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The Product Measure Exten: n Axiom (PMEA) asserts that for every set A, Haar raeasure
on2? can be extended to all suusets of- 2“ PMEA implies the normal Moore space conjecture.
Pmposx on Pis the: statement that every pomt-ﬁmte analytic-additive family of svbsets of a
metrizable space is o-discretely decomposible. Proposition P is useful in nonseparable Borel
theory. We show in this paper that PMEA implies Proposition P.
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Product Measure Extension Axiom - Proposition P
ovdtscretely decompos\hle analytic additive

L

In this section we sketch the proof of our main theorem. The main body of this
paper, Sectxon 2, contains the definitions and statements of the iemmas used.
Lemma 1is proved in [3]; Lemmas 2 and 3(a) are proveci in [4]; Lemmas 3(b) and
4 are proved in Section 2. The consistency of the axioms used is discussed in Section
3. Sectxon 4 contains some short: remarks about [2].

Because we use some technical notions from several fields, there is a danger that
,the proof of the main- theorem will be lost in the preliminaries, For expository
purposes, we present now our theorems and thelr proofs, deferring definitions and
proofs of lemmas to’ Sect:on 2.

Theorsin 1. PMEA impies Proposition P.
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Proof. We are given a point-finite analy’ "-addmve famxly, 2’ of subsetsa of a
metrizable space X: we must show that, assuming PMEA, £ is a-dlscretely
decomposible. Since £ is analytic-additive, there is, for each # <%, a family,
G(M)={G,(#): s € §}, of open subsets of X such that £ (4(#)} = «. By‘Lemma
1 we may assume that each 9(#) is an orderly family. Bemg of wet ,
below ¢ is a much weaker notion than being metrizable, so we may apply‘Lemma
3(b) to X and £ to conclude that & has a #-companion. (It is to prpve. Lemma
3(b) (and Lemma 2 on which Lemma 3 depends) where we use PMEA.) Finally,
because X is perfect, Lemma 4 yields that £ is o-discretely decomposible.

Theorem 2 is merely a staterment about which consequences of the metrizability
of X were used in the above proof. Theorem 3 is the statement of what the proof,
not including the last step of Lemma 4, yields in the special case where £ is the
family of singleton subsets of X.

Theorem 2 (PMEA). Perfect spaces of weak character below ¢ have Property P.

Theorem 3 (PMEA). If every subset of a space X of ‘veak character below ¢ 1s
analytic, then X is the unior. of countably many (relatively) discrete subspaces.

For two sets A and B, we denote by “B the set of all functions from A to B.
An ordinal is the set of smaller ordinals; w is the first infinite ordinal. We denote
the cardinal of the continuum by ¢. We denote the cardinality of the set A by |A].
We denote by S the setl_J,,.., "w. The s\ -operation assigns to a family 4 = {G;: s € w}
of sets the set

&f(g)= U m Gﬂn'
fe“w new
By an analytic subset of a topological space, we mean a set which can be obtained
from the family of open sets by the A-operation. Often, the closed sets are used
instead of open sets to define the analytic sets; for perfect spaces (i.e., spaces in
which every closed set is a G;s-35:t), both ways of defining analytic sets yield the
same class of sets.

Let £ be a family of subsets of a space X. For x € X, we deﬂne (&) to be the
set {L e £: x e L}, and F(Z) to be the set {x € X: (¥), is finite}. We say that & is
point-finite if F(Z) = X. We say that & is analytic-additive if, for cach # = &, | #
is analytic. We say that .Z is o-discretely decomposible if there exists a fa'miy
{D.(L): n € w, L e} of subsets of X such that

foreach Le %, L=1{_ D,(L), 1

nREw
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- _for each x € X and n € w, there is a neighborhood )
of x meeting at most one element of {D,(L): L& Z}. 2)

" 'We say thata space X has proper'y Pit every point-finite, analytlc addxtwe family
.of subsets leff\X is a--dnscretely decompos=ble Proposztxon P [2] is the statement

The Product Measure Extenswn Axiom (PME l\) [8] is the statement that for
any cardinal number «, there exists a c-addmve measure u,, defined on all subsets
of 2%, exte di g_the usual product measure (i.e., Haar measure). FMEA is equivalent
(m ZFC) wit hef asseriion that for anyset A, there exists a non-negative real-valued
function u defined for all families of subsets of A and satisfying the following two
conditions

If # is a collection of pairwise disjoint families of subsets of A

and | #| <c, then (U £) =X {n(B): Be f}.

If ¢ and d are disjoint finite subsets of A and n =|c ud|, then
p{BcA:ceBand deA-B}=2"".

(3)

4)

We will call i a product measure extension for A if (3) and (4) hold.

We will think of the elements of ¥ as approximation to #£(¥%). We introduce
here a way of gettmg better approximations.

First, note that ® = {f} and that for s € S, the domain of s is ls] For each n e w,
let <" be the product partial order on "w. That is, for s, tew”, s <"¢ iff for all
k <n, s(k)<t(k). Set < equal to U, <" Thus, for s, t€ S, s < implies Is|=lel.

We say that a family ¢ ={G,: s S} of a set X is an orderly family if Go=X
and, for all s, te S

ifsctthen G,>G, 5)
ifs<t then G.<G. (6)

Thus, to get a better larzer approximation than G, take G, where s <tf; to get a
better smaller approx:mation than G,, take G, where s < t. (The partial order on
S generated by < and < is implicit in [3] but will not be used in this paper.)

Lemma 1 [3]. Every - nalytic subset of a topological space can be obtained by the
sf-operation from an orderly family of open subsets of the space.

Although Proposition P mentions only metrizable spaces, our proof, assuming
PMEA., will show that spaces in a much larger class have Property P.

We say that a space X has weak character belew c if there exists a collection
{#.: x £ X} of filterbases on X; each of cardinality less than ¢, such that, for every
subset G of X, G is open in X iff for each x € G there is F € &, suchthat xe F= G.

Let us recall how Nyikos used PMEA [8]. Given a collection Z, normalized by
{U(#):4¢ = ¥}, he obtained, for each L& %, an cpen set V(L)=L by choosing,
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for each x € Le &, a neighborhood V(x) such that V(x)< U(4) for “most” 4,
“most” being given a precise meaning by a product measure extension for %.
Nyikos’ results were extended in [3] from character to weak character by the
{ollowing paradoxical observation. If for each x € L we can choose a nexg'hborhood
then we don’t have to choose a nexghborhood becanse the set of all pcnnts which
are in U () for “most” # is automatically open. :

We introduce machinery to make the ideas above precise.

Convention. Given a space X, a set A, a function G from the set of subsets of A

to the set of open sets of X, and u, a product measure extensxon for A, we set, for
cachaeA and new.

B..=t{B< A:if ae B, then x € G(B)},
Uda)={xe X: u(B,,)>1-2""}.

When the set, A, is a collection, %, and the function G has a subscnpt t, we wnte
1] (I for II ln\

L NAC U S ¥4 \is je

Lemma 2 [4]. Let X, A, G and p be as in the convention. If X is of weak character
below c, then for each a € A and n € w, the set U,(a) is open in X.

We want a precise notion of how a collection of subsets of a space X cau be a
good approximation to another collection of subset: of X. We say that ¥ =
{U/(L): jeJ, Le ¥} is a §-companion of £ if

J is countable, | N

for each jeJ and cach L= &, J;(L) is open in X (8)

for each x € F(Z), there is je J such that (), ={Le L:xe Ui(L)}. (9)
If, additionally,

foreach Le ¥ andeachjeJ, L = U;(L). (10)

we say that U is a 8-expansion of &,

Lemma 3. Let X be a space of wzak character below ¢, and for each k € w, (or s S)
Iet X, Z, G and v be as in the convention.
a) [4] If for all <=L, {G (H) kew} is a descending sequence of open sets
W hose intersection is \_J 4, then {Unx(L): L € £} is a 9-expansion of £L.
(b) If for ali M = £, G(4t) ={C (M) s € S} is an orderly family with o (G(H)) =
\JM, then {U), (L) Le £, new,s- S} is a 6-companion of &.

Proof of (b). Fix x € F(£); let m =|(#),|+2.Foreachnew ‘and each s € "w, define
R, ={fe”"w: fln <"s}. For each f € “w and / = %, set

‘Gy’( A ) m Gfin ("%)'
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Our ﬁrst goal is to find f & “w such that

ML it reUd then x € G} >1-2"

Foreachses let g T ,
={J¢c:$ nfx eL w then (SfeR,)(xer(va))}

Then foreachnew and each s€"w, €, =\{%:te" " w and s < ¢}. As the families
@(4() are orderly, we have €, < €, whenever s <. It follows that we can inductively
define s(n)€ "w, such that, for each new, s(n)c s(n+1) and w(Gsiny - Coinany) <
271 Get

f= U S(n); Cgf= n ces(n)-

nEw new

Noting that s(0) =@, and hence u (%) =1, we have

2= N Guw) =1(60)~ T (G~ Goner)

new new

>1-F 27 l=1-2",

new

To see that f has the required property, it suffices to observe that

ﬁ Cm{McZL: U-’“ < m Gﬁn(va)}-
This observation can be easily made by noting that for all new and /4 < %, if
M e €y, and x €M, then it follows from the orderliness of ¥(.#) tha' xe
Gs(n)(-’“)-
For every n € w, set

&l < 2 (X ~Ud) < (X = GyinfM))).

Note that ., €. = {#: M < £}, and that for each n € @, &, < &,.,. It follows that
there is k € @ such that x(€,)>1-2"" Let t =s(k).

We complz:te the proof of the lemma by showing that, for each Le %, xe L iff
X € Up(L).

Case 1. x = L. It is easy to see that €; < &, ,; hence, (%, .(L)>1~2""; and so
x € Upn,(L).

Case 2. x£ L. Set

{.AtC‘.‘Z’ LeM and 4N (£), =0}

Note that u(sﬁ) =2""*1 We show that (g A &) N3, (L)=0.Let # € 2 N &,. Since
M e 2, wehave L e # and x& | 4. Since x €)M and M € &, we have x & Guy(M) =
G;(A{)l. Finally. since L € # and x € G,(#), we have 4 & B, (L), establishing (2 N
)N B,, = 2.
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It fol'lows that u(@“(L))<1 w(2 n%’k) We have y.( ) AL
1-2"":hence u{2N&)>2"". Zonsequently, u ({8, ,(L))<1-‘. « r‘wo‘rds,'
x€Upe 2 TR e

Our final lemma relates #-companions and ¢ -discrete decompqSiti’bx;ﬁs;»

Lemma 4. Let & be a puint-finite family of subsets ~, of a 'peifé(c} pdéé‘X : If.? hasa
#-companion, {U(L): Lc %, jeJ}, then £ is a-d:scre;ely decomposzble S

Proof. For each n € o, let [£]" be the family of n-elcment subsets of £ ]ror eaeh'
X e[£]", let :he elements of K be K,,, m <n. For each jeJ, new, m <n, and
K e[£]7, set

ZK. ) ={x e X: (&), =K ={L: :: e UL,
D, (L) =\U{Z(K,j): L=Kne[L]"}.

,-v

-Olt)i.m.n = {Di.m.n(’ yLeX).

Fir.t, note that | {Z (K, ): je J, K €[£]", n € w} = X. Second, note that for each
jeJ,new,m<nand K e[£]" ;

(UZjmn)n({U(L): LeK}) = Z(K, r)r\Km,

SO Yjmn is disjoint, and H,,,,., the set of points of X whlch do not have a
neighborhood meeting at most one element of &jm.n is a closed set disjoint from
|J Dj.m.n. Since X is perfect, there is a family {V,...: i € 0} whose intersection is
H[ m,ne '

Finaily, we set D, . :(L) = Dj pin(L) = V, mn.i. The family {D; m n.:(L): L € £}shows
that £ is o -discretely decomposible. ]

The proof above can be used to show that weakly g-refinable perfect spaces are
subparacompact [1]. The ideas are from Thecrem 4 of [10].

Proposition P has been proved under two separate assumptions - PMEA and
(SC w, + V& Og). Let us discuss the similarities and differences. : »

One important similarity is that large cardinals are involved. To establish
Con(ZFC+PMEA), Kunen assumed Con(ZFC+ 3 strong compact cardinal); to
establish Cen(ZFC+SC w,+VS ), Con(ZFC+3 supercompact cardinal) was
assumed in [2]. It is known that each of Con(ZFC +PMEA) and Con(ZFC* SCw,)
implies Con(ZFC + 3 measurable cardinal).

There is an important difference between PMEA and SC ws+ S <>g The latter
implies CH while the former implies not CH is false in & strong way: PMEA implies
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3%»;PMEA implies NMSC (the
at NMSC is *alse |
01 /natural thsm “elther PMEA or

be. proved without large ca*dmal assumpntlons" In partlcular,
does V L xmply Prop P"

4‘

In this section we briefly comment on some aspects of [2].

R. Pol [9] proved (in ZFC) that a point-countable Borel-additive family of subsets
of weight sm ofa complete metnc -space has a o-discrete refinement. Assuming
VS Cs, we may ‘omit “complete” in the hypothesis; assuining further SC w; we
may omit “of weight <w,”. Pol’s application of his result to generalize the
Kuratowskx-Ryll—Nardzewskx selectxon theorem to separablt,-valued maps can be
altered similarly.

Several snmphﬁcatxoﬁs of the work in [2] have been pou ted out. First, in the
consistency proof, the use of elementary embeddings can be avoidid by using the
“second-order Lowenheim-Sikolem” characterization of supe:compact cardinals
[7]. Second, in extending the results from ultrametric spaces to general metric
spaces, the following observation [5] can he used instead of perfect maps: If (X, 7)
is a a-space, then there is a finer ultrametric topology 7" on X such that every
open set U e 7" is an' F,, in the sense of 7. Thu'd the formulation of SC w, is too
complex; the following axiom TC w2 (proved consiste (¢ in the same way) is simpler
and has more applications.

For 7 = (T, <7), a tree, let [T« be the set ci countable initial segments of J.
We say that (7, g) is a tree with local tasks if

(1) T is a tree of height <w:.

(2) g is a function with domain {(y, a): yeae[Tlw}.

(3) If fe g(y, a), then f is a function with domain {re T: t <ry}.

(4) Foreachye T and ae[Tw, |g(y, a)|<c.

‘We say that (7, g) is satisfiable if there is a function I” with domain T such that
forall ye T,

Tl{teT:t <rv}elJrange g
We sa) that (7, g)Ais w,-satisfiable if for all initial segments S of 7, if |S|< wa,
then ((S, <+ 8%, gl(S x|S|{w)) is satisfiable.

Axiom TC w, is the assertion tha: if a tree with local tasks is w,-satisfiable, then
it is satisfiable.
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GCne way in which TC o, differs froi1 SC w, is that satisfiable does nct imply
w;-satisfiable. (It is not required thut I'l{te T:t <ryleg(y, a)). The. followxrgg
application illustrates this difference.

Lemma (TC w2). Let A be a subspace of an ultrametrizable space X. If for evesy
subspace Y of X, weight Y <w; implies that A N Y has the Baire Pmperty in Y, then
A has the Baire Property in X.

Notice that the fact that A has the Baire Prope1ty in a space X does not imply
that, for Y < X, A~ Y has the Baire Property in Y. Thus, it seeins that the lemma
cannot follow directly from SC w,.
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