a single wild-type allele

of Tmc1 (Figure 4E). The change in unitary current amplitude re-

sulting from a point mutation in TMC1 provides compelling evi-

dence that TMC1 is a component of the hair cell transduction

channel.

To calculate the number of channels/cell we compared

the single-channel current amplitudes to the macroscopic cur-

rents for hair cells of the same genotype. We found that the
Tmc1Bth /D;Tmc2D/D cells expressed over twice the number of

functional channels as either of the other two genotypes (Fig-

ure 4F). Tmc1Bth/D;Tmc2D/D cells had a mean of 86 channels/

cell. Estimates of the number of tip-links range from 50 to 100

per cell depending on the number of stereocilia. Thus, the

Tmc1Bth/D;Tmc2D/D cells had 1-2 channels per tip-link on

average. Tmc1+/D;Tmc2D/D cells had 40 channels/cell and

Tmc1D/D;Tmc2+/D cells had 25, suggesting that not all tip-link

sites were occupied, perhaps due to haploinsufficiency. To

investigate whether the difference in the number of transduction

channels between Tmc1+/D;Tmc2D/D and Tmc1Bth/D;Tmc2D/D

hair cells was due to changes in gene expression, we performed

a quantitative RT-PCR analysis using cochlear tissue harvested

from Tmc1+/D;Tmc2D/D and Tmc1Bth/D;Tmc2D/Dmice. The anal-

ysis revealed significantly higher Tmc1 mRNA expression in Bth

mice (Figure 4G), which may account for the larger whole-cell

transduction currents in these mice. The mechanism for altered

Tmc1 gene expression and eventual hair cell death in the Bth

mice is unclear. However, recent evidence shows that proper

calcium homeostasis is required for hair cell survival (Esterberg

et al., 2013), raising the possibility that altered calcium perme-

ability in Bth mice may lead to hair cell degeneration and deaf-

ness (Figure S1B). A similar mechanism may underlie dominant,

progressive hearing loss in DFNA36 patients who carry a point

mutation (p.G417R) in an adjacent residue in the human TMC1

ortholog (Yang et al., 2010).

Wild-Type Inner Hair Cells Have a Range of Single-
Channel Properties
Next, we measured single-channel currents in wild-type inner

hair cells at time points when both Tmc1 and Tmc2 were ex-

pressed (Figure 5). During the first postnatal week we recorded

a range of unitary current amplitudes from all regions of the co-

chlea that was significantly broader than that observed in Tmc

mutant mice. Representative examples that span the range are

shown in Figures 5A–5C. Unitary current values were divided

by driving force (84 mV based on a 0 mV reversal potential in

50 mM Ca2+, see Figure S3) to calculate single-channel conduc-

tance (g). In wild-type mouse inner hair cells, g ranged between

60 and 330 pS during the first postnatal week. These values

encompass the wide range of single-channel conductances re-

ported for auditory hair cells of various species (Crawford

et al., 1991; Géléoc et al., 1997; Ricci et al., 2003; Beurg et al.,

2006). Figure 5D shows a scatter plot of 44 single-channel con-

ductances measured from wild-type cells, along with measure-

ments from 18 Tmc1+/D;Tmc2D/D and Tmc1D/D;Tmc2+/D cells.

The data from the Tmcmutant mice are tightly clustered relative

to the wild-type data which are more broadly distributed. To

examine the possibility that the wild-type data form discrete

groups we performed a cluster analysis using three statistical

tests (Experimental Procedures) each of which reported that

the data are best described by four clusters. The mean value

for each cluster is indicated by the straight lines (Figure 5D).

Together, these data reveal that both Tmc1+/D;Tmc2D/D and

Tmc1D/D;Tmc2+/D hair cells have transduction channels with

relatively homogeneous single-channel properties, whereas

wild-type hair cells that express both Tmc1 and Tmc2 display

significant heterogeneity. The data support a model in which
Neuron 79, 504–515, August 7, 2013 ª2013 Elsevier Inc. 509



Figure 5. Single-Channel Events Recorded from Wild-Type Inner

Hair Cells

(A) Five representative traces recorded from a wild-type P4 apical hair cell that

illustrate a mechanotransduction channel at the upper end of the single-

channel conductance range. The currents were blocked by 0.2 mM amiloride

(bottom). An ensemble average of 24 traces is shown below. The event his-

togram (right, red trace) was fitted with two Gaussian functions (black trace)

with peaks at 0 and �27.2 pA and widths of 4.8 and 7.1 pA. Single-channel

conductance was calculated as current/driving force, the latter equal to the

difference between the holding potential (�84 mV) and the reversal potential

(0 mV in 50 mM Ca2+; from Figure S3).

(B) Representative traces recorded from a wild-type basal hair cell at P2. The

single-channel current amplitude was in the middle range of 44 channels

examined. An ensemble average of 44 traces is shown at the bottom. The

event histogram (right) was fitted with two Gaussians with peaks at 0.2 and

�16.2 pA andwidths of 6.9 and 10.4 pA. The scale bar at the bottom applies to

all current traces.

(C) Traces recorded from a wild-type apical hair cell at P2 that represent the

lower end of the single-channel conductance range. An ensemble average of

35 traces is shown at the bottom. The histogram (right) was fitted with two

Gaussians with peaks of 0 and�7.3 pA andwidths of 2.1 and 3.1, respectively.

(D) Scatter plot of single-channel conductance for Tmc1D/D;Tmc2+/D,

Tmc1+/D;Tmc2D/D and wild-type transduction channels recorded from inner

hair cells during the first postnatal week. Note the wild-type values cluster in

four discrete groups. The mean for each group is indicated by the horizontal

line. Number of measurements for each genotype is indicated below.
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TMC1 and TMC2 can contribute to homomeric transduction

channels and when coexpressed in wild-type cells can coas-

semble to form heteromeric channels with a range of discrete

conductance levels, including conductance levels that are larger

than either TMC1 or TMC2 homomers. Whether other single-

channel properties, such as kinetics, calcium permeability, or

adaptation vary as a function of subunit composition remains

to be determined.

Since both the single-channel and the whole-cell transduction

data in Tmc mutant mice reveal distinct biophysical properties,

we suggest that prior published data on hair cell mechanotrans-

duction, particularly during early developmental stages, may

need to be reinterpreted with regard to the complex Tmc spatio-

temporal expression patterns and the developmental switch

from Tmc2 to Tmc1 in cochlear hair cells (Kawashima et al.,

2011). Indeed, the maturation of mechanotransduction proper-

ties in cochlear outer hair cells that occurs throughout the first

postnatal week (Waguespack et al., 2007; Lelli et al., 2009)

may be the consequence of dynamic Tmc1 and Tmc2 expres-

sion patterns.

Tmc Function in Vestibular Hair Cells
Lastly, we wondered whether the same general properties we

found in cochlear inner hair cells of Tmc mutant mice can be

generalized to other hair cell types. To investigate this we re-

corded single-channel and whole-cell transduction currents

from vestibular hair cells of the mouse utricle. In type II vestibular

hair cells bathed in 1.3 mM Ca2+, single-channel conductances

from Tmc1D/D;Tmc2+/D mice (mean = 101 ± 18 pS, n = 3; Fig-

ure 6A) were about twice the amplitude of those recorded from

Tmc1+/D;Tmc2D/D mice (mean = 50 ± 18 pS, n = 4; Figure 6B).

In wild-type cells (Figure 6C), most single-channel events had

large conductances (mean = 114 ± 8 pS, n = 3), consistent

with our previous data showing that Tmc2 is highly expressed



Figure 6. Transduction Currents Recorded from Vestibular Type II

Hair Cells of Wild-Type and Tmc Mutant Mice

(A) Representative single-channel events recorded from a utricle type II hair

cell acutely excised from a Tmc1D/D;Tmc2+/D mouse at P7. An ensemble

average of 31 traces is shown at the bottom. To estimate single-channel

conductance, an event histogram (right, red trace) was generated and the

current values were divided by driving force (�94 mV). The Gaussian curves

(black line) had peaks at 0 and 136 pS and widths of 16.7 and 36.5 pS. The

scale bar applies to all traces.

(B) Single-channel events recorded from a utricle type II hair cell acutely

excised from a Tmc1+/D;Tmc2D/D mouse at P4. An ensemble average of

22 traces is shown at the bottom. Single-channel currents were divided by

driving force (�94 mV) and plotted in an event histogram (right, red trace). The

data were fitted with two Gaussian curves (black lines) that had peaks at 0 and
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in vestibular hair cells during the first postnatal week (Kawashima

et al., 2011) Although the single-channel conductances

measured in vestibular cells were smaller than those of inner

hair cells, this is likely the result of the elevated extracellular cal-

cium (1.3 mM) required for the vestibular cell recording para-

digm. This is the first report of direct measurement of single-

channel currents from vestibular hair cells of any species, though

we note that the single-channel conductances we measured

from Tmc1+/D;Tmc2D/D mouse utricle hair cells are similar to

those of a prior noise analysis estimation from bullfrog saccular

hair cells (Holton and Hudspeth, 1986).

In both auditory and vestibular hair cells, the amplitude of the

single-channel conductance in TMC2-expressing cells was

approximately double that of TMC1-expressing cells. The larger

conductance in TMC2-expressing cells raises an intriguing pos-

sibility regarding the developmental switch from Tmc2 to Tmc1

that occurs at the end of the first postnatal week (Kawashima

et al., 2011). Development of the endocochlear potential

(+80 mV in the endolymphatic space that bathes auditory hair

bundles) occurs just prior to the onset of hearing at P10–P12 in

mice (Steel and Barkway, 1989), and coincides with the switch

from high-conductance TMC2 transduction channels to low-

conductance TMC1 channels. We hypothesize that acquisition

of low-conductance TMC1 channels is offset by development

of the endocochlear potential which provides a steep electro-

chemical gradient that drives sensory transduction in the mature

mammalian auditory organ. For example, a 265-pS TMC2 chan-

nel will pass �17 pA of current at a resting potential of �64 mV

during the first postnatal week. This is approximately equal to

the current passed by a 120-pS TMC1 channel with a 144 mV

driving force (difference between the �64 mV resting potential

and the +80 mV endocochlear potential) during the second

postnatal week. Thus, the counterbalance between the high-

to low-conductance switch and development of the endo-

cochlear potential may function to ensure stable transduction

current amplitudes during development and into adulthood.

Interestingly, vestibular organs, which lack an endolymphatic

potential, retain expression of Tmc2, and presumably high-

conductance transduction channels, into adulthood.

To test the hypothesis that coexpression of Tmc1 and Tmc2

can give rise to a range of transduction properties in vestibular

hair cells we overexpressed Tmc2 in Tmc1+/D;Tmc2D/D hair

cells using adenoviral expression vectors. Relative to

Tmc1+/D;Tmc2D/D hair cells (Figure 7A) and Tmc1+/D;Tmc2D/D

cells transfected with Ad-Tmc1 (Figure 7B), we found that

Tmc1+/D;Tmc2D/D cells transfected with Ad-Tmc2 had signifi-

cantly larger transduction currents, almost �400 pA in the

example shown in Figure 7C. Data from 26 cells (Figure 7D)

show that Tmc1+/D;Tmc2D/D cells transfected with Ad-Tmc2

had significantly larger mean maximal currents (�246 pA) than

the sum of the mean maximal currents from cells that express
36 pS and widths of 15.7 and 20.4 pS. The scale bar applies to all traces in (B)

and (C).

(C) Currents recorded from a wild-type utricle type II cell at P0. Ensemble

average = 60 traces. Single-channel currents were divided by driving force

(�84mV) and plotted in the histogram (right, red trace). Gaussian curves (black

line) had peaks at 0 and 129 pS and widths of 18.7 and 49 pS.
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Figure 7. Whole-Cell Mechanotransduction Currents Recorded at

–64 mV from Control Type II Hair Cells and Cells Exposed to Adeno-

viral Vectors

(A–C) Families of whole-cell currents recorded from Tmc1+/D;Tmc2D/D

vestibular hair cells under control conditions (A) or following exposure to Ad-

Tmc1 and 5 days in culture (B) or exposure to Ad-Tmc2 and 4 days in culture

(C). The scale bar at the bottom applies to all current families.

(D) Bar graph summarizing the mean (+1 SEM) maximal whole-cell trans-

duction currents for the conditions indicated below. Number of cells is shown

for each bar. Statistical significance relative to the condition on the far right is

indicated according to ***p < 0.001, **p < 0.01, *p < 0.05.

Neuron

TMC1 & 2 Form Hair Cell Mechanotransducer Channels
either TMC1 or TMC2 alone (�34 + �118 = �152 pA). The cur-

rents from Tmc1+/D;Tmc2D/D cells transfected with Ad-Tmc2

were also significantly larger than Tmc1D/D;Tmc2D/D cells trans-

fected with Ad-Tmc2 (�136 pA; Kawashima et al., 2011). This

result demonstrates that coexpression of Tmc1 and Tmc2 can

contribute to larger transduction currents than can be explained

by the sum of overexpression of either Tmc1 or Tmc2 alone.

Distinct channel properties in cells that express two ion channel

genes relative to those that express either gene alone is evidence

that the channel subunits can co-assemble to form ion channels

with unique properties (Kubisch et al., 1999).

Conclusions
Our data support the hypothesis that TMC1 and TMC2 are com-

ponents of the mechanotransduction channel in auditory and

vestibular hair cells of the mammalian inner ear. The strongest

evidence is derived from the mutant mice that express the

Tmc1Bth allele in the absence of wild-type Tmc1 and Tmc2.

The reduced single-channel current levels and the reduced cal-

cium permeability that result from the p.M412K point mutation in

Tmc1 implicate TMC1 as a pore-forming subunit of the transduc-

tion channel. A similar line of evidence has been used to identify

mechanosensitive channels in worms (O’Hagan et al., 2005;

Kang et al., 2010) and fruitflies (Yan et al., 2013). The data sug-

gest that the p.M412K mutation must be critical for determining

permeation properties. Amino acid 412 is part of a 50 amino acid

extracellular loop between the third and fourth transmembrane

domains. Whether this residue is part of a vestibule at the mouth

of the pore that helps determine permeation properties or
512 Neuron 79, 504–515, August 7, 2013 ª2013 Elsevier Inc.
provides critical stability for the pore region remains to be

determined.

The dramatically larger unitary currents and calcium per-

meability we measured in hair cells that express a single allele

of Tmc2 extend our observations to include TMC2 as an addi-

tional pore-forming subunit. Either subunit is capable of medi-

ating hair cell mechanotransduction. Yet, when coexpressed,

as in wild-type cochlear hair cells during the first postnatal

week or in exogenous expression experiments in vestibular

hair cells, the data support the hypothesis that TMC1 and

TMC2 can heteromultimerize to provide a range of biophysical

properties. We propose that hair cells regulate expression and

assembly of TMC1 and TMC2 to help tune the properties of me-

chanotransduction tomeet the specific needs of the inner ear or-

gans and tonotopic regions they subserve. Developmental and

tonotopic gradients in Tmc expression (Kawashima et al.,

2011) may contribute to heteromeric TMC assemblies with a va-

riety of stoichiometries. For example, if TMC1 and TMC2 form

homo- or heterotrimeric channels, at least four subunit composi-

tions are possible, consistent with the four discrete conductance

levels we identified inWT inner hair cells. Further heterogeneity in

mechanosensory transduction may arise from expression of

Tmc1 alternate splice forms, expression of other Tmc genes,

or coassembly with other transduction molecules, perhaps

TMHS (Xiong et al., 2012). Whether TMHS interacts directly

with TMC1 or TMC2 to modulate hair cell transduction or affects

transduction indirectly via a structural mechanism required for

normal hair bundle morphogenesis has not been determined.

However, we note that Tmc1D/D;Tmc2D/D inner hair bundles

have normal morphology but no transduction at early postnatal

stages (Kawashima et al., 2011), whereas TMHS mutants have

dysmorphic bundles at early postnatal stages (Xiong et al.,

2012), consistent with a structural role for TMHS.

TMC1 and TMC2 have now satisfied three important criteria

(Christensen and Corey, 2007; Arnadóttir and Chalfie, 2010) to

be considered bona fide mechanotransduction channels. First,

the onset of Tmc2 expression coincides with development of

hair cell mechanotransduction and exogenous fluorophore-

tagged TMC proteins can be localized to the tips of hair cell ster-

eocilia (Kawashima et al., 2011). Second, genetic deletion of

Tmc1 and Tmc2 eliminates hair cell mechanosensitivity and rein-

troduction of exogenous Tmc1 or Tmc2 can restore mechano-

transduction (Kawashima et al., 2011). Fulfillment of the third

and most definitive criterion (Christensen and Corey, 2007) sup-

ports a direct role in mechanotransduction (Arnadóttir and Chal-

fie, 2010): as shown here, a point mutation in TMC1 alters the

permeation properties of transduction channels in native sen-

sory cells. We are unaware of anymutation in a protein that alters

the permeation properties of a channel, unless the mutated pro-

tein is part of the channel itself. It is not surprising that a fourth

criterion, reconstitution of mechanotransduction in a heterolo-

gous system, has not yet been successful. However, a recent

report has shown that heterologous expression of C. elegans

tmc-1 generates Na+-sensitive currents (Chatzigeorgiou et al.,

2013), which provides further evidence that the Tmc superfamily

includes genes that encode ion channels. Taken together,

our data provide strong evidence supporting the conclusion

that TMC1 and TMC2 are components of the hair cell
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mechanotransduction channel. More broadly, the data present

Tmc1 and Tmc2 as founding members of a mammalian gene

family (Tmc1–8) that may encode multiple novel mechanosensi-

tive ion channels.

EXPERIMENTAL PROCEDURES

Genotyping of Tmc Mutant Mice

Genomic DNA was prepared with Proteinase K (final concentration 1 mg/ml)

and a Tail Lysis reagent (Viagen). One hundred fifty microliters of the mixture

of Proteinase K and Lysis reagent was added per sample, and tubes were

incubated overnight at 55�C. Once digestion was complete, the temperature

was increased to 85�C for 50 min. For each sample, two separate PCR reac-

tions were set up; one for Tmc1, and one for Tmc2. All reactions were prepared

using GoTaq Green Master Mix 2X (Promega) with 2 ml of genomic DNA and

four primers per gene (final concentration 0.2 nM each). Both PCR reactions

were performed at 95�C for 2 min, (95�C for 30 s, 56�C for 30 s, 72�C for

45 s)3 35 cycles, 72�C for 5 min, hold at 4�C. Primers Tmc1Exon9L2 (50-GAT

GAACATTTTGGTACCCTTCTACTA-30) and Tmc1Exon9R2 (50-CACACTTT
GACACGTACAGTCTTTTAT-30) specifically amplified a 557-base pair frag-

ment of the wild-type Tmc1 allele. Primers Tmc1KO50ConfF2 (50-
TCTGAGCTTCTTAATCTCTGGTAGAAC-30) and Tmc1KO50ConfR2 (50-ATA
CAGTCCTCTTCACATCCATGCT-30) amplified a 408 base pair fragment

of the targeted deletion allele of Tmc1. Primers Tmc2-7L08 (50-
CGGTTCTTCTGTGGCATCTTACTT-30 ) and Tmc2-7R08 (50-ACCAGGCAATT

GACATGAATA-30) amplified a 401 base pair fragment of wild-type Tmc2.

Tmc2KO50L08 (50-CTGCCTTCTGGTTAGATCACTTCA-30) and Tmc2KO50R08
(50-GTGTTTTAAGTGTACCCACGGTCA-30) amplified a 621 base pair fragment

of the targeted deletion allele of Tmc2. To genotype Tmc1Bth mice PCR reac-

tions were set up as described above. BthMutF2 (50-CTAATCATACCAAG
GAAACATATGGAC-30) and BthMutR2 (50-TAGACTCACCTTGTTGTTAATCT

CATC-30 ) were used to amplify a 376 base pair product which was purified

and sequenced.

Quantitative RT-PCR Analysis

Fourmouse cochleas of each genotypewere excised at P5.We divided the co-

chleas into equivalent basal and apical quarters. RNA was extracted, quality

examined using an Agilent Bioanalyzer (Agilent Technologies) and reverse

transcribed into cDNA for quantitative RT-PCR analysis with primer sets spe-

cific to Tmc1 as described (Kawashima et al., 2011). To amplify a fragment of

Tmc1 common to both Tmc1ex1 and Tmc1ex2 and the Tmc1Bth allele, we

used primers 50-CATCTGCAGCCAACTTTGGTGTGT-30 and 50-AGAGG

TAGCCGGAAATTCAGCCAT-30. Primers were designed to span introns.

Expression levels were normalized to those of Actb (b-actin) amplified with

50-TGAGCGCAAGTACTCTGTGTGGAT-30 and 50-ACTCATCGTACTCCTGC

TTGCTGA-30. Primers were validated using melt curve analysis and negative

controls that lacked reverse transcriptase.

Auditory Brainstem Responses

Auditory brainstem response (ABR) thresholds were measured at 30 days of

age in at least four mice of each genotype: Tmc1+/D;Tmc2D/D and

Tmc1Bth/D;Tmc2D/D. We used alternating polarity tone-burst stimuli of 5 ms

duration. Stimulus intensities were initiated at suprathreshold values and

initially decreased by 10 dB steps, which were followed by 5 dB steps to deter-

mine the ABR threshold. When no ABR waveform was detectable at the high-

est stimulus level of 80 dB sound pressure level (SPL), the threshold was

considered to be 85 dB SPL.

Hair Cell Counts

Organ of Corti specimens were dissected, fixed in 4% paraformaldehyde for

two hours at room temperature, and decalcified in 0.25% EDTA overnight at

4�C. Samples were permeabilized with 0.5% Triton X-100 in PBS, followed

by overnight incubation in the primary antibody: Anti-Myosin VI antibody pro-

duced in rabbit (Sigma-Aldrich) at 4�C and detected by an Alexa 488-conju-

gated to a goat anti-rabbit secondary antibody (Invitrogen). Filamentous actin

was labeled with Alexa Fluor 568 phalloidin (Invitrogen). Inner hair cells were
counted in a central segment of each of two regions at the basal and apical

end. Each segment contained a sum total of 80 hair cell positions/row with

an intact, degenerated, or lost hair cell. Hair cells were counted in 5-8 cochleas

for each genotype at 4–5 weeks of age.

Scanning Electron Microscopy

Samples were prepared from C57BL/6J wild-type mice using the OTOTO

method with modifications as described (Kawashima et al., 2011). Otic cap-

sules were fixed in 2.5% glutaraldehyde buffered with 0.1 M sodium cacody-

late containing 2 mM CaCl2 for 1 to 1.5 hr at 4�C, rinsed in 0.1 M sodium

cacodylate buffer containing 2 mM CaCl2, and postfixed with 1% osmium te-

troxide (OsO4) with 0.1 M sodium cacodylate containing 2mMCaCl2 for 1 hr at

4�C. Cochlear sensory epithelia were dissected, and the tectorial membrane

was removed in 70% ethanol. The tissue was hydrated to distilled water,

treated with saturated aqueous thiocarbohydrazide (TCH) for 20 min, rinsed

with distilled water, and immersed in 1% OsO4 for 1 hr. After six washes

with 0.1 M sodium cacodylate buffer, the TCH and OsO4 treatments were

repeated twice. The tissue was then gradually dehydrated in an ethanol series,

critical point-dried, and imaged with a Hitachi S-4800 field emission electron

microscope at 1 to 10 kV.

Hair Cell Electrophysiology

Utricles and cochleas were excised, mounted on glass coverslips and viewed

on an Axioskop FS upright microscope (Carl Zeiss) equipped with a 633 wa-

ter-immersion objective and differential interference contrast optics. Electro-

physiological recordings were performed at room temperature (22�C–24�C)
in standard solutions containing (in mM): 137 NaCl, 5.8 KCl, 10 HEPES, 0.7

NaH2PO4, 1.3 CaCl2, 0.9 MgCl2, and 5.6 D-glucose, vitamins (1:100), and

amino acids (1:50) as in MEM (Invitrogen) (pH 7.4; 311 mOsm/kg). For some

experiments, extracellular calcium was altered as indicated. Recording elec-

trodes (3–5 MU) were pulled from R-6 glass (King Precision Glass) and filled

with (in mM): 140 CsCl, 5 EGTA-KOH, 5 HEPES, 2.5 Na2ATP, 3.5 MgCl2,

and 0.1 CaCl2 (pH 7.4; 284 mOsm/kg). The whole-cell, tight-seal technique

was used to record mechanotransduction currents using an Axopatch 200B

(Molecular Devices). Cells were held at –84 mV unless noted otherwise. The

input resistance of 12 representative cells was 885 ± 312 MU. Currents were

filtered at 2–5 kHz with a low-pass Bessel filter, digitized at R20 kHz with a

12-bit acquisition board (Digidata 1322A or 1440A), and recorded using

pClamp 10 software (Molecular Devices). Inner hair bundles were deflected

using stiff glass probes mounted on a PICMA chip piezo actuator (Physik In-

struments) driven by an LPZT amplifier (Physik Instruments) and filtered with

an 8-pole Bessel filter at 40 kHz to eliminate residual pipette resonance as pre-

viously described (Stauffer and Holt, 2007). Pipettes were designed to fit into

the concave aspect of the array of inner hair cell stereocilia for whole-bundle

recordings or were pulled to a fine tip (�200 nm diameter) for deflecting a sin-

gle stereocilium (Figure S4).

Adenoviral Vectors

The coding sequences of Tmc1 or Tmc2 were subcloned into the multiple

cloning site of a shuttle vector with a fragment of the MYO7A promoter (Gen-

Bank accession # U34227 c. �46 to �3321) as described (Kawashima et al.,

2011). The vectors also contained a cytomegalovirus promoter-driven

sequence encoding RFP that served as a transfection marker. The resultant

plasmid was linearized by digestion with PmeI and cotransformed into

E. coli (BJ5183) cells with the adenoviral backbone plasmid, pAdEDpol

(Hodges et al., 2000). Recombinants were selected for kanamycin resistance,

and recombination was confirmed by restriction endonuclease analyses. Line-

arized recombinant plasmids were transfected into C7 cells, an adenovirus

packaging cell line (Amalfitano et al., 1998). For large-scale production, we

used serial amplification of crude cell lysate in C7 cells. After five rounds of se-

rial passage, the crude lysate was filtered and purified using an AdenoX viral

purification kit (BD Biosciences) to yield �2 ml each of Ad-Tmc1 or Ad-

Tmc2, at titers that ranged from 107 to �109 viral particles/ml, which was

distributed into 25-ml aliquots and stored at �80�C. Viral vectors were added

directly to organotypic cultures generated from utricles of Tmc1+/D;Tmc2D/D

mice. Final working titers ranged from 2.5 3 106 to 108 viral particles/ml for

4 to 24 hr. The media was replaced with virus-free MEM supplemented with
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2% BSA. Cultures were maintained for an additional 2 to 4 days before

recording.

Statistics

Student’s (two-tailed) t test and one-way ANOVA was used to compare ABR

thresholds and biophysical properties of mechanotransduction currents using

the statistical function in Origin7.5 (OriginLab). Statistical significance is indi-

cated as *p < 0.05, **p < 0.01, ***p < 0.001. Data are presented as mean ± 1

standard deviation unless otherwise noted. To analyze single-channel con-

ductances in wild-type cells (Figure 5D) we used three statistical tests, cubic

clustering criterion, pseudo F statistics, and pseudo T-squares statistics,

which are components of SAS 9.2 software (SAS Institute Inc).

Study Approval

All animal experiments and procedures were performed according to proto-

cols approved by the Animal Care and Use Committee of the National Institute

on Deafness and Other Communication Disorders and the Animal Care and

Use Committee of Boston Children’s Hospital (Protocol #1959 and #2146).
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